
AURA: PROGRAMMING WITH

AUTHORIZATION AND AUDIT

Jeffrey A. Vaughan

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Prof. Steve Zdancewic of Computer and Information Science
Supervisor of Dissertation

Prof. Jianbo Shi of Computer and Information Science
Graduate Group Chair

Dissertation Committee

Prof. Stephanie Weirich of Computer and Information Science, Chair
Prof. Frank Pfenning of Computer Science, Carnegie Mellon University

Prof. Benjamin C. Pierce of Computer and Information Science
Prof. Andre Scedrov of Mathematics and Computer and Information Science

COPYRIGHT

Jeffrey A. Vaughan

2009

Acknowledgments

I could not have contemplated, never mind completed, writing this dissertation without the help,

patience, and understanding of my colleagues, friends, and family.

Thank you first to Steve Zdancewic. As my academic advisor he taught me how think like a

computer scientist. His office door was open, and I learned something new every time I walked

through it.

I am grateful to my thesis committee, Frank Pfenning, Benjamin C. Pierce, Andre Scedrov and

Stephanie Weirich, for their valuable input and feedback on this dissertation.

Over the last five years I’ve learned that computer science is social endeavor. To my collab-

orators and colleagues: our reading groups, seminars, late-night writing sessions, and informal

conversations formed the heart of my graduate education. A special thanks to Aaron Bohannon,

Limin Jia, Andrew Hilton, Justin Kozer, Karl Mazurak, Joseph Schorr, Haakon Ringberg, Luke

Zarko, Jianzhou Zhao, and the University of Pennsylvania PL Club.

Computer and Information Science’s administrative and business support staff, especially Mike

Felker, cut through miles of red tape over the years.

Thank you to the teachers and professors who encouraged and inspired my interest in math-

ematics, logic, and computer science. Richard Gaudio and James VanHaneghan first introduced

me to the beauty and power of mathematical reasoning. As Andrew Myers’s student and teaching

assistant I learned the difference between computer engineering and computer science.

My friends in Philadelphia, particularly Aaron, Drew, Hanna, Kristin, Maggie, Nick, and Rob,

kept me sane throughout graduate school.

iii

iv

My parents, Joanne and Mark, and my sister, Emily, have always been a consistent source of

love and support. My newest family members, Carol Wortman, Dennis Wortman, and Joan Linskey,

have adopted me as their own.

Most of all, I thank my wife Jenn. She is my best friend, travel companion, cooking partner,

academic strategist, animal trainer, and so much more. She encouraged me during the late nights

and early mornings of research and writing, and helped me enjoy even the hardest days of graduate

school. And, not least of all, Jenn corrected the spelling of “Jeffrey” on this document’s title page.

(Writing a thesis is hard.)

ABSTRACT

Aura: Programming with Authorization and Audit

Jeffrey A. Vaughan

Supervisor: Steve Zdancewic

Standard programming models do not provide direct ways of managing secret or untrusted data.

This is a problem because programmers must use ad hoc methods to ensure that secrets are not

leaked and, conversely, that tainted data is not used to make critical decisions. This dissertation

advocates integrating cryptography and language-based analyses in order to build programming en-

vironments for declarative information security, in which high-level specifications of confidentiality

and integrity constraints are automatically enforced in hostile execution environments.

This dissertation describes Aura, a family of programing languages which integrate functional

programming, access control via authorization logic, automatic audit logging, and confidentially via

encryption. Aura’s programming model marries an expressive, principled way to specify security

policies with a practical policy-enforcement methodology that is well suited for auditing access

grants and protecting secrets.

Aura security policies are expressed as propositions in an authorization logic. Such logics are

suitable for discussing delegation, permission, and other security-relevant concepts. Aura’s (depen-

dent) type system cleanly integrates standard data types, like integers, with proofs of authorization-

logic propositions; this lets programs manipulate authorization proofs just like ordinary values.

In addition, security-relevant implementation details—like the creation of audit trails or the cryp-

tographic representation of language constructs—can be handled automatically with little or no

programmer intervention.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 An Overview of Aura . 4

1.3 Aura in the Context of Practical Programming . 7

1.4 Contributions . 14

1.5 Bibliographic Notes . 15

2 Aura: Programming with Audit in Aura 17

2.1 Introduction . 17

2.2 Kernel Mediated Access Control . 19

2.3 The Logic . 29

2.4 Examples . 39

2.5 Discussion . 46

2.6 Related Work . 48

3 Aura: A Language for Authorization and Audit 51

3.1 Introduction . 51

3.2 Programming in Aura . 53

3.3 The Aura Core Language . 57

3.4 Validation and Prototype Implementation . 69

3.5 An Extended Example . 70

3.6 Related Work . 75

4 Confidentiality in Aura 78

4.1 Introduction . 78

vi

Contents vii

4.2 Confidential Computations and the For-Monad 79

4.3 Examples . 82

4.4 Language Definition . 87

4.5 Discussion . 106

4.6 Related Work . 108

5 Conclusion 111

5.1 Summary . 111

5.2 Possible Extensions . 112

References 115

A Proofs for Aura0 128

B Formal Aura language definitions 145

C Mechanized Auraconf definitions 154

C.1 Syntax . 155

C.2 Environments . 156

C.3 Constants and Worlds . 157

C.4 Values . 159

C.5 Type Signatures . 161

C.6 Conversion Relation . 166

C.7 Atomic Types . 168

C.8 Fact Contexts . 169

C.9 Notation for Syntax . 170

C.10 Typing Relation . 171

C.11 Signature Well Formedness . 186

C.12 Step Relation . 190

C.13 Blame . 195

C.14 Similarity . 196

List of Figures

1.1 Schematic diagram of an Aura jukebox system . 2

2.1 Schematic of the Aura runtime environment . 21

2.2 Operational semantics . 25

2.3 Syntax of Aura0 . 30

2.4 Substitution and free variable functions are defined as usual. 32

2.5 Expression typing . 33

2.6 Command typing . 34

2.7 Well formed signature and environment judgments (defined mutually with typing relation) 34

2.8 Reduction relation . 37

2.9 Types for the file system example . 42

3.1 Aura typing rules for standard functional language constructs. 60

3.2 Aura typing rules for access control constructs. 61

3.3 Conversion . 65

3.4 Reduction Relation . 67

3.5 Aura code for a music store . 71

4.1 A simple communications library . 82

4.2 Code for confidential storage server . 84

4.3 Auraconf Syntax . 88

4.4 Selected Auraconf evaluation rules . 91

4.5 Selected typing rules for Auraconf . 94

4.6 Major auxiliary judgments for Auraconf’s static semantics 98

viii

List of Figures ix

4.7 Approximate typing judgment used by WF-TM-ASBITS 101

4.8 Selected rules from the definition of similar terms . 104

A.1 Translation of Aura0’s terms to CC . 134

A.2 Translation of Aura0 contexts to CC . 135

B.1 Aura value and applied value relations . 146

B.2 Auxiliary Definitions . 147

B.3 Aura signature typing rules . 148

B.4 Aura environment typing rules . 150

B.5 Aura typing rules, extended, functional programing 151

B.6 Aura typing rules, extended, access control . 152

B.7 Aura branch set typing rules . 153

Chapter 1

Introduction

Standard programming models do not provide direct ways of managing secret or untrusted data.

This is a problem because programmers must use ad hoc methods to ensure that secrets are not

leaked and, conversely, that tainted data is not used to make critical decisions. This dissertation

advocates integrating cryptography and language-based analyses in order to build programming en-

vironments for declarative information security, in which high-level specifications of confidentiality

and integrity constraints are automatically enforced in hostile execution environments.

This document describes a programming language, Aura, that marries a security-sensitive type

system for policy specification with cryptography for policy enforcement. In the following, I argue

that Aura provides an expressive and sound way to specify and enforce declarative-information-

security properties. The remainder of this chapter sketches the Aura system at a high level and

outlines the contributions of this dissertation.

1.1 Motivation

Aura is designed to enable mutually distrusting principals to share resources and secrets, subject to

a potentially complicated set of policy rules.

For instance, imagine the jukebox system depicted in Figure 1.1. Here two principals (Alice and

Bob) are connected to each other and to a server that mediates access to a jukebox. The jukebox

is assumed to be completely security-oblivious, and the server is responsible for forwarding valid

1

CHAPTER 1. INTRODUCTION 2

Jukebox

Principal: Bob

Principal: Alice
say (sign(ICFP, sharePolicy) :
 ICFP says sharePolicy

say (sign(ICFP, sharePolicy) :
 ICFP says sharePolicy

say (sign(ICFP, sharePolicy) :
 ICFP says sharePolicy

say (sign(ICFP, sharePolicy) :
 ICFP says sharePolicy

say (sign(ICFP, sharePolicy) :
 ICFP says sharePolicy

Network Connection

ICFP Server
(Aura Code)

Server Log

Figure 1.1: Schematic diagram of an Aura jukebox system

requests—and only valid requests—to it. The server itself may be acting on behalf of a principal,

such as the RIAA or the International Cartel for Fonograph Players, ICFP.

The system might need to enforce a range of policies, and the difficulty of enforcement increases

with increasing policy complexity. When ICFP specifies “Alice may play all songs,” the server’s

job is relatively easy. When ICFP specifies “If the Goldbach conjecture holds, then Bob may play

songs,” the server’s job is prohibitively difficult.

Between these extremes, we find more interesting and reasonable policy sets: “ICFP says Alice

may play London Calling,” “Alice says Bob may play her music,” “Bob says Alice may play his

new wave songs,” and “Bob says Blue Monday is new wave.” These policies are interesting for

several reasons.

• They contain prominent use of delegation. Sometimes Bob may only play a song because

Alice has delegated her rights.

• They are heterogeneous and not necessarily coordinated by a central authority. Alice and Bob

might classify songs differently (e.g. “Alice says Blue Monday is pop”), and we will assume

that this is a feature of realistic policy sets among potentially mutually distrusting principals.

• Determining access rights is an exercise in distributed decision making. Deciding if Alice is

permitted to play a song may require reasoning from several points of view and collecting

evidence about these views from diverse sources.

CHAPTER 1. INTRODUCTION 3

The need for these sorts of policies may be found throughout contemporary computer systems.

Users of wikis, distributed files systems, and even electronic door locks employ such access control

schemes, or struggle to approximate them when lacking appropriate technological support.

For example, traditional Unix file systems lack a way for unprivileged principals to establish

precise file-sharing policies. Files are shared primarily though the creation of groups, an operation

that requires administrator intervention. This would not be a problem if users did not wish to share

files, or were satisfied with the sharing that can accomplished using a small number of groups.

However, a variety of application-specific, access-control regimes, typified by Apache’s .htaccess

files (Apache, 2009) and techniques for sharing subversion repositories via ssh-tunneling (Collins-

Sussman et al., 2008), attest to the fact that users wish to delegate their file-access rights in a

fine-grained manner. As in the music example, realistic file-access policies such as “Bob says Alice

may update files when subversion agrees,” and “Charlie may read .html files under ˜/ public,” feature

delegation and lack of central coordination.

Additionally, Bauer et al. (2005a) have demonstrated the utility of decentralized, delegation-

rich policies for physical access control. They use computers to check access request for doors,

and accommodate expressive policies, such as “Eve says her guests may open her office door,” and

“Charlie is Eve’s guest on January 10th.”

Aura builds-on and refines the notion of proof carrying access control (PCA) as a technique

to enforce policies like those described above (Appel and Felten, 1999). In Aura, and other PCA

systems, processes are required to present, at runtime, proofs that resource accesses conform to

policy. In contrast with previous PCA systems, Aura is a single language with fragments tuned

for programming and policy definition. Its design ensures that well-typed programs only attempt

valid resource accesses. Additionally, Aura’s flexible type system can describe a wide variety of

security policies. This means that individual applications can use Aura types for PCA in lieu of

implementing and debugging a new access control scheme. Such techniques promise to enhance

the reliability and security of software systems.

CHAPTER 1. INTRODUCTION 4

1.2 An Overview of Aura

The Aura family of programming languages integrates functional programming, access control via

authorization logic, automatic audit logging, and confidentiality types for protecting secret confi-

dential data. Except when it would cause confusion, we refer to any member the language family—

Aura0, Aura, or Auraconf—as Aura.

Evidence-based access control

Aura security policies are expressed as propositions in an authorization logic based on Abadi’s

(2007) Dependency Core Calculus (DCC). Such logics are suitable for discussing delegation, per-

mission, and other security-relevant concepts. Aura’s type system cleanly integrates standard data

types (like integers) with proofs of authorization logic propositions, and programs manipulate au-

thorization proofs just as they might other values.

In authorization logics, the proposition A says P denotes “Principal A says (or endorses)

proposition P.” Chapter 2 presents a small-scale model of the Aura language, and describes the role

that such endorsed propositions play in authorization and audit. Aura authorization proofs serve

as evidence of access-control decisions, and programs must present appropriate proofs in order to

access resources. Evidence is composed of a mix of cryptographic signatures, which capture prin-

cipals’ “utterances,” and standard rules of logical deduction. We argue that automatically logging

such evidence enables useful post-hoc analysis of the authorization decisions made during a sys-

tem’s execution, and that log entries should contain proof-evidence documenting access grants. The

automated logging of evidence done in Aura provides several compelling benefits. The approach

provides a principled way of determining what to log, and logged proofs contain structure that can

illuminate policy flaws or misconfigurations. Most importantly, storing unforgeable cryptographic

evidence reduces the size and complexity of a system’s trusted computing base.

To explain these observations concretely, we develop a rich authorization logic based on a de-

pendently typed variant of DCC and prove the metatheoretic properties of subject-reduction and

normalization. We show that untrusted but well-typed applications, which access resources through

an appropriate interface, must obey the access control policy and create proofs useful for audit. We

CHAPTER 1. INTRODUCTION 5

also show the utility of proof-based auditing in a number of examples and discuss several pragmatic

issues, such as proof size, which must be addressed in this context.

Core Aura

Chapter 3 discusses Aura’s design in detail. Aura has ML-like evaluation semantics, character-

ized by call-by-value reduction and effectful operators. Its static semantics are substantially more

novel and are based on weak dependent types that can express a variety of useful propositions. For

instance, the proposition

Alice says ((P: Prop)→ Bob says P→ P)

means that principal Alice will endorse any proposition that Bob endorses. This proposition, which

may be pronounced “Bob speaks for Alice,” means that Alice is delegating all of her authority to

Bob. In contrast, the proposition

Alice says ((s: Song)→ isJazz s→

Bob says (MayPlay Bob s)→ MayPlay Bob s)

describes a more limited form of delegation, where Alice delegates some, but not all, of her authority

to Bob (only her rights to play jazz songs). The latter proposition follows the principle of least

privilege and represents a safer, more secure form of delegation than the former. The ability to

express such restricted delegation is an advantage of Aura compared with simpler authorization

logics containing only polymorphism.

Weak dependent types are simpler than the full-spectrum dependent types found in Coq (Coq,

2006) or Agda (Norell, 2007), and, consequently, Aura enjoys two useful properties: terms have

unique types, and type equality is decidable even in the presence of effects. This is achieved by

restricting some forms of application and making the use of conversion explicit. These design

choices work harmoniously with Aura’s call-by-value evaluation relation; many other reduction

strategies are incompatible with weak dependency and would induce metatheoretic complexity, or

even unsoundness.

The key technical challenge met in Chapter 3 is the elegant combination of functional program-

ming features—including inductive types, general recursion, and world effects—with authorization

logic constructs—particularly the says type constructor. Aura’s design resolves a variety of ten-

CHAPTER 1. INTRODUCTION 6

sions inherent in this feature set and admits important properties including syntactic soundness and

decidable type-checking. This document focuses on the language design itself and provides only a

high-level account of the large-scale Coq proofs that demonstrate Aura’s metatheoretic properties.

Confidentiality types in Auraconf

Chapter 4 describes new techniques for creating, manipulating, and accessing confidential data.

This methodology is compatible with Aura’s computation and audit models, and is realized in the

Auraconf programming language extension. Confidential data and computations are given special

types and are automatically encrypted as needed. For instance, the type int for Alice represents an

integer readable only by principal Alice. In this system, any user can build secret computations for

any other. To unprivileged users, confidential data values and computations are opaque.

The for type constructor behaves as an indexed monad; treating confidentiality in this manner

is both technically robust and aesthetically aligned with Aura’s design. As with says-propositions,

objects with for-types are created using the monadic operators return and bind. A run construct

takes, for example, an int for Alice and returns an int. Values with for-types are represented by

(annotated) ciphertexts. This provides security against adversaries that are outside the system and

able to, for example, intercept network traffic.

Auraconf integrates a novel mix of conventional and new ideas to provide intuitive confiden-

tiality operators backed by encryption. The language contains ciphertexts as first-class values. To

enable precise, typed-based analysis of these entities, the typechecker can access statically available

private keys and examine ciphertexts at compile time. When an appropriate key cannot be found,

facts about particular ciphertexts (recorded in the runtime’s fact context) may be used by the type-

checker. Ensuring that this enhanced typing regime satisfies preservation is subtle, and is solved

here using ideas from modal type theory (Pfenning and Davies, 2001; Jia and Walker, 2004; Mur-

phy, 2008). Auraconf programs can dynamically access private keys, and soundness requires effects

analysis (Lucassen and Gifford, 1988; Talpin and Jouvelot, 1992) that works in concert with modal

types. In addition to syntactic soundness, Auraconf satisfies a noninterference property that gives

one precise, but narrow, characterization of the language’s security benefits.

CHAPTER 1. INTRODUCTION 7

1.3 Aura in the Context of Practical Programming

The bulk of this dissertation presents a theory-oriented account of Aura. This section shows how a

full Aura implementation would function as a platform for applications development, identifies the

boundaries of this work, and describes how Aura concepts can be applied in other settings.

Toward practical programming with Aura

This section sketches how a production-ready Aura implementation could be used for practical

programming. Aura applications are intended to run in open, distributed settings. Toward this

end, programmers and system architects will need to take a few specific steps to build applications.

These steps are introduced below and explained more thoroughly in the following subsections.

First, the programmer must establish a shared vocabulary for programs to describe policies and

express data. This ontology is encoded as a type signature made up of inductive type definitions

and assertion declarations. For instance the following type signature could support this chapter’s

jukebox example:

(∗ Elements of type Song are built from strings . ∗)

data Song: Type { |new song: string→ Song }

(∗ MayPlay constructs a proposition from a principal and a song. ∗)

assert MayPlay: prin→ Song→ Prop

(∗ isJazz constructs a proposition from a song. ∗)

assert isJazz: Song→ Prop

Second, the programmer must identify principals that are mentioned directly in source code.

Key configuration files, as described below, bind principal objects like Alice or SqlServer to public

keys that establish identity. The association between principal objects and keys can be changed

before deployment without affecting code or recompilation; this allows programs to be reused in

different settings.

Third, programmers can write applications that interoperate—a client and server, for instance—

using the shared type signature and principal declarations. At this point programming teams could

work independently on client and server code; nothing about Aura’s architecture requires further

CHAPTER 1. INTRODUCTION 8

coordination between system components. Of course, producing correct code may require collabo-

ration for conventional design and quality control reasons. Note that it’s not necessary to implement

complete systems in Aura alone; programs can access foreign functions and data from .Net libraries.

Fourth, to deploy a system, administrators must install and configure application binaries on par-

ticular hosts. Unlike standard applications, Aura programs must be directed to a key configuration

file that provides final bindings between principal objects and their cryptographic keys. Type signa-

tures can be safely compiled into applications and need not be treated specially during deployment.

Finally, while Aura is intended to produce logs automatically in a default location, administrators

might choose to override the default at this time.

Type signatures

Aura’s programming model assumes all components of a distributed system can communicate using

a shared type signature that establishes a vocabulary of datatypes, propositions, and policy asser-

tions. It is critical for security that all hosts understand these objects in the same way.

In Aura we have assumed that system nodes maintain independent copies of the type signature,

and processes check that data read from the network is well formed with respect to the local copy.

When a broken, out-of-date, or malicious client sends bad data due to an incorrect signature, correct

clients will be able to reject the message.

Sophisticated systems for distributed programming, including AliceML (Rossberg et al., 2007)

and Acute (Sewell et al., 2007) provide a more comprehensive treatment of distribution in a higher-

order, typed setting. These systems each provide a careful account of marshaling data values and

mobile code. Additionally, Acute programs can selectively rebind a type so it refers to definitions

that have been updated or that are site-specific. A similar mechanism for associating version and lo-

cation metadata with Aura type signatures may enable more precise reasoning about system objects

and logged proofs.

Log files

Aura is intended to create high-integrity logs of system actions. A full implementation should pro-

duce logs automatically, perhaps in ˜/. aura/logs/appname.txt by default. Administrators or advanced

users should be able to override the log location by setting an appropriate flag.

CHAPTER 1. INTRODUCTION 9

This dissertation does not discuss the interesting issue of tool support for audit. Aura programs

will create many log entries during execution and these entries will very often contain digital sig-

natures and other inscrutable binary objects. For this reason a full implementation of Aura should

include tools to assist auditors with browsing, querying, and interpreting logs.

Principals and modules in Aura

The notion of principal is key to Aura. Principals are intended to be entities that can make policy

statements, such as users, organizations, or trusted computer services. We require that a principal’s

identity can be unambiguously associated with a public cryptography key. A variety of different

mechanisms could bind principal identities with public keys. Suitable choices include X.509 cer-

tificates in conjunction with global certificate authorities (Cooper et al., 2008), local name bindings

via SPKI/SDSI (Ellison et al., 1999), and file based key-management as found in SSH (Ylonen,

1996). Key configuration files would import these externally meaningful identifiers as Aura values

of type prin. For instance, the following configuration defines Aura principals Alice and Bob using

SPKI/SDSI and SSH identities.

(∗ Hash value identifies a unique SPKI/SDSI certificate linking

∗ Alice ′s name to a public key. ∗)

alias SDSI prin Alice =

(name (hash sha1 |SLCgPLFlGTzgUbacUMW8kGTEnUk=|) alice liddell)

(∗ Filename identifies a public key stored in ˜/. ssh/ ∗)

alias SSH prin Bob = id rsa bob.pub

Such aliases are only needed when principals are mentioned by name in source code.

Every process must also provide a binding for self, as follows:

(∗ Self must bind both public and private keys. ∗)

alias SSH self = id rsa vaughan.pub with id rsa vaughan

A goal of this design is to free programmers from managing keys directly in code. Indeed, keys

are loaded by the runtime using key configuration files and are referenced in code only implicitly,

by way of principal values. This design makes it impossible for programs to leak private keys

CHAPTER 1. INTRODUCTION 10

directly. Unfortunately, no methodology can completely rule out key leakage via side channels,

such as power or timing.

We anticipate that developers will write and debug Aura programs when some relevant keys are

unknown. It may be useful to enable placeholder principal declarations like the following:

alias FAKE prin Charlie = ()

Principal Charlie would not be bound to a key, and the runtime would use simple symbolic expres-

sions to stand in for Charlie’s signatures and ciphertexts. The runtime system should only permit

such behavior in debug builds, and release builds of Aura programs should not accept FAKE princi-

pal declarations.

Programs may interact with unknown as well as known principals. For instance, a middleware

service might communicate with a distinguished database server represented by principal SqlServer

and also process requests from anonymous clients. Aura uses public keys to represent both known

(aliased) and unknown (anonymous) principals at runtime. Principals are first-class and can be

treated like any other dynamically computed value. In particular, anonymous clients need not appear

in the key configuration file. Programmatically, anonymous clients are often handled by packaging

principals in inductive datatypes. For instance, Chapter 4 discusses an example program that accepts

requests of the following type.

data request: Type {

| r get : prin → Nat→ request

| r put : (a: prin) → Nat→ String for a → request

}

Both put and get requests are represented by data constructors that take a principal as their first argu-

ment. Importantly, request objects may range over any principal—even those unknown at compile

or link time. Aura allows comparisons on principals, and it possible to recognize and to specially

treat distinguished principals. For instance, the following code skeleton processes a request, giving

special consideration to a particular, very important, principal.

match r with request {

| r get → λa: prin. λn: Nat→ if a = VIP then ... else ...

| r put → ...

}

CHAPTER 1. INTRODUCTION 11

Programs run on behalf of principals. Technically, program p runs with Alice’s authority when

p can use Alice’s private key to sign propositions or decrypt data. We anticipate using a module

system to capture a program’s authority requirements. For instance, the following module uses say

to sign a proposition with Alice’s key. The annotation on its first line indicates that it requires Alice’s

authority.

Module Music Of Alice

let stringBeanJean: Song = ...

let share: (s: Song)→ Bob says (MayPlay Bob s)→

Alice says (MayPlay Bob s) = say (...)

End Module

In contrast, the following defines a module that runs with any authority:

Module Of ∗

let affirmTwo: (P: Prop)→ (Q: Prop)→ self says (And P Q) = ...

End Module

Language interoperability

Aura is specialized for writing programs that deal with authorization decisions and confidential data.

For this reason, it contains many features unfamiliar to most programmers and lacks others, such

as a large standard library, that are common in industrial software platforms. Aura is implemented

using the .Net framework, and can interoperate closely with .Net languages such as C] or F]. Mixed-

language development provides an appealing strategy that combines Aura’s security features with

mainstream languages and libraries.

Aura can easily import objects and procedures from foreign languages. This enables a software

architecture in which a top-level Aura program interacts with the network, while using .Net modules

for major computational work and to interface with resources not protected by Aura policies.

Aura’s security guarantees are based the language’s type-safety property. However, because

Aura’s type system is not directly comparable with .Net’s, care must be taken to ensure that Aura

objects touched by .Net procedures are well-formed. One reasonable programming discipline only

passes .Net-native types to .Net procedures. This prevents .Net code from storing references to Aura

CHAPTER 1. INTRODUCTION 12

objects and mangling them at unpredictable times. Additional runtime type checking may enable a

more liberal programming style, albeit with some overhead cost.

An inverted architecture, where a top level .Net language calls Aura libraries for proof search,

is possible in principle, but we have not thoroughly explored this design space. Static typing for

programs built in this style would require either encoding Aura types within .Net interfaces—an

interesting research topic—or rewriting the Aura library to expose a simplified type signature. Al-

ternatively, a limited form of dynamic typing may ameliorate the effects of the impedance mismatch.

It is unclear how usable the Aura security model would be for clients that cannot understand Aura

types.

More critically, there are some fundamentally troubling issues surrounding the use of Aura

with .Net languages. The main difficulty is that .Net does not, out of the box, provide a complete

mechanism for enforcing abstraction boundaries. For instance, .Net’s reflection mechanism can

easily query and update the private fields of an abstract datatype.1 While client code can block

particular uses of reflection using .Net’s security infrastructure, we are not aware implementation

techniques that would affirmatively protect Aura invariants in all contexts. Washburn (2007) studied

this problem in the context of functional programming.

This impacts Aura in at least the following specific ways. Aura’s type system is too complicated

for a shallow embedding in .Net types. Instead, Aura proofs and propositions must handled as a

deep embedding. That is, proofs and propositions must be represented by .Net objects. .Net contains

both reflection and concurrency. A malicious client may not only damage proofs by tampering with

their internal structure, but can also exploit time-of-check-to-time-of-use attacks to subvert local

attempts to validate purported proofs. For this reason Aura’s end-to-end security properties (such

as noninterference, see Chapter 4) are weakened in a mixed-language setting.

Yet all hope is not lost.

First, further research may reduce the magnitude of these problems. Higher-assurance proof

handling could be realized with mechanisms—such as moving proof checking to a separate

process—that protect proof objects from tampering. It would also be interesting to identify a subset

of, for instance, C] that can be safely mixed with Aura.

1This is accomplished using methods Type.GetFields() and FieldInfo.SetValue() from the System.Reflection namespace.
See Microsoft’s documentation, http://msdn.microsoft.com/en-us/library/system.reflection.
aspx, for details.

http://msdn.microsoft.com/en-us/library/system.reflection.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.aspx

CHAPTER 1. INTRODUCTION 13

Second, the problems that occur when mixing .Net and Aura appear at the edges of .Net. In a

pedantic sense OCaml is not typesafe due to the standard library function

Obj.magic : ′a → ′b

which performs an unsafe cast. And Haskell has no reasonable evaluation semantics due to

unsafePerformIO :: IO a→ a.

Despite these issues, it is widely accepted that programming in OCaml or Haskell is, in an informal

sense, safer than programming in C. Similarly, although specific—nearly pathological—uses of

.Net may undermine parts of Aura, .Net programmers could see a real, practical benefit from mixing

Aura into their applications.

As it stands, we claim that Aura mixed with .Net provides a substantially more secure platform

than .Net alone, and a more immediately practical platform than Aura alone.

Scope of Aura

This dissertation’s primary goal is to investigate type-based approaches to access control, audit,

and confidentiality. Toward this end, the languages discussed in the thesis—Aura0, Aura, and

Auraconf—are defined as intermediate languages. To simplify definition, compilation, and anal-

ysis, they omit less relevant surface-language features including type inference, exceptions, and

general mutable state. Chapter 5 does, however, briefly address some of these issues. Likewise a

full treatment of a modern module system (Dreyer and Rossberg, 2008) or tighter integration with

.Net (Syme et al., 2007) is outside the scope of this work.

We adopt the stance that the programmer should be able to use Aura without directly thinking

about authentication, cryptography, or logging mechanisms. Primitive operations such as nonce

generation and explicit encryption are therefore excluded from the Aura programming model. Sev-

eral researchers have investigated programming languages for low-level protocol definition, no-

tably Bengtson et al. (2008). As mentioned above, Aura explicitly does not discuss the related

issues of establishing and maintaining a public key infrastructure (Ellison and Schneier, 2000). Ad-

ditionally, we do not investigate mechanisms for ensuring the integrity of audit logs; this has been

treated elsewhere in the literature (Bellare and Yee, 1997; Schneier and Kelsey, 1998).

CHAPTER 1. INTRODUCTION 14

Technology transfer

Aura brings to the table several general concepts useful for building pragmatic secure systems.

Systematically auditing why access control decisions are made is important. Because fully

predicting the consequences of access-control policy changes is, in nontrivial systems, undecid-

able (Harrison et al., 1976), reference monitors may always make some surprising decisions. Chap-

ter 2 demonstrates that after-the-fact audit of access grants can be used to understand, refine, and

improve security policy. Furthermore, recording why a grant occurred enables policies to include

escape hatches that permit resource access in emergency situations. Such escape hatches are valu-

able when the expected cost of false denies exceeds the cost of false allows.

Access-control policies should be defined in flexible, expressive logics. Aura’s access-control

logic is based on constructive type theory, and, as shown in examples throughout the disserta-

tion, this provides a framework for defining and reasoning about fine-grained polices. Similar de-

signs have been used to mediate access to file systems (Garg and Pfenning, 2009) and physical

doors (Bauer et al., 2005a). As argued above, conventional mechanisms, like .htaccess files, are

less able to express desired policies, compared with logic-based mechanisms. This informal obser-

vation has been affirmed when comparing access-control logics with physical keys (Bauer et al.,

2008).

Aura’s model of secure programming is based on authentic credentials and explicitly confiden-

tial data values. In contrast, many standard security models focus on the integrity and confidentiality

of channels or locations, such as network connections (Ylonen, 1996) or program variables (Vol-

pano et al., 1996). An advantage of the Aura approach is that confidential data can be written to

disk or the network without requiring that these output devices satisfy particular security constraints.

Likewise, proofs serving as authentic credentials can be trusted even when they are delivered by low

integrity methods, such as http.

1.4 Contributions

The principle contributions of this dissertation are as follows.

CHAPTER 1. INTRODUCTION 15

• The design of core Aura, a language with support for first-class, dependent authorization

policies. Aura’s design includes weak dependency, unique typing of expressions, and data-

centric access control via the says modality.

• The main metatheory results for Aura: syntactic soundness and decidable typechecking. Full

proofs of these properties are mechanized in Coq. (As noted below, these proofs are the result

of collaboration.)

• The design and description of Aura’s audit model and related system architecture. Aura uses

a small, trusted interface to realize access control policies specified by mutually distrustful

principals using Aura’s says construct.

• Examples and discussion showing that proof-theoretic properties, such as subject reduction

and normalization, can play a useful role in audit and that this architecture minimizes the

system’s trusted computing base.

• The design of Auraconf including the confidentiality type constructor for and a sophisticated

type system that enforces both key-management and code-mobility constraints.

• A mechanized proof that Auraconf is syntactically sound and satisfies a noninterference prop-

erty.

1.5 Bibliographic Notes

The work described in this document would not have been possible with out the help and hard

work of my collaborators. Chapter 2 reports on joint work with Limin Jia, Karl Mazurak, and

Steve Zdancewic that was originally published at CSF (Vaughan et al., 2008). Chapter 3 describes

research conducted with Limin Jia, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and

Steve Zdancewic. The original paper was published at ICFP (Jia et al., 2008). Long versions of

these papers are available as University of Pennsylvania technical reports numbers MS-CIS-08-09

and MS-CIS-08-10. Although I initiated the formal development of the mechanized proofs therein,

it was Limin Jia who did the hard work of “getting to QED.” Chapter 4 reports on new research.

CHAPTER 1. INTRODUCTION 16

This research is supported in part by NSF grants CNS-0346939, CCF-0524035, CNS-0524059,

and CCF-0716469.

Chapter 2

Aura: Programming with Audit in Aura

This chapter describes Aura’s setting and introduces a simplified version of the language, Aura0,

that is useful for discussing authorization and audit. We demonstrate that Aura0’s propositional

fragment is a consistent logic, via proofs of syntactic soundness and strong normalization, and

describe how Aura0’s (and by extension Aura’s) use of proof-carrying authorization facilitates the

design of secure software.

This chapter’s results are joint work with Limin Jia, Karl Mazurak, and Steve Zdancewic.

2.1 Introduction

Logging, i.e. recording for subsequent audit significant events that occur during a system’s execu-

tion, has long been recognized as a crucial part of building secure systems. A typical use of logging

is found in a firewall, which might record the access control decisions that it makes when deciding

whether to permit connection requests. In this case, the log might consist of a sequence of time-

stamped strings written to a file, where each entry indicates some information about the nature of

the request (IP addresses, port numbers, etc.) and whether the request was permitted. Other sce-

narios place more stringent requirements on the log. For example, a bank server’s transactions log

should be tamper resistant, and log entries should be authenticated and not easily forgeable. Logs

are useful because they can help administrators audit the system both to identify sources of unusual

or malicious behavior and to find flaws in the authorization policies enforced by the system.

17

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 18

Despite the practical importance of auditing, there has been surprisingly little research into what

constitutes good auditing procedures.1 There has been work on cryptographically protecting logs

to prevent or detect log tampering (Schneier and Kelsey, 1998; Bellare and Yee, 1997), efficiently

searching confidential logs (Waters et al., 2004), and experimental research on effective, practical

logging (Axelsson et al., 1998; Ko et al., 1997). But there is relatively little work on what the con-

tents of an audit log should be or how to ensure that a system implementation performs appropriate

logging (see Wee’s (1995) paper on a logging and auditing file system for one approach to these

issues, however).

In this chapter, we argue that audit log entries should constitute evidence that justifies the autho-

rization decisions made during the system’s execution. Following an abundance of prior work on

authorization logic (Abadi et al., 1993; Jajodia et al., 1997; DeTreville, 2002; Abadi, 2003; Li et al.,

2003; Abadi, 2006; Garg and Pfenning, 2006; DeYoung et al., 2008) we adopt the stance that log en-

tries should contain proofs that access should be granted. Indeed, the idea of logging such proofs is

implicit in the proof-carrying authorization literature (Appel and Felten, 1999; Bauer, 2003; Bauer

et al., 2005b), but, to our knowledge, the use of proofs for auditing purposes has not been studied

directly.

There are several compelling reasons why it is advantageous to include proofs of authorization

decisions in the log. First, by connecting the contents of log entries directly to the authorization

policy (as expressed by a collection of rules stated in terms of the authorization logic), we obtain a

principled way of determining what information to log. Second, proofs contain structure that can

potentially help administrators find flaws or misconfigurations in the authorization policy. Third,

storing verifiable evidence helps reduce the size of the trusted computing base; if every access-

restricting function automatically logs its arguments and result, the reasoning behind any particular

grant of access cannot be obscured by a careless or malicious programmer.

The impetus for this chapter is our experience with the design and implementation of Aura. The

primary goal of this work is to find mechanisms that can be used to simplify the task of manipulating

authorization proofs and to ensure that appropriate logging is always performed regardless of how a

reference monitor is implemented. Among other features intended to make building secure software

1Note that the term auditing can also refer to the practice of statically validating a property of the system. Code
review, for example, seeks to find flaws in software before it is deployed. Such auditing is, of course, very important, but
this chapter focuses on dynamic auditing mechanisms such as logging.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 19

easier, Aura provides a built-in notion of principals, and its type system treats authorization proofs

as first-class objects; the authorization policies may themselves depend on program values.

This chapter focuses on the use of proofs for logging purposes and the way in which we envision

structuring Aura software to take advantage of the authorization policies to minimize the size of the

trusted computing base. The contributions of this chapter can be summarized as follows.

Section 2.2 proposes a system architecture in which logging operations are performed by a

trusted kernel, which can be thought of as part of the Aura runtime system. Such a kernel accepts

proof objects constructed by programs written in Aura and logs them while performing security-

relevant operations.

To illustrate Aura more concretely, Section 2.3 develops a dependently typed authorization logic

based on DCC (Abadi, 2006) and similar to that found in the work by Fournet, Gordon, and Maffeis

(2005, 2007). This language, Aura0, is intended to model the fragment of Aura relevant to auditing.

We show how proof-theoretic properties such as subject reduction and normalization can play a

useful role in this context. Of particular note is the normalization result for Aura0 authorization

proofs.

Section 2.4 presents an extended example of a file system interface; as long as a client cannot

circumvent this interface, any reference monitor code is guaranteed to provide appropriate logging

information. This example also demonstrates how additional domain-specific rules can be built on

top of the general kernel interface, and how the logging of proofs can be useful when it isn’t obvious

which of these rules are appropriate.

Of course, there are many additional engineering problems that must be overcome before proof-

enriched auditing becomes practical. Although it is not our intent to address all of those issues here,

Section 2.5 highlights some of the salient challenges and sketches future research directions.

2.2 Kernel Mediated Access Control

A common system design idiom protects a resource with a reference monitor, which takes re-

quests from (generally) untrusted clients and decides whether to allow or deny access to the re-

source (Bishop, 2002). Ideally a reference monitor should be configured using a well-specified

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 20

set of rules that define the current access-control policy and mirror the intent of some institutional

policy.

Unfortunately, access-control decisions are not always made in accordance with institutional

intent. This can occur for a variety of reasons including the following:

1. The reference monitor implementation or rule language may be insufficient to express insti-

tutional intent. It this case, the rules must necessarily be too restrictive or too permissive.

2. The reference monitor may be configured with an incorrect set of rules.

3. The reference monitor itself may be buggy. That is, it may reach an incorrect decision even

when starting from correct rules.

The first and second points illustrate an interesting tension: rule language expressiveness is both

necessary and problematic. While overly simple languages prevent effective realization of policy

intent, expressive languages make it more likely that a particular rule set has unintended conse-

quences. The latter issue is particularly acute in light of Harrison and colleagues’ observation that

determining the ultimate effect of policy changes—even in simple systems—is generally undecid-

able (Harrison et al., 1976). The third point recognizes that reference monitors may be complex and

consequently vulnerable to implementation flaws.

The Aura programming model suggests a different approach to protecting resources, illustrated

in Figure 2.1. There are three main components in the system: a trusted kernel, an untrusted ap-

plication, and a set of rules that constitute the formal policy. The kernel itself contains a log and a

resource to be protected. The application may only request resource access through kernel interface

IK . This interface (made up of the opis in the figure) wraps each of the resource’s native operations

(the raw-opis) with new operations taking an additional argument—a proof that access is permitted.

ΣK and Σext contain constant predicate symbols that may be occur in these proofs.

Unlike the standard reference monitor model, an Aura kernel forwards every well-typed request

to its underlying resource. Each opi function takes as an additional argument a proof that the

operation is permitted and returns a corresponding proof that the operation was performed, so the

well-typedness of a call ensures that the requested access is permitted. Proofs can be typechecked

dynamically in time linearly proportional to the size of the proof should the request not come from

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 21

Rules

Kernel

ResourceLog

raw-op1 raw-op2

Application

Trusted Computing Base

Untrusted Code Auditable
Formal Policy

∑K

∑ext
Extended
Signature

op1 op2IK

Figure 2.1: Schematic of the Aura runtime environment

a well-typed application. Moreover, logging these proofs is enough to allow an auditor to ascertain

precisely why any particular access was allowed.

We define a language Aura0 to provide an expressive policy logic for writing rules and ker-

nel interface types. It is a cut-down version of full Aura, which itself is a polymorphic and

dependent variant of Abadi’s Dependency Core Calculus (Abadi et al., 1999; Abadi, 2006). In

Aura0, software components may be explicitly associated with one or more principals. Typi-

cally, a trusted kernel is identified with principal K, and an untrusted application may work on

behalf of several principals: A, B, etc. Principals can make assertions; for instance, the (inad-

visable) rule “the kernel asserts that all principals may open any file,” is written as proposition

K says ((A:prin)→ (f :string)→ OkToOpen A f). Evidence for this rule contains one or more

signature objects—possibly implemented as cryptographic signatures—that irrefutably tie princi-

pals to their utterances.

The above design carries several benefits. Kernels log the reasoning used to reach access control

decisions; if a particular access control decision violates policy intent but is allowed by the rules,

audit can reveal which rules contributed to this failure. Additionally, because all resource access is

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 22

accompanied by a proof, the trusted computing base is limited to the proof checker and kernel. As

small, off-the-shelf programs these components are less likely to suffer from software vulnerabilities

than traditional, full-scale reference monitors.

A key design principle is that kernels should be small and general; this is realized by removing

complex, specialized reasoning about policy (e.g. proof search) from the trusted computing base.

In this sense, Aura programs are to traditional reference monitors as operating system microkernels

are to monolithic kernels.

The formal system description

We model a system consisting of a trusted kernel K wrapping a security-oblivious resource R and

communicating with an untrusted application. The kernel is the trusted system component that

mediates between the application and resource by checking and logging access control proofs; we

assume that applications are prevented from accessing resources directly by using standard resource

isolation techniques deployed in operating systems or type systems.

A resource R is a stateful object with a set of operators that may query and update its state.

Formally, R = (σ, States, IR, δ) where σ ∈ States and

IR = raw-op1 : T1 ⇒ S1, . . . , raw-opn : Tn ⇒ Sn

The current state σ is an arbitrary structure representing R’s current state, and States is the set of all

possible resource states. IR is the resource’s interface; each raw-opi : Ti ⇒ Si is an operator with

its corresponding type signature. Type Ti ⇒ Si indicates that the operation takes an element of

Ti, returns an element of Si, and may have side effects; types will be explained in detail later. The

transition function δ describes how the raw operations update state, as well as their input-output

behavior. For instance, (u, σ′) = δ(raw-opi, v, σ) when raw operation i—given input v and initial

resource state σ—produces output u and updates the resource state to σ′.

We formalize a trusted kernelK as a tuple (L,R,ΣK , IK); the authority of the kernel is denoted

by the constant principal K. The first component, L, is a list of proofs representing the log. The

second component is the resource encapsulated by the kernel. Signature ΣK contains pairs of pred-

icates, OkToOpi : Ti → Prop and DidOpi : Ti → Si → Prop for each raw-opi of type Ti ⇒ Si in

IR. (The notation P : T → Prop declares that P is a unary operator which builds propositions, and

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 23

P : T → S → Prop declares a binary proposition constructor; see Section 2.3 for details.) These

predicates serve as the core lexicon for composing access control rules: a proof of K says OkToOp t

signifies that an operation raw-op is permitted with input t, and a proof of K says DidOp t s means

that raw-op was run with input t and returned s. Associating t and s with this proof lets system au-

ditors establish how some values were computed, not just what events occurred. Lastly, the kernel

exposes an application programming interface IK , containing a security-aware wrapper operation

opi : (x : Ti) ⇒ K says (OkToOpi x) ⇒

{y:Si; K says DidOpi x y}

for each raw-opi in IR. Applications must access R through IK rather than IR.

The type of opi shows that the kernel requires two arguments before it will provide access to

raw-opi. The first argument is simply raw-opi’s input; the second is a proof that the kernel approves

the operation, typically a composition of policy rules (globally known statements signed by K) and

statements made by other relevant principals. The return value of opi is a pair of raw-opi’s output

with a proof that acts as a receipt, affirming that the kernel called raw-opi and linking the call’s input

and output. Note that OkToOpi and DidOpi depend on the arguments x and y.

The final components in the model are the application, the rule set, and the extended signature.

We assume either that the application is well-typed—and thus that it respects IK—or, equivalently,

that the kernel performs dynamic typechecking (i.e., proof-checking) on incoming untrusted argu-

ments. The rule set is simply a well-known set of proofs intended to represent some access control

policy. As we will see, proofs in the rule set may contain interesting internal structure. The ex-

tended signature (Σext in Figure 2.1) defines predicate symbols that these rules may use in addition

to those defined in ΣK .

Remote procedure call example Consider a simple remote procedure call resource with only the

single raw operation, raw-rpc : string ⇒ string. The kernel associated with this resource exposes

the following predicates:

ΣK = OkToRPC : string→ Prop,

DidRPC : string→ string→ Prop

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 24

and the kernel interface

IK = rpc : (x : string) ⇒ K says OkToRPC x ⇒

{y:string; K says DidRPC x y}.

A trivial policy could allow remote procedure calls on all strings. This policy may be realized by

the singleton rule set

Rules = {r0 : K says ((x:string)→ OkToRPC x)}.

State transition semantics

While the formalism presented thus far is sufficient to describe what Aura0 systems look like at one

instant in time, it is much more interesting to consider an evolving system. Here we semi-formally

describe three alternative operational semantics for Aura0 systems, making comparisons based on

audit capability.

To demonstrate the key components of authorization and auditing in Aura0, we consider eval-

uation from the three perspectives described below. Each updates state according to the transition

relations defined in Figure 2.2.

1. Resource evaluation, written with −{}→r, models the state transition for raw resources. This

relation does no logging and does not consider access control.

2. Logged evaluation, written with −{}→l, models state transitions of an Aura0 system imple-

menting logging as described in this paper. All proofs produced or consumed by the kernel

are recorded in the log.

3. Semi-logged evaluation, written with −{}→s, models the full system update with weaker

logging. While proofs are still required for access control, the log contains only operation

names, not the associated proofs.

Resource evaluation is the simplest evaluation system. A transition IR; δ ` σ−{raw-opiv}→rσ′

may occur when v is a well typed input for raw-opi according to resource interface IR and δ specifies

that raw-opi, given v and starting with a resource in state σ, returns some result u and updates the

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 25

Resource evaluation relation IR; δ ` σ−{o}→rσ′

·; · ` v : T raw-opi : T ⇒ S ∈ IR (u, σ′) = δ(raw-opi, v, σ)
IR; δ ` σ−{raw-opi v}→rσ′

R-ACT

Semi-logged evaluation relation Σext; IK; δ ` σ−{o}→sσ′

opi : (x : T) ⇒ K says OkToOpi x ⇒ {y:S; K says DidOpi x y} ∈ IK

S � p ·; · ` v : T Σext; · ` p : K says OkToOpi v
(u, σ′) = δ(raw-opi, v, σ) q = sign(K,DidOpi v u)

Σext; IK; δ ` (L, σ,S)−{opi, v, p}→s(opi :: L, σ′,S ∪ {q})
S-ACT

Σext; · ` P : Prop A 6= K S � P
Σext; IK; δ ` (L, σ,S)−{assert:A says P}→s(L, σ,S ∪ {sign(A,P)})

S-SAY

Proof-logged evaluation relation Σext; IK; δ ` σ−{o}→lσ′

opi : (x : T) ⇒ K says OkToOpi x ⇒ {y:S; K says DidOpi x y} ∈ IK

S � p ·; · ` v : T
Σext; · ` p : K says OkToOpi v (u, σ′) = raw-opi(v, σ) q = sign(K,DidOpi v u)

Σext; IK; δ ` (L, σ,S)−{opi, v, p}→l(q :: p :: L, σ′,S ∪ {q})
L-ACT

Σext; · ` P : Prop A 6= K S � P
Σext; IK; δ ` (L, σ,S)−{assert:A says P}→l(L, σ,S ∪ {sign(A,P)})

L-SAY

Figure 2.2: Operational semantics

resource state to σ′. (In the following we will generally omit the ` and objects to its left, as they are

constant and can be inferred from context.)

The logged evaluation relation is more interesting: instead of simply updating resource states,

it updates configurations. A configuration C, is a triple (L, σ,S), where L is a list of proofs rep-

resenting a log, σ is an underlying resource state, and S is a set of proofs of the form sign(A,P)

intended to track all assertions made by principals. There are two logged evaluation rules, L-SAY

and L-ACT.

Intuitively, L-SAY allows principals other than the kernel K to add objects of the form

sign(A,P) to S , corresponding to the ability of clients to sign arbitrary propositions, as long as

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 26

all signatures found within P already appear in S. This last condition is written S � P and prevents

principals from forging evidence—in particular, from forging evidence signed by K. S � P holds

when all signatures embedded in P appear in S.

Rule L-ACT models the use of a resource through its public interface. The rules ensure that

both of the operation’s arguments—the data component v and the proof p—are well typed, and all

accepted access control proofs are appended to the log. After the resource is called through its raw

interface, the kernel signs a new proof term, q, as a receipt; it is both logged and added to S. Again,

the premise S � P guarantees the unforgeability of sign objects.

The semi-logged relation functions similarly (see rules S-SAY and S-ACT), although it logs only

the list of operations performed rather than any proofs.

By examining the rules in Figure 2.2, we can see that the kernel may only sign DidOp receipts

during evaluation. Since statements signed by any other principal may be added to S at any time,

we may identify the initial set of sign objects in S with the system’s policy rules.

Observe that rules S-SAY and L-SAY do not specify that only principal A can create sign(A, P)

objects. Though desirable, such a property is not necessary for this chapter’s treatment of signing.

The language introduced in Chapter 3 enforces such a restriction implicitly, and Chapter 4 provides

an explicit and precise formalism for understanding a program’s runtime authority. In Chapter 4 a

program is run with a private key specifying a principal on whose authority it acts, and a program

can only generate signatures with an appropriate private key. In contrast, S-SAY and L-SAY record

that a new signature was created—but do not address how or where this occurred.

Audit and access control The three transition relations permit different operations and record

different information about allowed actions. Resource evaluation allows all well-typed calls to the

raw interface, and provides no information to auditors. Semi-logged evaluation allows only autho-

rized access to the raw interface via access control, and provides audit information of the list of

allowed operations. Logged evaluation, like semi-logged evaluation, allows only authorized access

to the raw interface; it also produces a more informative log of the proofs of the authorization de-

cisions. Intuitively, semi-logged and logged evaluation, which deploy access control, allow strictly

fewer operations than resource evaluation. Logged evaluation provides more information than the

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 27

semi-logged evaluation for auditing, and semi-logged evaluation provides more information than

resource evaluation.

The rest of this section sketches a technical framework in which the above claims are formalized

and verified. The main result, Lemma 1, states that logged evaluation provides more information

during audit than resource evaluation; similar results hold when comparing the logged and semi-

logged relations or the semi-logged and resource relations. The result is unsurprising, but it is not

trivial to make precise. Furthermore, as will be discussed in Section 2.6, surprisingly little work has

addressed the formal semantics of logging, and it is worthwhile to verify that this logging model

behaves as expected.

The lemma’s formal statement requires a few auxiliary concepts.

Each of the three relations can be lifted to define traces. For instance, a resource trace is a

sequence of the form

τ = σ0−{raw-op1 v1}→rσ1 · · · −{raw-opn vn}→rσn

Logged and semi-logged traces are defined similarly.

The following meta-function, pronounced “erase”, shows how a logged trace is implemented in

terms of its encapsulated resource:

b(L, σ,S)cl/r = σ

bC−{assert: }→lτcl/r = bτcl/r

bC−{op, v, }→lτcl/r = bCcl/r−{(raw-op, v)}→rbτcl/r

For a set of traces, b(H)cl/r is defined as {bτcl/r | τ ∈ H}. The l/r subscript indicates erasure

from logged to resource traces. Analogous functions, b·cl/s and b·cs/r, can be defined to relate other

pairs of evaluation schemes.

The σ0,S0-histories of a configuration C, written H l(σ0,S0, C), is defined as the set of all

traces that terminate at configuration C and begin with an initial state of the form (nil, σ0,S0). The

σ0-histories of a resource state σ, written Hr(σ0, σ), is defined as the set of all resource traces that

terminate at σ.

The following lemma makes precise the claim that logged evaluation is more informative for

audit than resource evaluation. It describes a thought experiment where an auditor looks at either

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 28

a logged evaluation configuration or its erasure as a resource state. In either case the auditor can

consider the histories leading up to his observation. The lemma shows that there are histories

consistent with resource evaluation that are not consistent with logged evaluation. Intuitively, this

means logged evaluation makes more distinctions than—and is more informative than—resource

evaluation.

Lemma 1. There exists a kernel K, extended signature Σext, configuration C = (L, σ,S), rule set

S0, initial trace σ0 and resource trace τ such that τ ∈ Hr(σ0, σ), but τ /∈ b(H l(σ0,S0, C))cl/r.

Proof Sketch. By construction. Let States = {up, down}, with initial state up. Pick

a configuration C whose log contains six proofs and reflects a trace of the form

(, up,)−{}→l(, down,)−{}→l(, up,). Now consider trivial resource trace τ = up. Ob-

serve that τ ∈ Hr(up, bCcl/r), but τ /∈ H l(C).

Not surprisingly, it is possible to make similar distinctions between logged and semi-logged

histories, as logged histories can ensure that a particular L-ACT step occurred, but this is not possible

in the semi-logged case. As we will see in Section 2.3, this corresponds to the inability of the semi-

logged system to distinguish between different proofs of the same proposition and thus to correctly

assign blame.

We implement operations in IK by wrapping each underlying raw-op with trusted logging code.

Each wrapped operation is defined as follows2:

opi = λv.λp.

do logAppend(p)

let s = raw-opi v

let p′ = sign(K, DidOpi v s)

do logAppend(p′)

return 〈s, p′〉

The function opi takes two inputs: a term v (to be passed to the underlying raw-opi) and a proof p.

It returns a pair 〈s, p′〉 whose first component the result of applying raw-opi to v and whose second

component is a proof generated by the kernel to provide evidence that the operation was performed.

2This example is written in simple imperative pseudocode. Its syntactic similarity to Aura0, as specified in Sec-
tion 2.3, is not significant.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 29

The proof p (recorded in the log on line 2) must inhabit the type K says OkToOpi v. Lines 3 and 4

call into the underlying resource and construct a signature object attesting that this call occurred;

line 5 records this newly created proof.

2.3 The Logic

This section defines Aura0, a language for expressing access control. Aura0 is a higher-order, depen-

dently typed, cut-down version of Abadi’s Dependency Core Calculus (Abadi et al., 1999; Abadi,

2006), Following the Curry-Howard isomorphism (Curry et al., 1958), Aura0 types correspond to

propositions relating to access control, and expressions correspond to proofs of these propositions.

Dependent types allow propositions to be parameterized by objects of interest, such as principals or

file handles. The interface between application and kernel code is defined using this language.

After defining the syntax and typing rules of Aura0 and illustrating its use with a few simple

access-control examples, this section gives the reduction rules for Aura0 and discusses the impor-

tance of normalization with respect to auditing. It concludes with proofs of subject reduction, strong

normalization, and confluence for Aura0; full proofs may be found in the Appendix.

Syntax

Figure 2.3 defines the syntax of Aura0, which features two varieties of terms: access control proofs

p, which are classified by corresponding propositions P of kind Prop, and conventional expressions

e, which are classified by types T of the kind Type. For ease of the subsequent presentation of the

typing rules, we introduce two sorts, KindP and KindT, which classify Prop and Type respectively.

The base types are prin, the type of principals, and string; we use x to range over variables, and a

to range over constants. String literals are ""–enclosed ASCII symbols; A, B, C etc. denote literal

principals, while principal variables are written A, B, C.

In addition to the standard constructs for the functional dependent type (x:t1)→ t2, dependent

pair type {x:t1; t2}, lambda abstraction λx:t1. t2, function application t1 t2, and pair 〈t1, t2〉, Aura0

includes a special computational function type (x:t1) ⇒ t2. Intuitively, (x:t1) → t2 is used

for logical implication and (x:t1) ⇒ t2 describes kernel interfaces; Section 2.3 discusses this

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 30

t, s ::= k | T | e Terms

k ::= KindP | KindT Sorts
| Prop | Type Base kinds

T, P ::= string | prin Base types
| x | a Variables and constants
| t says t Says modality
| (x:t)→ t Logical implication
| (x:t) ⇒ t Computational arrows
| {x:t; t} Dependent pair type

e, p ::= "a" | "b" | . . . String literals
| A | B | C . . . Principal literals
| sign(A, t) Signature
| return@[t] t Injection into says
| bind x = t in t Reasoning under says
| λx:t. t | t t Abstraction, application
| 〈t, t〉 Pairing

Figure 2.3: Syntax of Aura0

further. We will sometimes write t1 → t2, t1 ⇒ t2, and {t1; t2} as a shorthand for (x:t1) → t2,

(x:t1) ⇒ t2, and {x:t1; t2}, respectively, when x does not appear free in t2.

As in DCC, the modality says associates claims relating to access control with principals. The

term return@[A] p creates a proof of A says P from a proof of P , while bind x = p1 in p2

allows a proof of A says P1 to be used as a proof of P1, but only within the scope of a proof of

A says P2. Finally, expressions of the form sign(A, P) represent assertions claimed without proof.

Such an expression is indisputable evidence that P was asserted by A—rather than, for example,

someone to whomA has delegated authority. Such signed assertions must be verifiable, binding (i.e.

non-repudiable), and unforgeable; signature implementation strategies are discussed in Section 2.5.

Technically, Aura0’s grammar contains only a single syntactic category. The typing relation

is responsible for categorizing each term as an expression, proof, type, proposition, or kind. The

grammar in Figure 2.3 is imprecise, but establishes a useful metavariable convention. For instance,

e and p indicate expressions and proofs. We will observe this convention in the remainder of this

chapter and in Chapters 3 and 4. Purists may read e, p, T , P , and k as t.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 31

Substitution and free variable functions—written {·/·}·, fv(·), and dom(·)—are defined as

usual. See Figure 2.4 for details.

Type system

Aura0’s type system is defined in terms of constant signatures Σ and variable typing contexts Γ,

which associate types to global constants and local variables, respectively, and are written:

Γ ::= · | Γ, x : t Σ ::= · | Σ, a : t.

Typechecking consists of four judgments:

Σ ` � Signature Σ is well formed

Σ ` Γ Context Γ is well formed

Σ; Γ ` t1 : t2 Term t1 has type t2

Σ; Γ ` t Computation type t is well formed

The signature Σ is well formed if Σ maps constants to types of sort KindP—in other words, all

Aura0 constants construct propositions. The context Γ is well formed with respect to signature Σ if

Γ maps variables to well-formed types. The well-formedness judgments are defined in Figure 2.7.

A summary of the typing rules for terms can be found in Figures 2.5 and 2.6. Most of the rules are

straightforward, and we explain only a few key rules.

Rule T-SIGN states that sign(A,P)—a signed assertion of proposition P by principal A—has

type A says P . Here P can be any proposition, even false. The judgment Σ ` � ensures that

propositional constants, such as OkToRPC, have no constructors. Thus signed assertions are the

only way to create interesting access control statements. T-SIGN typechecks A and P in the empty

variable context; sign objects are intended to have unambiguous meaning in any scope, and nested

free variables are meaningless.

The rule T-RETURN states that if we can construct a proof term p for proposition P , then the

term return@[A] p is a proof term for propositionA says P—in other words, all principals believe

what can be independently verified. The T-BIND rule is a standard bind rule for monads and,

intuitively, allows anyone to reason from A’s perspective.

The rule for the functional dependent type T-ARR restricts the kinds of dependencies allowed

by the type system, ruling out dependencies on objects of kind Type. Note that, in the T-LAM

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 32

Substitution of term s for variable z in term t, {s/z}t:

{s/z}z = s

{s/z}x = x if z 6= x

{s/z}(x:t1)→ t2 = (x:{s/z}t1)→ {s/z}t2 if z 6= x

{s/z}{x:t1; t2} = {x:{s/z}t1; {s/z}t2} if z 6= x

{s/z}sign(t1, t2) = sign({s/z}t1, {s/z}t2)
{s/z}return@[t1] t2 = return@[{s/z}t1] {s/z}t2

{s/z}bind x = t1 in t2 = bind x = {s/z}t1 in {s/z}t2 if z 6= x

{s/z}λx:t1. t2 = λx:{s/z}t1. {s/z}t2 if z 6= x

{s/z}t1 t2 = ({s/z}t1) ({s/z}t2)
{s/z}〈t1, t2〉 = 〈{s/z}t1, {s/z}t2〉

{s/z}t = t otherwise

Substitution of term s for variable z in context Γ, {s/z}Γ:

{s/z}· = ·
{s/z}Γ, x : t = ({s/z}Γ), x : {s/z}t

Free variables of term t, fv(t):

fv(x) = {x}
fv(t1 says t2) = fv(t1) ∪ fv(t2)

fv((x:t1)→ t2) = fv(t1) ∪ fv(t2) \ {x}
fv({x:t1; t2}) = fv(t1) ∪ fv(t2) \ {x}

fv(sign(t1, t2)) = fv(t1) ∪ fv(t2)
fv(return@[t1]t2) = fv(t1) ∪ fv(t2)

fv(bind x = t1 in t2) = fv(t1) ∪ fv(t2) \ {x}
fv(λx:t1. t2) = fv(t1) ∪ fv(t2) \ {x}

fv(t1 t2) = fv(t1) ∪ fv(t2)
fv(〈t1, t2〉) = fv(t1) ∪ fv(t2)

Free variables of context Γ, fv(Γ):

fv(·) = ·
fv(Γ, x : t) = fv(Γ) ∪ fv(t)

Figure 2.4: Substitution and free variable functions are defined as usual.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 33

Σ; Γ ` t : t

Σ ` Γ

Σ; Γ ` Prop : KindP T-PROP
Σ ` Γ

Σ; Γ ` Type : KindT T-TYPE

Σ ` Γ T ∈ {string, prin}
Σ; Γ ` T : Type

T-BASE
Σ ` Γ x : t ∈ Γ

Σ; Γ ` x : t
T-VAR

Σ ` Γ a : t ∈ Σ
Σ; Γ ` a : t

T-CONST
Σ; Γ ` t1 : prin Σ; Γ ` t2 : Prop

Σ; Γ ` t1 says t2 : Prop
T-SAYS

Σ; Γ ` t1 : k1

Σ; Γ, x : t1 ` t2 : k2 k1 ∈ {KindP, Type,Prop} k2 ∈ {Type,Prop}
Σ; Γ ` (x:t1)→ t2 : k2

T-ARR

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2 k1, k2 ∈ {Type,Prop}
Σ; Γ ` {x:t1; t2} : k2

T-PAIRTYPE

Σ ` Γ A ∈ {A,B, . . .} Σ; · ` t : Prop

Σ; Γ ` sign(A, t) : A says t
T-SIGN

Σ; Γ ` t1 : prin Σ; Γ ` t2 : s2 Σ; Γ ` s2 : Prop

Σ; Γ ` return@[t1] t2 : t1 says s2
T-RETURN

Σ ` Γ A ∈ {A,B . . .}
Σ; Γ ` A : prin

T-LITPRIN
Σ ` Γ s ∈ {"a","b", . . .}

Σ; Γ ` s : string
T-LITSTR

Σ; Γ ` e1 : t says P1 Σ; Γ, x : P1 ` e2 : t says P2 x /∈ fv(P2)
Σ; Γ ` bind x = e1 in e2 : t says P2

T-BIND

Σ; Γ, x : t ` p : P Σ; Γ ` (x:t)→ P : Prop

Σ; Γ ` λx:t. p : (x:t)→ P
T-LAM

Σ; Γ ` t1 : (x:P2)→ P Σ; Γ ` t2 : P2

Σ; Γ ` t1 t2 : {t2/x}P
T-APP

Σ; Γ ` t1 : s1 Σ; Γ ` t2 : {t1/x}s2 Σ; Γ, x : s1 ` s2 : k
Σ; Γ ` 〈t1, t2〉 : {x:s1; s2}

T-PAIR

Figure 2.5: Expression typing

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 34

Σ; Γ ` t

Σ; Γ ` t1 : t2 t2 ∈ {KindP,KindT,Prop, Type}
Σ; Γ ` t1

T-C

Σ; Γ ` t1 : k k ∈ {Type,Prop} Σ; Γ, x : t1 ` t2
Σ; Γ ` (x:t1) ⇒ t2

T-ARR-C

Figure 2.6: Command typing

Σ ` �

· ` �
S-EMPTY

Σ ` � Σ; · ` t : KindP

Σ, a : t ` �
S-CONS

Σ ` Γ

Σ ` �
Σ ` ·

E-EMPTY

Σ ` Γ Σ; Γ ` t : k if x /∈ fv(Γ) k ∈ {KindP,KindT,Prop, Type}
Σ ` Γ, x : t

E-CONS

Figure 2.7: Well formed signature and environment judgments (defined mutually with typing rela-
tion)

rule, the type of the lambda abstraction must be of kind Prop. With such restrictions in place, it is

straightforward to observe that these two rules allow us to express flexible access control rules while

at the same time ruling out type-level computations and preserving decidability of type checking.

These heavy restrictions will be liberalized in subsequent chapters; for now new objects with kind

Type can only be introduced with constants or pairing.

The interface between application code and the kernel also requires a type description. For this

reason, Aura0 introduces a special computational arrow type, (x:t1) ⇒ t2. Computation types

are used only to classify top-level operators, such as Section 2.2’s rpc command, and computa-

tions cannot appear in proofs or propositions. This decouples Aura0 proof reduction from effectful

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 35

computation and simplifies the interpretation of propositions. There is no Aura0 syntax to intro-

duce new computations. In contrast full Aura (Chapter 3) has only a single variety of arrow; the

typing relation prevents computations from occurring in positions that are logically meaningless or

unsound.

Note that defining separate computational and logical sorts, KindT and KindP, makes it easy to

syntactically distinguish type-level objects. Full Aura defines a very similar type system using only

a single sort; this makes some of its typing rules slightly heavier, but the two approaches are largely

equivalent.

The typing rule T-PAIRTYPE for dependent pairs is standard and permits objects of kinds Type

and Prop to be freely mixed; for simplicity we prohibit types and propositions themselves from

appearing in a pair. Note that Aura0 features an introduction form for pairs but no corresponding

elimination form. This simplifies the treatment of Aura0 but is not essential; full Aura includes a

match construct to eliminate datatypes.

Example

The combination of dependent types and the says modality in Aura0 can express many interesting

policies. For instance, Abadi’s encoding of speaks-for (Abadi, 2006) is easily adopted:

A speaksfor B , B says ((P :Prop)→ A says P → P)

Adding dependency allows for more fine grained delegation. For example, we can encode partial

delegation:

B says ((x:string)→ A says Good x→ Good x)

Here A speaks for B only when certifying that a string is “good.” Such fine-grained delegation is

important for real applications where the full speaks-for relation may be too permissive.

Recall also the Remote Procedure Call example from Section 2.2. While an application might

use r0 (of type K says ((x:string)→ OkToRPC x)) directly when building proofs, it could also

construct a more convenient derived rule by using Aura0’s bind to reason from K’s perspective. For

instance:

r′0 : (x:string)→ K says OkToRPC x

r′0 = λx:string. bind y = r0 in return@[K]y x

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 36

Rules like r0 and its derivatives, however, are likely too trivial to admit interesting opportunities for

audit; a more interesting policy states that any principal may perform a remote procedure call so

long as that principal signs the input string. One encoding of this policy uses the extended context

Σext = ReqRPC : string→ Prop,ΣK

and singleton rule set

Rules = {r1 = sign(K, (x:string)→ (A:prin)→

(A says ReqRPC x)→ OkToRPC x)}.

Given this rule, an auditor might find the following proofs in the log:

p1 = bind x = r1 in

return@[K](x "hi" A sign(A,ReqRPC "hi"))

p2 = (λx:K says OkToRPC "ab".

λy:C says ReqRPC "cd". x)

(bind z = r1 in

return@[K](z "ab" B sign(B,ReqRPC "ab"))

(sign(C,ReqRPC "cd")).

As p1 contains only A’s signature, and as signatures are unforgeable, the auditor can conclude that A

is responsible for the request—the ramifications of this depend on the real-world context in question.

Proof p2 is more complicated; it contains signatures from both B and C. An administrator can learn

several things from this proof.

We can simplify the analysis of p2 by reducing it as discussed in the following section. Taking

the normal form of p2 (i.e., simplifying it as much as possible) yields

p′2 = bind z = r1

in return@[K](z "ab" B sign(B,ReqRPC "ab").

This term contains only B’s signature, and hence B may be considered accountable for the action.

Following Section 2.2’s approach, B signed a request in every history consistent with this log entry.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 37

` t→ t′

` (λx:t1. t2) t3 → {t3/x}t2
R-BETA

x /∈ fv(t2)
` bind x = t1 in t2 → t2

R-BINDS

` bind x = return@[t0] t1 in t2 → {t1/x}t2
R-BINDT

` t2 → t′2

` return@[t1] t2 → return@[t1] t′2
R-SAYS

y /∈ fv(t3)
` bind x = (bind y = t1 in t2) in t3 → bind y = t1 in bind x = t2 in t3

R-BINDC

` t2 → t′2

` λx:t1. t2 → λx:t1. t′2
R-LAM

` t1 → t′1

` bind x = t1 in t2 → bind x = t′1 in t2
R-BIND1

` t2 → t′2

` bind x = t1 in t2 → bind x = t1 in t′2
R-BIND2

` t1 → t′1

` t1 t2 → t′1 t2
R-APP1

` t2 → t′2

` t1 t2 → t1 t
′
2

R-APP2
` t1 → t′1

` 〈t1, t2〉 → 〈t′1, t2〉
R-PAIR1

` t2 → t′2

` 〈t1, t2〉 → 〈t1, t′2〉
R-PAIR2

Figure 2.8: Reduction relation

Proofs p2 and p′2 illustrate a tension inherent to this computation model. A configuration whose

log contains p2 will be associated with fewer histories (i.e. those in which C make no assertions)

than an otherwise similar configuration containing p′2. While normalizing proofs inform policy

analysis, it can also discard interesting information. To see this, consider how C’s signature may

be significant on an informal level. If the application is intended to pass normalized proofs to the

kernel, then this is a sign that the application is malfunctioning. If principals are only supposed to

sign certain statements, C’s apparently spurious signature may indicate an violation of that policy,

even if the signature was irrelevant to actual access control decisions.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 38

Formal language properties

Subject reduction As the preceding example illustrates, proof simplification is a useful tool for

audit. Following the Curry-Howard isomorphism, proof simplification corresponds to λ-calculus

reductions on proof terms. This section provides several proof sketches; detailed proofs are given

in the Appendix.

Aura0 proof reduction is defined in Figure 2.8. For bind, in addition to the standard congruence,

beta reduction, and commute rules as found in monadic languages, we also include a special beta

reduction rule R-BINDS. The R-BINDS rule eliminates bound proofs that are never mentioned in

the bind’s body. Rule R-BINDS permits simplification of terms like bind x = sign(A, P) in t,

which are not subject to R-BINDT reductions. Aura0 disallows reduction under sign, as signatures

are intended to represent fixed objects realized, for example, via cryptographic means.

The following lemma states that the typing of an expression is preserved under reduction rules.

Lemma 2 (Subject Reduction). If ` t→ t′ and Σ; Γ ` t : s then Σ; Γ ` t′ : s.

Proof Sketch. By structural induction on the reduction relation. The R-BINDS case requires a

strengthening lemma. This states that if variable x is bound in Γ but does not otherwise appear

in the typing judgment, x may be removed and typing will be preserved.

Proof normalization An expression is in normal form when it has no applicable reduction rules;

as observed in Section 2.3, reducing a proof to its normal form can be quite useful for auditing.

Proof normalization is most useful when the normalization process always terminates and every

term has a unique normal form.

An expression t is strongly normalizing if application of any sequence of reduction rules to t

always terminates. A language is strongly normalizing if all the terms in the language are strongly

normalizing. We have proved that Aura0 is strongly normalizing, which implies that any proof

reduction strategy will terminate.

Lemma 3 (Strong Normalization). Aura0 is strongly normalizing.

Proof Sketch. We prove that Aura0 is strongly normalizing by translating Aura0 to the Calculus of

Constructions extended with dependent pairs, which is known to be strongly normalizing (Geuvers,

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 39

1995), in a way that preserves both types and reduction steps. The interesting cases are the trans-

lations of terms relating to the says monad: return expressions are dropped, bind expressions are

translated to to lambda application, and a term sign(t1, t2) is translated to a variable whose type

is the translation of t2. To simulate reduction R-BINDC we extend CoC with the following new

reduction rule and show the extended system is itself strongly normalizing.

(λx:t. t1)((λy:s. t2)u)→β′ (λy:s. ((λx:t. t1)t2))u

Care must be taken to track dependencies in the types of variables introduced by translation.

We have also proved that Aura0 is confluent—i.e., that two series of reductions starting from

the same term can always meet at some point. Let t→∗ t′ whenever t = t′ or t reduces to t′ in one

or more steps.

Lemma 4 (Confluence). If t →∗ t1, and t →∗ t2, then there exists t3 such that t1 →∗ t3 and

t2 →∗ t3.

Proof Sketch. We first prove that Aura0 is weakly confluent—if t reduces to t1 and t2 in one step,

then both t1 and t2 reduce to some t3 in zero or more steps. Weak confluences follows immediately

from inspection of the reduction rules. We then apply Newman’s lemma (Huet, 1980), which states

strong normalization and weak confluence imply confluence.

A direct consequence of these properties is that every Aura0 term has a unique normal form; any

algorithm for proof normalization will yield the same normal form for a given term. This implies

that the set of relevant evidence—i.e., signatures—in a given proof term is also unique, an important

property to have when assigning blame.

2.4 Examples

This section provides two examples of access control and audit in Aura0.

Private medical records

Consider a database for storing medical records. For legal and ethical reasons, it is desirable to me-

diate access to patient data. In the United States the Health Insurance Portability and Accountability

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 40

Act (HIPAA) provides basic rules governing when and to whom a patient’s medical records may be

disclosed. On a consumer-oriented website, the department of Health and Human Services outlines

HIPAA’s privacy rules as follows.

Only you or your personal representative has the right to access your records. A health
care provider or health plan may send copies of your records to another provider or
health plan as needed for treatment or payment or as authorized by you.3

This states two general principles. First, patients have the right delegate access to their records.

Second, health care providers may access their patient’s records. (Of course the actual policy is

more complicated.) We can encode the simplified HIPAA policy as using two Aura0 rules.

A patient chooses who may read his chart.

(patient : prin) → (a: prin) → (c: chart patient)

→ patient says (MayRead a c)

→ HIPAA says (MayRead a c)

Doctors can read their patients’ charts.

(patient : prin) → (d: prin) → (DoctorOf patient d)

→ (c: chart patient)

→ HIPAA says (MayRead d c)

However this policy may actually be too strict! What happens when a patient stops breathing,

her doctor is out of town, and the physician on call is not technically authorized—lacks proofs

needed—to read her chart?

Weakening the privacy policy with the following rule addresses this scenario in a compelling

way.

emergency: (patient: prin) → (a: prin)

→ (c: chart patient)

→ (reason: string)

→ HIPAA says (MayRead a c)

3Retrieved from http://www.hhs.gov/ocr/privacy/hipaa/understanding/consumers/
medicalrecords.html, on October 15, 2009.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/consumers/medicalrecords.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/consumers/medicalrecords.html

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 41

The emergency rule states that any principal may access a chart if they provide an explanation. In

particular, the doctor on call can read the hypothetical patient’s chart. Aura0 proofs are logged, and

this action can be reviewed later by social, administrative, or legal means.

Because Aura0 provides a principled logging methodology, it reasonable to define escape

hatches in access control policies and review their use after-the-fact. We claim this is a compelling

design whenever the cost of a false deny exceeds the cost of a false access grant.

File system example

As a more detailed example, we consider a file system in which file access is authorized using

Aura0, and log entries consist of authorization proofs. In a traditional file, system access control

decisions are made when a file is opened, and this examples primarily considers the open operation.

Our open is intended to provide flexible access control on top of a system featuring a corresponding

raw-open and associated constants:

Mode : Type FileDes : Type

RDONLY : Mode WRONLY : Mode

APPEND : Mode RDWR : Mode

raw-open : {Mode; string} ⇒ FileDes

We can imagine that raw-open is part of the interface to an underlying file system with no notion

of per-user access control or Aura0 principals; it, of course, should not be exposed outside of the

kernel. Taking inspiration from Unix, we define RDONLY, WRONLY, APPEND, and RDWR (the

inhabitants of Mode), which specify whether to open a file for reading only, overwrite only, append

only, or unrestricted reading and writing. Type FileDes is left abstract; it classifies file descriptors—

unforgeable capabilities used to access the contents of opened files.

Figure 2.9 shows the interface to open, the extended signature of available predicates, and the

rules used to construct the proofs of type K says OkToOpen 〈m, f〉 (for some file f and mode m)

that open requires. OkToOpen and DidOpen are as specified in Section 2.2, and the other predicates

have the obvious readings: Owns A f states that the principal A owns the file f , ReqOpen m f is

a request to open file f with mode m, and Allow A m s states that A should be allowed to open f

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 42

Kernel Signature ΣK

OkToOpen : {Mode; string} → Prop
DidOpen : (x : {Mode; string})→ FileDes→ Prop

Kernel Interface IK

open : (x : {Mode; string})⇒ K says OkToOpen x⇒
{h:FileDes; K says DidOpen x h}

Additional Types in Extended Signature Σext

Owns : prin→ string→ Prop
ReqOpen : Mode→ string→ Prop

Allow : prin→ Mode→ string→ Prop

Rule Set R:

ownerf1 : K says Owns A f1
ownerf2 : K says Owns B f2
ownerf3 : K says Owns C f3 . . .

delegate : K says ((A : prin)→ (B : prin)→(m : Mode)→ (f : string)→
A says ReqOpen m f →
K says Owns B f →
B says Allow A m f →
OkToOpen 〈m, f〉)

owned : K says ((A : prin)→ (m : Mode)→(f : string)→
A says ReqOpen m f →
K says Owns A f →
OkToOpen 〈m, f〉)

readwrite : K says ((A : prin)→ (B : prin)→(f : string)→
B says Allow A RDONLY f →
B says Allow A WRONLY f →
B says Allow A RDWR f)

read : K says ((A : prin)→ (B : prin)→(f : string)→
B says Allow A RDWR f →
B says Allow A RDONLY f)

write : K says ((A : prin)→ (B : prin)→(f : string)→
B says Allow A RDWR f →
B says Allow A WRONLY f)

append : K says ((A : prin)→ (B : prin)→(f : string)→
B says Allow A RDWR f →
B says Allow A APPEND f)

Figure 2.9: Types for the file system example

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 43

with modem. (As we are not modeling authentication we will take it as given that all proofs of type

A says ReqOpen m f come from A; we discuss ways of enforcing this in Section 2.5.)

For each file f , the kernel provides a distinguished proof that some principal owns f . Notation

ownerf abbreviates this term.

Rule delegate states that the kernel allows anyone to access a file with a particular mode if the

owner of the file allows it. Rule owned relieves the file owner A from the need to create signatures

of type A says Allow A m f for files A owns, while readwrite allows a user who has acquired

read and write permission for a file from different sources to open the file for reading and writing

simultaneously. The rules read, write, and append do the reverse, allowing a user to drop from

RDWR mode to RDONLY, WRONLY, or APPEND. These last four rules simply reflect semantic facts

about constants of type Mode. Of the rules discussed in this paragraph only owned is derivable (from

delegate); the rest must be defined using signatures.

With the rules given in Figure 2.9 and the other constructs of our logic it is also easy to create

complex chains of delegation for file access. For example, Alice (A) may delegate full authority

over any files she can access to Bob (B) with a signature of type

A says ((C : prin)→ (m : Mode)→ (f : string)→

B says Allow C m f → A says Allow C m f),

or she may restrict what Bob may do by adding further requirements on C, m, or f . She might

restrict the delegation to files that she owns, or replace C with B to prevent Bob from granting

access to anyone but himself. She could do both with a signature of type

A says ((m : Mode)→ (f : string)→ K says Owns A f →

B says Allow B m f → A says Allow B m f).

As described in Section 2.2, the kernel logs the arguments to our interface functions whenever

they are called. So far we have only one such function, open, and logging its arguments means

keeping a record every time the system permits a file to be opened. Given the sort of delegation

chains that the rules allow, it should be clear that the reason why an open operation is permitted can

be rather complex, which provides a strong motivation for the logging of proofs.

One can easily imagine using logged proof terms—and in particular proof terms in normal

form, as described in Section 2.3—to assist in assigning the blame for an unusual file access to

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 44

the correct principals. For example, a single principal who carelessly delegates RDWR authority

might be blamed more severely than two unrelated principals who unwittingly delegate RDONLY

and WRONLY authority to someone who later makes use of readwrite. Examining the structure

of proofs can once again allow an auditor to, in the terminology of Section 2.2, rule out certain

histories.

We can also see how logging proofs might allow a system administrator to debug the rule set.

The rules in Figure 2.9 might well be supplemented with, for example

surely : K says ((A : prin)→ (B : prin)→

(f : string)→

B says Allow A RDONLY f →

B says Allow A APPEND f →

B says Allow A RDWR f)

maybe : K says ((A : prin)→ (B : prin)→

(f : string)→

B says Allow A WRONLY f →

B says Allow A APPEND f)

Rule surely is clearly erroneous, as it allows a user with only permission to read from and append to

a file to alter its existing content, but such a rule could easily be introduced by human error when the

rule set is created. Since any uses of this rule would be logged, it would not be possible to exploit

such a problematic rule without leaving a clear record of how it was done, allowing a more prudent

administrator to correct the rule set.

Rule maybe, on the other hand, is a more subtle—it makes the ability to overwrite a file strictly

more powerful than the ability to append, even in the absence of the ability to read. This is useful

and allows, for example, efficient completion of prematurely aborted write operations. However,

maybe might defy user expectations and potentially allow violations of institutional policy. In the

event of such a violation, the administrator can examine logs to determine how and if maybe rules

were abused and take appropriate action.

The following shows that Aura0 policies can benefit operations other than open.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 45

Reading and writing While access permission is granted when a file is opened, it is worth noting

that, as presented, the type FileDes conveys no information about what sort of access has been

granted; consequently, attempting, for example, to write to a read-only file descriptor will result

in a run-time error. Since we already have a system with dependent types, this need not be the

case; while it is somewhat orthogonal to our concerns of authorization, FileDes could easily be

made to depend on the mode with which a file has been opened, and operations could expect file

descriptors equipped with the correct Mode arguments. This would, however, require some analog

to the subsumption rules read, write, and append—and perhaps also readwrite—along with, for

pragmatic reasons, a means of preventing the kernel from logging file contents being read or written.

Close At first glance it seems that closing a file, like reading or writing, is an operation that

requires only a valid file descriptor to ensure success, yet there is something more the type system

can provide. For example, if we require a corresponding DidOpen when constructing proofs of type

OkToClose, we can allow a user to share an open file descriptor with other processes secure in the

knowledge that those processes will be unable to prematurely close the file. In addition, logging of

file close operations can help pinpoint erroneous double closes, which, while technically harmless,

may be signs of deeper logic errors in the program that triggered them.

Ownership File creation and deletion are certainly operations that should require authorization,

and they are especially interesting due to their interaction with the Owns predicate. The creation

of file f by principal A should introduce a rule ownerf : Owns A f into the rule set, while the

deletion of a file should remove said rule; a means of transferring file ownership would also be

desirable. This can amount to treating a subset of our rules as a protected resource in its own right,

with a protected interface to these rules and further rules concerning the circumstances under which

access to this new resource should be granted. An alternate approach is to dispense with ownership

rules completely and instead use signed objects and signature revocation to represent ownership.

This is discussed further in Section 2.5,

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 46

2.5 Discussion

Signature implementation Thus far we have treated signatures as abstract objects that may only

be created by principals or programs with sufficient authority. There are at least two appealing

implementation strategies for signatures.

The first approach is cryptographic: a sign object can be represented by a digital signature from

a public-key cryptosystem. Each principal must be associated with a well known public key and in

possession of its private counterpart; implementing rule T-SIGN reduces to calling a digital signature

verification function. The cryptographic scheme is well suited for distributed systems with mutual

distrust.

A decision remains: the signature sign(A, P) can be represented either as a tuple containing the

cryptographic signature along with A and P in plaintext, or as the cryptographic signature alone.

In the latter case signatures are small (potentially constructed from a hash of the contents), but

recovering the text of a proposition from its proof (i.e., doing type inference) may not be possible.

In the former case, inference is trivial, but proofs are generally large. Note that proof checking of

signs in either case involves validating digital signatures, a polynomial time operation.

The prototype Aura interpreter described in Chapter 3 follows the former approach: signature

objects do not contain plaintext representations of their propositions. Additionally, as an optimiza-

tion, actual digital signatures are generated on demand before being serialized for output. (The

benefits of discarding plaintext are not realized until after signature generation; this scheme is in-

tended to reduce log size and processor use but not heap size.)

An alternative implementation of signatures assumes that all principals trust some moderator,

who maintains a table of signatures as abstract data values; each sign may then be represented as

an index into the moderator’s table. Such indices can be small while still allowing for easy type

inference, but such a scheme requires a closed system with a mutually trusted component. In a

small system, the moderator can be the kernel itself, but a larger system might contain several

kernels protecting different resources and administered by disparate organizations, in which case

finding a suitable moderator may be quite difficult.

Proof normalization Proofs in normal form are useful for audit because they provide a particu-

larly clear view of authorization decisions. Normalization, however, is an expensive operation—

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 47

even for simply typed lambda calculus, the worst-case lower-bound on the complexity of the nor-

malization is on the order of exp(2, n), where exp(2, 0) = 1, exp(2, n) = 2exp(2,(n−1)), etc., and

n is the size of the term (Schwichtenberg, 1989). Furthermore, the size of a normalized proof can

grow to exp(2, n) as well. In practice, well-behaved proof producers will likely create proofs that

are simple to normalize. While normalization is expensive, checking that a proof is normal form

requires only linear time in the proof size. Consequently, where, and if, to normalize proofs is an

engineering question whose solution may be application dependent.

A kernel operating in a highly untrusted environment might require all submitted proofs to be

in normal form, shifting the computational burden to potentially malicious clients (as is commonly

done to defend against denial of service attacks). By contrast, a kernel providing services to a “smart

dust” network might normalize proofs itself, shifting work away from computationally impover-

ished nodes and onto a more powerful system, again a standard design. Server-side normalization

might be done online as proofs come in (to amortize computation cost) or offline during audit (to

avoid latency). Ultimately, the Aura programming model naturally accommodates these approaches

and others; an implementation should allow programmers to select whatever normalization model

is appropriate.

Authentication In Section 3.5 we assumed that signatures of type A says ReqOpen m f are

always sent from A. Such an assumption is necessary because we are not currently modeling

any form of authentication—or even the association of a principal with a running program—but

a more realistic solution is needed when moving beyond the scope of this work. For example,

communication between programs running on behalf of different principals could take place over

channel endpoints with types that depend on the principal on the other end of the channel.

Of course, when this communication is between different machines on an inherently insecure

network, problems of secure authentication become non-trivial, as we must implement a secure

channel on top of an insecure one. In practice this is done with cryptography, and one of the long-

term goals of the Aura project is to elegantly integrate cryptographic methods with the type system,

following the work of, for example, Fournet et al. (2007).

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 48

2.6 Related Work

This section discusses previous research on audit logging and proof-based access control.

Audit logging

What information should programs log? How can logs be interpreted for Audit? Who can be held

accountable when programs fail? We are aware of surprisingly little literature that examines these

questions.

Wee (1995) implemented the Logging and Auditing File System (LAFS), a practical system

which shares several architectural elements with Aura0. LAFS uses a lightweight daemon, anal-

ogous to our kernel, to wrap NFS file systems; like our kernel, the LAFS daemon forwards all

requests to the underlying resources. Both systems also configure policy using sets of rules defined

outside the trusted computing base. The systems differ in three key respects. First, the LAFS pol-

icy language is too weak to express many Aura0 policies. Second, Aura0 requires some privileged

K says rules to bootstrap a policy, while LAFS can be completely configured with non-privileged

policies. Third, the LAFS interface is designed to be transparent to application code and does not

provide any access control properties; instead LAFS logs—but does not prevent—rule violations.

Cederquist and colleagues (2005) describe a distributed system architecture with discretionary

logging and no reference monitor. In this system agents—i.e. principals—may choose to enter

proofs (written in a first-order natural deduction style logic) into a trusted log when performing ac-

tions. Cederquist et al. formalize accountability such that agents are guilty until proved innocent—

that is, agents use log entries to reduce the quantity of actions for which they can be held account-

able. This relies on the ability of some authority to independently observe certain actions; such

observations are necessary to begin the audit process.

Etalle and Winsborough (2007) present a role-based, access-control logic intended primarily

for answering questions about accountability. Like us, they observe that allowing deviations from

access-control policy, coupled with a audit mechanism, enables greater flexibility than simply en-

forcing access-control rules.

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 49

Authorization logics and proof-carrying access control

Earlier work on proof-carrying access control (Abadi et al., 1993; Appel and Felten, 1999; Ced-

erquist et al., 2005; Bauer et al., 2005a,b; Fournet et al., 2005; Abadi, 2007; DeYoung et al., 2008;

Guts et al., 2009) recognized the importance of says and provided a variety of interpretations for

it. Garg and Pfenning (2006) and, later, Abadi (2006) introduced the treatment of says as an in-

dexed monad. Both systems (Garg and Pfenning, 2006; Abadi et al., 1999) also enjoy a crucial

noninterference property: in the absence of delegation, nothing B says can cause A to say false.

Aura adopts ideas from this prior work, especially Abadi’s DCC, for several reasons. First, DCC

proofs are lambda-terms, a fact we exploit to closely couple the Prop and Type universes. Second,

DCC is strong enough to define important authorization concepts, such as the ActsFor relation and

the hand-off rule (a says b ActsFor a)→ b ActsFor a. Third, DCC-style noninterference provides a

crisp technical framework for thinking about authorization in the presence of mutually distrusting

principals.

Aura also embodies substantial changes to the DCC model. The addition of dependent types en-

hances the expressiveness of DCC, and the addition of sign allows for a robust distributed interpre-

tation of says. Aura’s treatment of principals as terms, as opposed to members of a special index set,

enables quantification over principals. Lastly, Aura eliminates DCC’s built-in acts-for lattice, which

can be encoded as described in Section 2.3, along with the protects relation, which allows additional

commutation and simplification of says with regard to that lattice. Dropping the protects relation

eliminates unintuitive DCC tautologies, such as (A says B says P) → (B says A says P), and

ensures desired says manipulations are explicitly recorded in proofs. Abadi (2007) defined a similar

DCC variant, dubbing it cut-down DCC, or CDD.

DeYoung, Garg, and Pfenning (2008) describe a constructive authorization logic that is param-

eterized by a notation of time. Propositions and proofs are annotated with time intervals during

which they may be judged valid. This allows revocation to be modeled as credential expiration.

Our work is closely related to Fournet, Gordon, and Maffeis’s (2005; 2007) research on autho-

rization in distributed systems They work with a π-calculus-based model of computation, which,

like Aura, uses dependent types to express access control properties. Fournet and colleagues focus

on security properties that are maintained during execution, which are reflected into the type system

CHAPTER 2. AURA: PROGRAMMING WITH AUDIT IN AURA 50

using static theorem proving and a type constructor Ok. The inhabitants of Ok, however, do not

contain dynamic information and cannot be logged for later audit. Additionally, while Aura treats

signing abstractly, Fournet and colleagues’ type system (and computation model) can explicitly dis-

cuss cryptographic operations. Unlike in Aura, proofs are erased at runtime. Consequently, their

type discipline is best suited for closed systems that do not require high-assurance logging.

In a related project, Guts, Fournet, and Zappa Nardelli (2009) explore an audit mechanism for

the F7 extension to F]. F7 uses assume and assert expressions that statically describe a program’s

requirements (assertions) and steps taken to fulfill those requirements (assumptions). These expres-

sions very loosely correspond to program points that introduce and consume Ok types. Guts and

colleagues add an audit construct that can replace assume to indicate the program must record ev-

idence proving the assumed property holds. Unlike in Aura, usage of audit is discretionary. This

may reduce logging of uninteresting proofs, but may require additional programmer vigilance to

ensure comprehensive logging.

Proof carrying access control has been field tested in Grey project (Bauer et al., 2005a,b). In this

system, smart phones build proofs which can be used to open office doors or log into computers.

The Grey architecture shares structural similarities with the Aura model: in Grey, proof-generating

devices, like our applications, need not reside in the trusted computing base. And both systems use

expressive foundational logics to define policies—higher-order logic in Grey’s case (Church, 1940).

To make proof search effective, Bauer at colleagues suggest using cut-down fragments of higher

order logic for expressing particular rule sets and using a distributed, tactic-based proof search

algorithm. While later chapters of this document will treat Aura as a tightly coupled authorization

logic and computation language, Grey’s logic is not integrated with a computation language.

Chapter 3

Aura: A Language for Authorization

and Audit

This chapter describes the Aura programming language’s design and key metatheoretic properties.

The full language includes many interesting features not found in Chapter 2’s Aura0, particularly

inductive types and a complete computational sub-language. Aura’s metatheory—including syntac-

tic soundness and decidability of typing checking—is formalized in Coq. Additionally, the chapter

describes a prototype interpreter for the language and a sample Aura program.

This chapter reports on joint work with Limin Jia, Karl Mazurak, Jianzhou Zhao, Luke Zarko,

Joseph Schorr, and Steve Zdancewic.

3.1 Introduction

This chapter presents the design of Aura, a domain-specific programming language that incorporates

a constructive authorization logic based on Aura0 as part of its type system. Rather than mediating

between computations and policy statements written in two largely distinct languages, Aura pro-

vides a uniform treatment of these concepts. For example, consider the following signature that

declares a simple API for playing songs.

jazzPolicy : self says (s : Song)→ (p: prin) → isJazz s → MayPlay p s

playFor: (s : Song)→ (p : prin) → pf (self says MayPlay p s)→ Unit.

51

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 52

As hinted by the types, Aura can express both access control policy statements and procedures

guarded by such policies. Note also that a single → constructor is used to represent both logical

implication and function arrow. In contrast Aura0 makes a distinction between→ and⇒. This is

symbolic of a design philosophy used in Aura that seeks to provide uniformity across apparently

diverse language constructs.

Aura features a full computation model including higher-order functions, polymorphism, and

recursive algebraic datatypes. This model also makes explicit how security-relevant implementa-

tion details—like the creation of audit trails or the cryptographic interpretation of certain logical

statements—can be handled automatically with little programmer intervention. It is not enough to

to naively mix authorization logic and functional programming features. Instead, Aura’s type sys-

tem is specialized to enable dependent types in the presence of non-terminating computations, and

the language includes specialized constructs for signature generation and dynamic type refinement.

This chapter’s main contributions are as follows:

• It presents the design of Aura, a language unifying first-class, dependent authorization poli-

cies with functional programming.

• It describes machine-checked proofs that Aura’s type system is sound and decidable.

• It describes a prototype typechecker and interpreter for Aura and gives sample programs.

Typical dependently typed languages (see Section 3.6) use types to encode precise program

specifications. Constructing associated proof objects is computationally hard and typically requires

the help of a theorem prover or interactive proof assistant. Our goal is different; Aura uses de-

pendent types to naturally connect data with proofs for run-time policy enforcement. Compared

with a conventional dependently typed language, Aura adds some features—assertion types, digi-

tally signed objects as proofs, the says and pf modalities—and restricts or removes others—only

values may appear in dependent types. The result is a system tuned for dynamic authorization but

unsuitable for static program verification or general-purpose theorem proving.

Aura’s metatheory is verified in the Coq proof assistant and encompasses the complete language,

including higher order and polymorphic types, mutually recursive datatypes and propositions, a

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 53

restricted form of dependent types, and authorization proofs. We believe that the mechanized proof

is of independent value, as parts of the proof may be reused in other settings.

The rest of this chapter focuses on the novel core features of Aura. The next section introduces

Aura’s programming model and illustrates its novel features by example. Section 3.3 gives a formal

account of the core Aura language, including its type system and operational semantics, along

with our main technical results, soundness and decidability of typechecking. Finally, Section 3.4

describes a prototype implementation of an interpreter and typechecker for Aura.

3.2 Programming in Aura

Aura is intended to be used to implement reference monitors (Bishop, 2002) for access control in

security-sensitive settings. A reference monitor mediates access by allowing and denying requests

to a resource (based, in this case, on policy specified in an authorization logic). It must also log

accesses to enable after-the-fact audit. Chapter 2 covered audit in detail, and logging will only

be discussed briefly here. This chapter is focused on the details of integrating general purpose

programming with an authorization logic.

The potential design space of dependently typed languages is quite large, and there are many

challenges in striking a good balance between expressiveness and tractability of typechecking.

Aura’s design strives for simplicity, even at the cost of expressiveness. This section describes Aura’s

design, concentrating on the features relevant to access control.

This chapter to Chapter 1’s jukebox-server example. The full server code, given in Section 3.5,

and the rest of this section will use relevant functions and propositions to motivate and discuss parts

of Aura’s design.

Authority and authorization logic

This section examines Aura’s handling of principals and policy assertions. Principals in Aura have

type prin and represent distinct components of a software system. They may correspond to human

users or system components such as an operating system kernel or a particular server. Formally,

principals are treated as special values in Aura; they are characterized by their ability to index the

family of says monads.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 54

Aura’s intended semantics associates each principal with a unique private key used to crypto-

graphically sign messages. In such a setting objects of the form sign(a, P) can be represented by

actual digital signatures, and principal identifiers—which, in Aura, are first class values of type

prin—can be thought of as public keys. At runtime, an Aura program has access to a single private

key. If the program has access to A’s key, we say that program is running with A’s authority.

Aura provides no means of transferring authority, in effect disallowing programs from directly

manipulating private keys; this prevents Aura programs from creating new principals (i.e., key pairs)

at runtime but also trivially disallows the accidental disclosure of private keys. Were Aura extended

to support dynamically generated principals, type-based analysis might suffice to keep private keys

private.

As in Aura0, says-propositions may be inhabited by return, bind, and sign terms. Additionally,

Aura allows for the creation of fresh signatures using the new construct say. Intuitively, when

run with authority A, expression sayP reduces to sign(A, P). When signatures are represented

cryptographically, this requires access to A’s private key.

Aura’s formal definition handles runtime keys and authority implicitly. Instead, the language

semantics are given from a local perspective, and a distinguished value, self, represents whichever

principal actually runs the program. This local viewpoint manifests itself in the type of say,

say P : self says P.

Chapter 4’s formalism provides a more explicit account of runtime authority. There, both the re-

duction relation and the say operator are annotated with authorities, and a type-and-effect–style

system ensures that these annotations are properly aligned. While this adds complexity, it facilitates

reasoning about systems from a global perspective.

Authorization proofs and dependent types

By defining assertions as types and proofs as terms we are taking advantage of the well-known

Curry-Howard isomorphism (Curry et al., 1958; Howard, 1980) between logic and programming

languages. One benefit to this approach is that Aura programs use the same constructs to manipulate

both data and proofs. More critically it provides—via dependent typing, which allows types to

mention terms—an elegant way for access control statements to mention data.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 55

Aura incorporates dependent types directly—in contrast to, for example, using GADTs (Pey-

ton Jones et al., 2006) or static equality proofs (Sulzmann et al., 2007) to simulate the required

dependencies. Such an approach allows straightforward use of data at the type level and avoids

replication of the same constructs in both static and dynamic form, but unconstrained use of depen-

dent types can quickly lead to an undecidable typing judgment. Moreover, care must be taken to

separate effectful computations from pure proof objects.

Inspired by the Calculus of Inductive Constructions (Coquand and Huet, 1988), Aura has sep-

arate universes, Type and Prop, that classify computational objects and proofs. (Aura’s Type uni-

verse corresponds to CIC’s Set.) The introduction’s MayPlay proposition constructor, for instance,

has type prin → Song→ Prop. Both types of kind Type and propositions of kind Prop describe

data that may be available at runtime. Propositions, however, are computation-free: they never re-

duce and Aura does not employ type-level reduction during typechecking. Consequently, type-level

terms may only depend on (or mention) values (well-typed normal forms) not arbitrary computa-

tions.

Aura offers a type-refining equality test on atomic values—for instance, principals and

booleans—as well as a dynamic cast between objects of equivalent types, which prove necessary

for certain equalities that arise only at runtime. For example, when typechecking

if self = a then e1 else e2 ,

the fact that self equals a is automatically made available while typechecking e1, and proofs of type

self says P can be cast to type a says P and vice-versa.

The distinction between Type and Prop is also illustrated by the previously introduced say and

sign. On the one hand, sayP certainly belongs in Type’s universe. We intend it to be reduced by

our operational semantics—and this reduction is an effectful computation dependent on a program’s

runtime authority. On the other hand, sign(a, P) should be of type a says P , which, like P , is of

kind Prop. To type both says and say, we introduce the modality pf : Prop→ Type and give sayP

the type pf (self says P) of kind Type. The pf modality comes equipped with its own bind and

return operations, allowing proofs to be manipulated by computations while keeping the worlds of

computations and assertions separate.

Aura’s dependent types also address something that might have seemed odd about the crypto-

graphic interpretation of the says monad, namely that one often thinks of digitally signing data,

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 56

whereas sign only works with propositions. Dependent types resolve this issue, using assertions

that mention data. For example, while sign(a, 42) is not well formed,

pair 312 (sign(a, Good 42))

where

pair : (x: int) → A says (Good x)→ Pair

is well formed and associates a data value with a signature about the value. Only signing propo-

sitions is compelling, because a digital signature on raw data lacks intrinsic meaning but signed

propositions associate data with metadata.

Auditing in Aura

Passing proofs at runtime is also useful for after-the-fact auditing of Aura programs. The full de-

tails are given in Chapter 2, but recall that when full proofs are logged for every resource access, it

becomes possible to determine how access was granted at a very fine granularity. This is of great

importance when the intent of some institutional policy is not properly reflected in the actual rules

enforced by a software system—for example, an auditor can examine the proof that allowed an un-

wanted access to take place and determine whether and where authority was improperly delegated.

These guarantees can be made as long as the interface to the resources of interest is sufficiently

rich: we can simply decree that every interface function—that is, a function that wraps a lower level

operating system call—must write its arguments to the log. There are no constraints on what the

rest of the reference monitor may do other than that it must respect this interface; it is not possible

to inadvertently add a path through the program that causes insufficient information to be logged.

This is in keeping with Aura’s general philosophy of resilience toward programmer mistakes.

Returning to playFor, let us assume that there exists a native function rawPlayFor : Song→ Unit

that is not security-aware and hence is not available to the programmer. We define the interface

function playFor as simply

λs: Song. λp: prin.

λproof: pf (self says MayPlay p s).

rawPlayFor s.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 57

Because playFor is an interface function—i.e., because it has access to rawPlayFor—its arguments

will automatically be logged, and because the access control policy is entirely encoded in playFor’s

signature, the log will automatically contain everything an auditor needs to determine precisely how

any song was authorized to be played.

3.3 The Aura Core Language

This section presents the chapter’s main technical contributions, namely a formal description of the

Aura core language, its type system, operational semantics, and the corresponding proofs of type

soundness and decidability of typechecking.

We adopt the design philosophy of elaboration-style semantics (Lee et al., 2007): the Aura

intermediate language is intended to make typechecking as explicit as possible. Following this

principle, our design eschews complex pattern matches, equality tests over complex values, and

implicit casts. Our goal was to cleanly divide the compiler into two parts: an elaboration phase

that uses inference, possibly with heuristics and programmer-supplied hints, to construct an internal

representation that makes all type information explicit; and a compilation phase that processes the

fully elaborated intermediate representation into executable code.

Aura core syntax

As described above, Aura is a call-by-value polymorphic lambda calculus. It consists of a “term-

level” programming language (whose expressions are classified by types of kind Type) for writing

algorithms and manipulating data and a “proof-level” assertion language (whose expressions are

classified by propositions of kind Prop) for writing proofs of access control statements. These

two languages share many features (λ-abstraction, application, constructors, etc.) and, because of

dependent types, propositions and types may both mention terms of either sort. To simplify the

presentation of Aura, it makes sense to unify as many of these constructs as possible. We thus

adopt a lambda-cube style presentation (Barendregt, 1992) that uses the same syntactic constructs

for terms, proofs, types, and propositions. Different categories are distinguished by the type system

as necessary. This approach also has the appeal of greatly reducing the number of objects in the

language, which simplifies both the metatheory and implementation. Our design was significantly

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 58

influenced by the Henk intermediate language (Peyton Jones and Meijer, 1997), which also adopts

this compact representation.

The lambda-cube terms of the Aura core syntax are given by:

Terms t : : = x | ctr

| λx : t1. t2 | t1 t2 | (x : t1)→ t2

| match t1 t2 with {b} | 〈t1 : t2〉

| . . .

Branches b : : = · | b| ctr ⇒ t

Here, x ranges over variables, and ctr ranges over programmer-defined constructors created using

datatype declarations as described below. In addition to the standard lambda abstraction, applica-

tion, and dependent arrows, Aura also has a pattern matching construct and an explicit typecast. In

the expression match t1 t2 with {b}, term t1 is under analysis, t2 is the return type, and b is a list of

branches that t1 is matched against. Type annotation t2 ensures that typechecking is straightforward

even when the set of branches is empty. The explicit cast 〈t1 : t2〉 lets t1 be considered to have type

t2; typechecking ensures this cannot fail.

To express and reason about access control, Aura extends the core syntax above with additional

terms. We use metavariable conventions that make it easier to recall constraints placed on a term by

the type system: a ranges over principals, P ranges over propositions, p ranges over proofs, e ranges

over program expressions, and v stands for values. All of these metavariables are synonymous with

t, which we use to indicate syntactic objects of any flavor. The Aura-specific syntax is given by

by the following grammar. (Appendix C, about Chapter 4’s language, shows how to represent such

constructs in Coq.)

t : : = . . . | Type | Prop | Kind

| prin | a saysP | pf P

| self | sign(a, P) | sayP

| returns a p | binds e1 e2

| returnp p | bindp e1 e2

| if v1 = v2 then e1 else e2

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 59

Typechecking Aura

Aura’s type system contains the following judgments:

Well-formed signature S ` �

Well-formed typing environment S ` E

Well-typed term S; E ` t : s

Well-typed match branches S; E; s; args ` branches : t

Figures 3.1 and 3.2 show the term typechecking rules. For now, we elide the rules for type-

checking signatures and branches and briefly describe their salient features below. The full type

system can be found in the Appendices and the Coq implementation.

In all these judgments, S is a signature that declares types, propositions, and assertions (de-

scribed in more detail below). A typing environment E maps variables to their types as usual, but it

also records the hypothetical equalities among atomic run-time values.

Environments E : : = · | E, x : t | E, x∼(v1 = v2):t

Binding x∼ (v1 = v2):t indicates that values v1 and v2 have type t and at run-time v1 and v2 will

be equal. (The variable x is unimportant, but naming the equality assumption allows for a uniform

environment representation.)

Signatures: data declarations and assertions

Programmers can define bundles of mutually recursive datatypes and propositions in Aura just as

they can in other programming languages. A signature S collects together these data definitions and,

as a consequence, a well-formed signature can be thought of as map from constructor identifiers to

their types. We present the formal grammar and typing rules for signatures, which are largely

straightforward, in Appendix B; here we explain signatures via examples.

Data definitions may be parametrized, and the familiar polymorphic list declaration is written:

data List : Type→ Type {

| nil : (t :Type)→ List t

| cons : (t :Type)→ t → List t → List t

}

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 60

S ` E

S; E ` Type : Kind
WF-TM-TYPE

S ` E

S; E ` Prop : Kind
WF-TM-PROP

S ` E S(ctr) = t

S; E ` ctr : t
WF-TM-CTR

S ` E E(x) = t

S; E ` x : t
WF-TM-FV

S; E, x : t1 ` t2 : k2 k2 ∈ {Type,Prop,Kind}
S; E ` (x : t1)→ t2 : k2

WF-TM-ARR

S; E ` t : k S; E, x : t ` u : k1

S; E ` (x : t)→ k1 : k2 k ∈ {Type,Prop,Kind} k2 ∈ {Type,Prop}
S; E ` λx : t. u : (x : t)→ k1

WF-TM-ABS

S; E ` t1 : (x :u2)→ u S; E ` t2 : u2 val(t2) or x /∈ fv(u)
S; E ` t1 t2 : {x/t2}u

WF-TM-APP

S; E ` e : s
s = ctr a1 a2 · · · an S(ctr) = (x1 : t1)→ · · · (xn : tn)→ u

branches cover S branches ctr S; E; s; (a1, · · · , an) ` branches : t
S; E ` s : u S; E ` t : u u ∈ {Type,Prop}

S; E ` match e t with {branches} : t
WF-TM-MATCHES

Figure 3.1: Aura typing rules for standard functional language constructs.

Aura’s type system rules out data declarations that require nontrivial equality constraints at the

type level. For example, the following GADT-like declaration is ruled out, since Bad t u would

imply t = u:

data Bad : Type→ Type→ Type {

| bad : (t :Type)→ Bad t t

}

Logical connectives like conjunction and disjunction can be encoded using dependent proposi-

tions, as in Coq and other type-based provers. For example:

data And : Prop→ Prop→ Prop {

| both : (p1:Prop)→ (p2:Prop)→ p1→ p2→ And p1 p2

}

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 61

S ` E

S; E ` prin : Type
WF-TM-PRIN

S ` E

S; E ` self : prin
WF-TM-SELF

S; E ` a : prin S; E ` P : Prop

S; E ` a saysP : Prop
WF-TM-SAYS

S; E ` a : prin val(a) S; E ` p : P S; E ` P : Prop

S; E ` returns a p : a saysP
WF-TM-SAYS-RET

S; E ` e1 : a saysP S; E ` e2 : (x :P)→ a saysQ x /∈ fv(Q)
S; E ` binds e1 e2 : a saysQ

WF-TM-SAYS-BIND

S; · ` a : prin S; · ` P : Prop

S; E ` sign(a, P) : a saysP
WF-TM-SIGN

S; E ` P : Prop

S; E ` sayP : pf self saysP
WF-TM-SAY

S; E ` P : Prop

S; E ` pf P : Type
WF-TM-PF

S; E ` p : P S; E ` P : Prop

S; E ` returnp p : pf P
WF-TM-PF-RET

S; E ` e1 : pf P S; E ` e2 : (x :P)→ pf Q x /∈ fv(Q)
S; E ` bindp e1 e2 : pf Q

WF-TM-PF-BIND

S; E ` v1 : k S; E ` v2 : k
atomic S k val(v1) val(v2) S; E, x∼(v1 = v2):k ` e1 : t S; E ` e2 : t

S; E ` if v1 = v2 then e1 else e2 : t
WF-TM-IF

S; E ` e : s converts E s t

S; E ` 〈e : t〉 : t
WF-TM-CAST

Figure 3.2: Aura typing rules for access control constructs.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 62

Aura’s type system conservatively constrains Prop definitions to be inductive by disallowing

negative occurrences of Prop constructors. While this is restrictive, maintaining some positivity

constraint is essential to the consistency of the logic. It would otherwise be possible to write loops

that inhabit any proposition, including False.

False itself is definable: it is a proposition with no constructors:

data False : Prop { }

Assertions, like the MayPlay proposition from Section 3.2, are special constants that construct

Props:

assert MayPlay : prin→ Song→ Prop

While assertions are similar in flavor to datatypes with no constructors, there is a key difference.

When an empty datatype is scrutinized by a match expression, the match may be assigned any type.

Hence if we were to define MayPlay as an empty inductive type, A says False would follow from

A says MayPlay A freebird. In contrast, there is no elimination form for assertions, and principals

may sign assertions without compromising their says monad’s consistency. In this way, assertions

are similar to abstract types or type variables.

Core term typing

Figures 3.1 and 3.2 present the main typing rules for Aura.

Type is the type of computation expressions, and Prop is the type of propositions. The constant

Kind classifies both Type and Prop, as shown in rules WF-TM-TYPE and WF-TM-PROP. (Here and

elsewhere, we use the word “type” for any classifier—Prop and Type are both “types” in this sense.)

The typechecking rules for constructors declared in the signature (WF-TM-CTR) and for free

variables (WF-TM-FV) are completely standard. More interesting is WF-TM-ARR, which states

that the type of an arrow is the type of arrow’s output type. The latter is required to be one of Type,

Prop, or Kind, which rules out nonsensical arrow forms. For example, (x : Type) → Type is legal

whereas (x : Type) → self is not—the former could be the type of the polymorphic list constructor

while the latter doesn’t make sense since self is a computation-level value.

The WF-TM-ABS rule for introducing functions is standard except that, as in other lambda-cube-

like languages, Aura restricts what sorts of abstractions may be created. The argument to a function

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 63

can be a term value, a proof, a type, or a proposition. The resulting lambda must be typeable with

an arrow that itself has type Type or Prop. These restrictions imply that lambda abstractions may

only be computational functions or proof terms. Aura does not support Type-level lambdas (as

seen in Fω) because doing so would require support for β-reduction at the type level (i.e., for terms

classified by Kind). Such reductions, while useful for verification, are superfluous in this setting.

Leaving the reductions out simplifies typechecking and Aura’s metatheory.

The interesting part of the WF-TM-APP rule is the side condition requiring either that t2 is

a value (val(t2)) or that u does not depend on x—that is, x /∈ fv(u). This restriction has the

effect that, while Aura seems to be quite liberal with respect to the dependencies allowed by well-

formed (x : s) → t terms, the actual dependencies admitted by the type system are quite simple.

For instance, although the type system supports singleton types like S(0), it cannot check S(1+2)

because the latter type depends on a non-value expression.

These restrictions mean that truly dependent types in Aura depend on values—i.e. terms that

cannot reduce. While this limits the applicability of dependent types for program verification tasks,

it greatly simplifies the metatheory, since there is no possibility of effectful computations appearing

in a type. See Appendix B for the formal definition of the value relation.

Typechecking pattern match expressions is fairly standard (WF-TM-MATCHES), though it is

a bit intricate due to Aura’s support for a rich class of parametrized recursive datatypes. Only

expressions that have saturated (fully applied) types can be matched against. The types of the

branches must exhaustively match the constructors declared in the signature, and any parameters to

the datatype being analyzed are also made available inside the branches. Each branch must return an

expression of the same type, which is the result type of the entire match expression. Since datatypes

and propositions in Aura may be nullary (have zero constructors), typechecking without inference

requires that the match expression carry an annotation. The auxiliary definitions and the judgments

used for typechecking the branches themselves can be found in Appendix B.

Principals and proofs

Principals are an integral part of access control logics, and Aura treats principals as first-class objects

with type prin. The only built-in principal is self, which represents the identity of the currently run-

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 64

ning process (see WF-TM-PRIN and WF-TM-SELF); additional principal identifier constants could

be accommodated by adding them with type prin, but we omit such a rule for simplicity’s sake.

As described in Section 3.2, Aura uses the principal-indexed says monad to express access

control policies. The proposition a saysP means that principal a has asserted proposition P (either

directly or indirectly). The expression returns a p introduces proofs into the a says monad, and

binds e1 e2 allows for reasoning under the monad. These constraints are shown in rules WF-

TM-SAYS, WF-TM-SAYS-RET and WF-TM-SAYS-BIND. The rules are adapted from DCC (Abadi,

2007). Aura, is mostly closely related to Abadi’s “cut-down” DCC variant, as Aura drops DCC’s

label lattice in favor of explicit delegation among principals.

The expression sign(a, P) witnesses the assertion of proposition P by principal a (WF-TM-

SIGN). Since sign(a, P) is intended to model evidence manufactured by a without justification,

it should never appear in a source program. Moreover, since signed propositions are intended to

be distributed and thus may escape the scope of the running Aura program, they are required to

be closed. Additionally the declaration signature S must be available where the sign object is

interpreted. When two Aura programs exchange proofs they must agree on a declaration signature.

(Strictly speaking, it may be sound for the signatures to differ in ways that do not affect the meaning

of the sign object (Rossberg, 2007; Sewell et al., 2007; Nanevski et al., 2008).)

Creating sign(a, P) requires a’s authority. Aura models the authority of a running program

with the principal constant self. The sayP operation creates an object of type pf self saysP . This

operation creates the signed assertion sign(self, P) and injects it as a proof term for further manip-

ulation (see WF-TM-SAY). Intuitively self represents the current private key. Chapter 4 provides a

more explicit account of runtime authority.

Aura uses the pf monad to wrap access control proofs as program values. Term returnp p turns

proof p : P into an expression of type pf P . The bindp construct allows a computation to compose

proofs (rules WF-TM-PF-RET and WF-TM-PF-BIND). Maintaining a separation between proofs

and computations is necessary to prevent effectful program expressions from being confused with

genuine proof terms. For intuition consider sayP . This term’s evaluation depends on the current

runtime authority—that is say has a runtime effect. It would be incorrect to put say in the Prop

universe; therefore, say P is classified by pf (self saysP), not just self saysP .

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 65

converts E t t
CONV-REFL

converts E t s

converts E s t
CONV-SYMM

converts E s u converts E u t

converts E s t
CONV-TRANS

x∼(s = t):k ∈ E

converts E s t
CONV-AXIOM

converts E s1 t1 converts E s2 t2

converts E (s1 s2) (t1 t2)
CONV-APP

converts E s1 t1 converts E s2 t2

converts E (λx :s1. s2) (λx : t1. t2)
CONV-ABS

converts E s1 t1 converts E s2 t2

converts E ((x :s1)→ s2) ((x : t1)→ t2)
CONV-ARR

Figure 3.3: Conversion

Equality and conversion

Some typing rules (e.g. WF-TM-APP) require checking that two terms can be given the same type.

Satisfying such constraints in a dependently typed language requires deciding when two terms are

equal—a difficult static analysis problem for full-spectrum dependently typed languages.

Aura addresses this with a conditional construct. Dynamically, if v1 = v2 then e1 else e2 steps

to e1 when v1 and v2 are equal, and the expression yields e2 otherwise. Statically, rule WF-TM-IF

typechecks the then branch in an environment containing the static constraint (v1 = v2). As we

will see shortly, the constraint may be used to perform safe typecasts. This is an instance of the

type refinement problem, well known from pattern matching in languages such as Coq (Coq, 2006),

Agda (Norell, 2007), and Epigram (McBride, 2005).

Aura limits its built-in equality tests to inhabitants of atomic types. The built-in prin type is

atomic, as is any type defined by a non-parametrized Type declaration, each of whose constructors

takes no arguments. The List type is not atomic, nor is List nat (since cons takes an argument).

However, the following Song type is atomic:

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 66

data Song: Type {

| freebird : Song

| ironman: Song

}

In other words, atomic types are prin and enumerated types. Our definition of atomic type is limit-

ing, but we believe it can be naturally extended to arbitrary datatypes not containing functions.

With equalities over atomic types in the context, we can now consider the issue of general type

equality. As in standard presentations of the Calculus of Constructions (Barendregt, 1992), we

address type equality in two acts.

Two types in Aura are considered equivalent when they are related by the conversion relation.

This relation, written converts and defined in Figure 3.3, is of course reflexive, symmetric, and

transitive; the key rule is CONV-AXIOM, which uses equality assumptions in the environment. For

instance, under assumption x = self, term x saysP converts to self saysP . As equalities only

mention atomic values, conversion will only alter the “value” parts of a type—convertible types

always have the same shape up to embedded data values.

Aura contains explicit, safe typecasts. As specified in rule WF-TM-CAST, term 〈e : T 〉 is as-

signed type T whenever e’s type is convertible with T . Many standard presentations of dependently

typed languages use implicit conversions, which may occur anywhere in a type derivation, but the

explicit cast is appealing as it gives an algorithmic type system. Casts have no run-time effect and

are simply discarded by our operational semantics.

Evaluation rules

Figure 3.4 defines Aura’s operational semantics using a call-by-value small-step evaluation relation.

Most of the evaluation rules are straightforward. The rule PF-BIND is a standard beta reduction

for monads. The term sayP creates a proof that principal self has asserted that proposition P is

true; it evaluates to an assertion signed by principal self. There are two possibilities in the evaluation

of if v1 = v2 then e1 else e2: when v1 equals v2, it evaluates to e1, otherwise it evaluates to e2. We

define two auxiliary reduction relations to implement the reduction rule for pattern matching.

We write (v, b) 7→b e to denote the evaluation of a value v against a set of branches. These

evaluation rules search through the list of branches until v matches with the constructor of one of

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 67

t 7→ t′

val(v)
(λx : t. e) v 7→ {v/x}e

APP
bindp (returnp e1) e2 7→ e2 e1

PF-BIND

sayP 7→ returnp (sign(self, P))
SAY

v1 = v2

if v1 = v2 then e1 else e2 7→ e1
IF-EQ

v1 6= v2

if v1 = v2 then e1 else e2 7→ e2
IF-NEQ

val(v)
〈v : t〉 7→ v

CAST

(v, branches) 7→b e

match v t with {branches} 7→ e
MATCH

(v, b) 7→b e

(v, c, body) 7→c (e, 0)
(v, brn c body {rest}) 7→b e

B-HERE
(v, rest) 7→b e

(v, brn c body {rest}) 7→b e
B-EARLIER

(v, c, body) 7→c (e, n)

((c, n), (c, n), body) 7→c (body, n) CTR-BASE

val(v2) m > 0 (v1, (c, n), body) 7→c (body,m)
(v1 v2, (c, n), body) 7→c (body,m− 1)

CTR-PARAM

(v1, (c, n), body) 7→c (e, 0)
(v1 v2, (c, n), body) 7→c (e v2, 0)

CTR-ARG

Figure 3.4: Reduction Relation

the branches, at which point the rules focus on the branch and supply the body of the branch with

the arguments in v. The tricky part lies in correctly identifying the arguments in v and discarding the

type parameters. We write (v, c, body) 7→c (e, n) to denote the evaluation of the body of the branch

where v matches with the constructor c in the branch. Here, n is the number of parameters that

should be discarded before the first argument of v is found. For example, the first parameter nat in

the value cons nat 3 (nil nat) of type List nat has no computational content; therefore it should be

discarded during the evaluation of pattern matching. Note that the semantics represents constructors

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 68

as a pair of the constructor name c and its number of type parameters. For instance, in the definition

of polymorphic lists shown previously, the representation of cons is (cons, 1).

Metatheory

We have proved soundness (in terms of progress and preservation) for Aura. The proofs are fully

mechanized in the Coq proof assistant.

Theorem 5 (Preservation). If S; · ` e : t and e 7→ e′, then S; · ` e′ : t.

Theorem 6 (Progress). If S; · ` e : t then either val(e) or exists e′ such that e 7→ e′.

We have also proved that typechecking in Aura is decidable.

Theorem 7 (Typechecking is Decidable).

• If S ` � and S ` E, then ∀e, ∀t, it is decidable whether there exists a derivation such that

S; E ` e : t.

• If S ` � then ∀E it is decidable whether there exists a derivation such that S ` E.

• It is decidable whether there exists a derivation such that S ` �.

We have mechanized all parts of these decidability results by giving constructive proofs of the

form φ ∨ ¬φ. For instance, the constructive proof of (S ` �) ∨ ¬(S ` �) is a total algorithm that

decides signature well-formedness.

For ease of explanation, the judgments and rules presented in this section are a close approxi-

mation of the formal definitions of Aura. For instance, to prove the preservation of pattern match-

ing, we examine the parameters and arguments supplied to the constructor in the pattern matching

evaluation rules. In order to prove the decidability of typechecking, we strengthened the typing

judgments to take two signature arguments: one contains the type declarations of the top-level type

constructors (e.g., List) that can appear in mutually recursively defined datatypes and the other is

used for looking up the constructors (e.g., nil , cons) of the top-level type constructors. However,

this simplified presentation has the same key invariants as the full type system. Appendix B contains

the fully explicit presentation of Aura’s type system.

Finally, Jia and Zdancewic (2009) showed independently that Aura is strongly normalizing.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 69

3.4 Validation and Prototype Implementation

Mechanized proofs

Aura has 20 reduction rules, 40 typing judgments (including the well-formedness of terms, envi-

ronments and signatures), and numerous other relations such as atomic equality types to constrain

the type system. For a system of this size, implementing a complete, mechanized version of the

soundness proofs is challenging.

We formalized the proofs of soundness and the decidability of typechecking for Aura in the Coq

proof assistant, encoding syntax and semantics with a variant of the locally nameless representation

(Aydemir et al., 2008). Well-documented definitions of Aura including typing rules, reduction rules,

and other related relations require about 1400 lines of Coq code. The soundness proofs take about

6000 lines of Coq code, and the proofs of the decidability of typechecking take about 5000 lines

of Coq code. The automation used in the Coq proofs is relatively rudimentary; we did not devote

much time to writing tactics.

The most intricate parts of the language design are the invariants of the inductive datatypes, the

dependent types, atomic equality types, and the conversion relations. This complexity is reflected

in the Coq proof development in two ways: one is in the number of lemmas stating the invariants

of the datatype signatures, the other is in the number of revisions made to the Coq proofs due to

design changes motivated by failure to prove soundness. We found that for such a complicated

system, mechanized proofs are well suited for dealing with design iteration, as Coq can easily

identify which proofs require modification when the language design changes. As later discovered

when mechanizing Auraconf, additional tactic support reduces the cost of design iteration and further

magnifies the benefits of mechanization.

Because Aura is a superset of system F with inductively defined datatypes, we hope that the

Aura proof scripts will be a useful starting point for future mechanized soundness proofs.

Typechecker and interpreter

The prototype Aura typechecker and interpreter together implement the language as it is formalized

in Coq with only minor differences. The typechecker recognizes a small number of additional types

and constants that are not present in the formal definition, including literal 32-bit integers, literal

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 70

strings and tuples. Although it is derivable in Aura, we include a fix constant for defining recursive

functions; by using this constant together with tuples, mutually recursive functions can be defined

more succinctly than is possible in the formal definition. To allow for code reuse, we have added an

include statement that performs textual substitution from external files. The software sorts included

files in dependency order and copies each only once.

3.5 An Extended Example

In this section, we illustrates the key features of Aura’s type system by explaining a program imple-

menting a simple streaming music server.

The extended code sample is given in Figure 3.5. The example program typechecks in the

prototype Aura interpreter and uses some of the language extensions discussed in Section 3.4. On

line 1 the program imports library code that defines utility types (such as dependent tuples and lists).

We imagine that the server implements a policy in which every song may have one or more

owners, corresponding to principals who intrinsically have the right to play the song. Additionally,

song owners may delegate their listening rights to other principals.

This policy is defined over predicates Owns and MayPlay, which are declared as assertions in

lines 11 and 12. Recall that assertions are appropriate because we cannot expect to find closed

proofs of ownership and delegation in pure type theory.

The main policy rule, shareRule (line 52) is defined using a say expression. The type of

shareRule is an implication wrapped in two monads. The outer pf monad is required because say

accesses a private key and must be treated effectfully. The inner self says monad is required to

track the provenance of the policy. The implication encodes the delegation policy above. This rule

provides a way to build up a value of type pf (self says (MayPlay a s)), which is required before a

can play song s.

The exact form of shareRule is somewhat inconvenient. We derive two more convenient rules,

shareRule′ and shareRule′′ (lines 98 and 117). These rules use monadic bind and return operations

to change the placement of pf and says type constructors in shareRule’s type. The resulting type of

shareRule′′ shows that one can obtain a proof of pf (self says (MayPlay a s)) by a simple application

of shareRule′′ to various arguments, as shown in line 142.

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 71

1 include ”tuple.core” include ” list .core”
2

3 (∗ Introduce an atomic datatype representing songs ∗)
4 data Song : Type {
5 | warpigs: Song
6 | heartbreaker : Song
7 }
8

9

10 (∗ Base predicates to describe ownership and listening rights .∗)
11 assert Owns : prin→ Song→ Prop;
12 assert MayPlay : prin→ Song→ Prop;
13

14

15 (∗ Existential type for song ownership ∗)
16 data OwnerRecord : Type {
17 | ownerRecord : (p: prin) → (s: Song)→
18 (pf (self says (Owns p s)))→ OwnerRecord }
19

20 (∗ List of songs owners. This list will be created at runtime (using ”say”),
21 but could also be read from a separate configuration file with
22 appropriate signatures. ∗)
23 let ownerlist : (List OwnerRecord) =
24 (cons OwnerRecord
25 (ownerRecord self heartbreaker (say (Owns self heartbreaker)))
26 (nil OwnerRecord))
27 in
28

29

30 (∗ Import foreign functions ∗)
31 prim static method println : String → Unit = System.Console.WriteLine in
32 prim static method playWav : String→ Unit =
33 Sol.InteropTestLib.Featureful .playWav in
34

35 let seq : (t :Type)→ Unit→ t → t = (λt :Type. λa:Unit. λb:t . b) in
36 let ignore : (t :Type)→ t → Unit = (λt :Type. λv:t. unit) in
37

38 let printMessage : (s: String) → Unit =
39 λs: String .
40 seq Unit (println ””) (seq Unit (println ””) (println s)) in
41

42 let findWavPath : (s: Song)→ String =
43 λs: Song .
44 match s with (String) {
45 | heartbreaker→ ”media/heartbreaker.wav”
46 | warpigs → ”media/warpigs.wav”
47 }
48 in
49

Figure 3.5: Aura code for a music store

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 72

50 (∗ Rule stating that owners may delegate their right to play songs.
51 This is inhabited using ”say.” ∗)
52 let shareRule :
53 pf (self says ((o: prin) → (r : prin) → (s: Song)→
54 (Owns o s)→ (o says (MayPlay r s))→ (MayPlay r s))) =
55 say ((o: prin) → (r : prin) → (s: Song)→
56 (Owns o s)→ (o says (MayPlay r s))→ (MayPlay r s))
57 in
58

59 (∗ Use the foreign function interface to play a song ∗)
60 let playFor : (s: Song)→ (p: prin) →
61 (pf (self says (MayPlay p s)))→ Unit =
62 λs: Song . λp: prin . λproof: (pf (self says (MayPlay p s))) .
63 seq (Unit) (printMessage ”∗∗∗∗PLAYING SONG∗∗∗∗”)
64 (playWav (findWavPath s))
65 in
66

67 let notFound : (p: prin) → (s: Song)→
68 (Maybe (pf (self says (Owns p s)))) =
69 λp: prin. λs: Song.
70 (nothing (pf (self says Owns p s)))
71 in
72

73 let getOwnerProof: (s: Song)→ (p: prin) →
74 (List OwnerRecord)→ (Maybe (pf (self says (Owns p s)))) =
75 λs: Song . λp: prin . λownerRecords: List OwnerRecord .
76

77 fun rec : (List OwnerRecord)→
78 (Maybe (pf (self says (Owns p s)))) =
79 λl : (List OwnerRecord) .
80 match l with (Maybe (pf (self says Owns p s))) {
81 | nil → notFound p s
82 | cons→ λx:OwnerRecord. λxs: List OwnerRecord .
83 (∗seq (Maybe (pf (self says Owns p s))) (println ”cons”)∗) (
84 match x with (Maybe (pf (self says Owns p s))) {
85 | ownerRecord→ λp′:prin. λs′:Song.
86 λproof: pf (self says (Owns p′ s′)).
87 if p = p′

88 then if s = s′

89 then
90 just (pf (self says (Owns p s)))
91 〈 proof: (pf (self says (Owns p s)))〉
92 else rec xs
93 else rec xs
94 }) }
95 in rec ownerRecords end
96 in
97

Aura code for a music store (cont.)

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 73

98 let shareRule′ :
99 (pf ((o: prin) → (r : prin) → (s: Song)→

100 (self says (Owns o s))→ (o says (MayPlay r s))→
101 (self says (MayPlay r s)))) =
102 bind shareRule (λsr: (self says
103 ((o: prin) → (r : prin) →
104 (s: Song)→ (Owns o s)→
105 (o says (MayPlay r s)) →
106 (MayPlay r s))) .
107 return (λo: prin. λr: prin. λs: Song.
108 λowns: (self says (Owns o s)).
109 λmay: (o says (MayPlay r s)).
110 bind sr (λsr′ : ((o′ : prin) → (r ′ : prin) → (s′ : Song)→
111 (Owns o′ s′)→ (o′ says (MayPlay r′ s′)) →
112 (MayPlay r′ s′)) .
113 bind owns (λowns′ : (Owns o s).
114 return self (sr ′ o r s owns′ may)))))
115 in
116

117 let shareRule′′: (o: prin) → (p: prin) → (s: Song)→
118 (pf self says (Owns o s))→
119 (pf (o says (MayPlay p s)))→
120 (pf self says (MayPlay p s)) =
121 λo: prin. λp: prin. λs: Song.
122 λownsPf: pf (self says (Owns o s)).
123 λplayPf: pf (o says (MayPlay p s)).
124 bind ownsPf (λopf: (self says (Owns o s)).
125 bind playPf (λppf: (o says (MayPlay p s)).
126 bind shareRule′ (λsr′:
127 ((o′ : prin) → (r ′ : prin) → (s′ : Song)→
128 (self says (Owns o′ s′))→
129 (o′ says (MayPlay r′ s′)) →
130 (self says (MayPlay r′ s′))) .
131 (return (sr ′ o p s opf ppf)))))
132 in
133

Aura code for a music store (cont.)

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 74

134 let handleRequest: (s: Song)→ (p: prin) → (o: prin) →
135 (List OwnerRecord)→
136 (delPf: pf (o says (MayPlay p s)))→ Unit =
137 λs: Song. λp: prin. λo: prin. λl : List OwnerRecord.
138 λdelPf: pf (o says (MayPlay p s)).
139 match (getOwnerProof s o l) with Unit {
140 | nothing → printMessage ”∗∗∗∗PROOF SEARCH FAILED. ACCESS DENIED.∗∗∗∗”
141 | just → λx: (pf (self says (Owns o s))).
142 playFor s p (shareRule′′ o p s x delPf)
143 }
144 in
145

146 let selfMayPlayGen : (s: Song)→ pf (self says (MayPlay self s)) =
147 λs: Song. say (MayPlay self s)
148 in
149

150 handleRequest heartbreaker self self ownerlist (selfMayPlayGen heartbreaker)

Aura code for a music store (cont.)

The key functionality of the music server is provided by a function stub, playFor, which is

intended to model an effectful function that streams a provided song to a specified principal. Its

type is given by the annotation on line 60. The playFor function takes the song to be played and the

principal it should play on behalf of as its first two arguments. The third argument is a proof of the

proposition self says (MayPlay A s), demonstrating the requesting principal’s capability to play the

song, which is required by the server’s policy. playFor is implemented in terms of a foreign function

imported (line 32) from .Net.

The remaining code implements the application’s main functionality. The handleRequest func-

tion takes a delegation request and, using a provided database of owner information, attempts to

construct an appropriate self says MayPlay proof. If it succeeds, playFor is invoked.

The implementation of handleRequest (line 134) is straightforward. There are two interest-

ing things to note. First, handleRequest takes a database of owner information expressed as a list of

OwnerRecords. OwnerRecord (line 16) is an inductive type whose single constructor has a dependent

type. Because ownerRecord’s third argument depends on its first two, OwnerRecord encodes an ex-

istential type. Second, the match expression on line 139 relies on the fact that (getOwnerProof s o l)

returns an object of type Maybe (pf (self says (Owns p s))). Getting such a type is possible because,

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 75

when getOwnerProof pulls a proof from the list, its type is refined so that the existentially bound

principal and song are identified with p and s.

GetOwnerProof (line 73) performs this type refinement in several steps. It uses the fixpoint

combinator (line 77) to perform a list search. After each OwnerRecord is decomposed, we must

check its constituent parts to determine if it is the correct record and, if so, refine the types appro-

priately. The action occurs between lines 87 and 93. At runtime the first if expression tests for

dynamic equality between the principal we’re searching for, p, and the principal store in the current

record, p′. A similar check is performed for between Songs s and s′ . If both checks succeed then

we cast proof: pf (self says Owns p′s′) to type pf (self says Owns p s) and return it packaged as

a Maybe. If either dynamic check fails we repeat again, and, if no match is found, we eventually

return Nothing.

In this example the server itself plays a song itself (line 150). The example in Chapter 4 shows

a server that communicates with clients in an interesting way.

3.6 Related Work

Aura’s goals were strongly influenced by earlier programming languages with access-control fea-

tures, and its design was inspired by dependent type systems.

Language-based access control

The trust management system PolicyMaker (Blaze et al., 1999b) treats the handling of access control

decisions as a distributed programming problem. A PolicyMaker assertion is a pair containing a

function and (roughly) a principal. In general, assertion functions may communicate with each

other, and each function’s output is tagged by the associated principal. PolicyMaker checks if

a request complies with policy by running all assertion functions and seeing if they produce an

output in which a distinguished principal POLICY says “approve.” Principal tags are similar in

purpose, but not realization, to says in Aura. And, while validity of Aura propositions is tested

by type checking, validity in PolicyMaker is tested by evaluation; this represents a fundamentally

different approach to logic. Despite this, Aura and trust management systems share a common

design principle: a trusted, application-independent component checks proofs, but proof search can

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 76

offloaded to untrusted components. The ideas in PolicyMaker have been refined in KeyNote (Blaze

et al., 1999b,a) and REFEREE (Chu et al., 1997).

The Fable language (Swamy et al., 2008) associates security labels with data values. Labels may

be used to encode information flow, access control, and other policies. Technically, labels are terms

that may be referred to at the type level; colored judgments separate the data and label worlds. The

key security property is that standard computations (i.e. application computations described with

color app) are parametric in their labeled inputs. Unlike Aura proofs, the label sub-language (i.e.

policy computations described with color pol) admits arbitrary recursion. The color separation may

restrict security sensitive operations to a small trusted computing base, but does not give rise to a

logical soundness property.

Dependent type theory

The Aura language design was influenced by dependent type systems like the Calculus of Construc-

tions (CoC) (Barendregt, 1992; Coquand and Huet, 1988). Both CoC and Aura contain dependent

types and a unified syntax encompassing both types and terms. However, there are several important

differences between CoC and Aura. Most critically, CoC’s type equality includes beta equivalence

but Aura’s does not. Type-level beta reduction, while convenient for verification, is unnecessary for

expressing authorization predicates, and greatly complicates language design and use.

As realized in the Coq proof assistant (Coq, 2006), CoC can contain inductive types and differ-

ent universes for computation and logic types—Aura universes Prop and Type correspond to Prop

and Set in Coq. However, because Set is limited to pure computations, Coq does not need Aura’s

pf mechanism to separate Prop from Set. In Coq all inductive declarations are subject to a complex

positivity constraint which ensures inductive types have a well-defined logical interpretation. By

contrast, Aura uses a simpler positivity constraint in Prop and no constraint in Type. Additionally,

Aura permits less type refinement than Coq does for type indices—Coq datatypes can be used to

encode GADTs. Compared with Coq, Aura is strictly weaker for defining logical predicates, but is

more expressive for defining datatypes for use in computation.

Several other projects have combined dependent types and pragmatic language design. Ynot and

Hoare Type Theory (Nanevski et al., 2006), Agda (Norell, 2007), and Epigram (McBride, 2005) are

intended to support general purpose program verification and usually require that the programmer

CHAPTER 3. AURA: A LANGUAGE FOR AUTHORIZATION AND AUDIT 77

construct proofs interactively. By contrast, Dependent ML (Xi and Pfenning, 1998), ATS (Xi and

Pfenning, 1998; Xi, 2004), and RSP1 (Westbrook et al., 2005) provide distinguished dependency

domains and can only express constraints on objects from these domains. These dependency do-

mains are intended to be amenable to automated analysis. Cayenne (Augustsson, 1998) extends

Haskell with general purpose dependent types. In Cayenne, type equality is checked by normaliz-

ing potentially divergent Haskell terms, a strategy which may cause typechecking itself to diverge.

Hancock and Setzer (2000) present a core calculus for interactive programming in dependent type

theory; their language uses an IO monad to encapsulate stateful computations. Inhabitants of the

monad are modeled as imperative programs and type equality is judged up to a bisimulation on

(imperative) program text.

Peyton Jones and Meijer (1997) describe the Henk typed intermediate language. Henk is an

extension of the lambda cube family of programming languages that includes CoC. Like Aura,

Henk is intended to be a richly-typed compiler intermediate language. Unlike Aura, Henk has

not been proved sound. Additionally, its lack of a pf monad (or equivalent technique for isolating

computations from proofs) makes it unsuitable for programming in the presence of both dependent

types and effects.

Chapter 4

Confidentiality in Aura

This chapter introduces Auraconf, a confidentially extension to Aura. The extension is based on the

full language defined in Chapter 3. In the following we describe Auraconf informally, define the

language, and discuss formalized proofs of key metatheoretic properties including noninterference.

4.1 Introduction

Thus far, this thesis has discussed Aura as a platform for programming with access control and

audit. However these security properties are not sufficient for programs that deal with confidential

data. For instance, applications in medical, financial, and legal arenas need to be able process and,

as appropriate, share secrets.

This chapter introduces Auraconf, an extension to Aura that provides programmers with a prin-

cipled set of tools for handling secret information. The goals of this design are as follows.

• To establish a natural connection between confidential language expressions and cryptogra-

phy.

• To leverage Aura’s expressive core features to provide a cohesive and useful design.

• To provide technical mechanisms for associating decryption failures with proof objects that

can be logged for later analysis.

78

CHAPTER 4. CONFIDENTIALITY IN AURA 79

Mixing an informative type system with encryption exposes a fundamental tension. Type sys-

tems gain power—the ability to prevent errors and uphold invariants—by exploiting precise infor-

mation about a program’s terms. In contrast, the point of encryption is to obscure information in

certain contexts.

This tension has several technical manifestations. First, typing is relative; each principal has

its own, local notion of what is well-typed. This is desirable because it accounts for the following

real phenomenon. To Alice all arbitrary, unknown bit strings are plausibly encrypted messages

for Bob—elements of the Auraconf type int for Bob. In contrast Bob can tell which bit strings are

well-formed at that type, and which are garbage.

Second, typing exhibits a hysteretic, or path dependent, effect. When Alice creates a new ci-

phertext for Bob, she transforms a perfectly legible piece of abstract syntax into an opaque binary

blob. In order for type preservation to hold during this process, Alice’s computation must annotate

the ciphertext and, as a side-effect, record information to validate the annotation in the future.

Third, resolving the above issues requires a precise treatment of public keys, both at compile

time and at runtime. Discussing key availability at different hosts requires ideas from modal type

theories (Jia and Walker, 2004; Murphy, 2008). Ensuring that needed keys are available dynam-

ically requires type-and-effect analysis (Lucassen and Gifford, 1988; Talpin and Jouvelot, 1992;

Washburn, 2005). (In principle other techniques could be used, but the concepts involved are essen-

tial.)

The Auraconf language resolves the tensions indicated above and helps programmers to safely

handle confidential data.

4.2 Confidential Computations and the For-Monad

This section provides an informal introduction to Auraconf’s new features.

In Auraconf secrets are protected with an indexed confidentiality monad. And a confidential

integer intended only for Alice can be given type (int for Alice). As expected, values of this type

are constructed using the following monadic return operator.

return Alice 42 : int for Alice

CHAPTER 4. CONFIDENTIALITY IN AURA 80

This expression evaluates by encrypting 42 with Alice’s public key, yielding a blob of ciphertext,

written E(Alice, 42, 0x2b63), with an additional annotation that will be discussed shortly. The num-

ber 0x2b63 is a random value inserted by the encryption algorithm to ensure that encrypting identical

plaintexts does not yield identical ciphertexts. Code running on any host should be able to perform

this operation, as it uses only Alice’s public key and needs no access to private keys. A program

running with Alice’s private key may decrypt and declassify the ciphertext as follows.

run (return Alice 42) : int

Additionally, when given a value of type int for Alice, Auraconf programs can use a bind oper-

ator to produce a new encrypted computation, also for Alice, based on the existing secret.

bind (int for Alice)

(return Alice 42)

(λ{Alice} x: int . return Alice (x ∗ 2))

: int for Alice

When Alice runs the resulting encrypted computation, she will decrypt the 42 before supplying it

to the decryption of the function. Ignore for now the {Alice} component of the λ; this is an effect

annotation and will be defined and discussed later.

As illustrated above, for-monad operators treat their arguments lazily. Imagine for the moment

that we could use homomorphic encryption (Rappe, 2004; Gentry, 2009) to allow for-bound compu-

tations to be applied eagerly. (I am not aware, by the way, of any practically efficient homomorphic

encryption scheme.) An eager for-bind would permit curious adversaries to probe encrypted objects

using functions that diverge on known inputs. Giving the for-monad a lazy semantics eliminates this

termination channel.

While the dynamic semantics of encryption are straightforward, they pose a substantial problem

for typechecking. Consider a machine running on Bob’s behalf that performs the above encryption

for Alice. A sound type system should satisfy subject reduction and be able to relate ciphertext

E(Alice, 42, 0x2b63) with type int for Alice. The entire point of encryption is to ensure that users

other than Alice cannot meaningfully inspect the ciphertext, and Bob has no way to decompose and

examine the newly created object.

Auraconf resolves this tension as follows. Ciphertexts may be annotated with one of two forms

of typing metadata. First, the term

CHAPTER 4. CONFIDENTIALITY IN AURA 81

cast E(Alice, 42, 0x2b63) to (int for Alice) : int for Alice

is a true cast—a form of type coercion allowed only when semantic evidence indicates that the cast

is “correct.” A true cast typechecks when the ciphertext is a known value with known provenance.

Whenever Bob’s program creates a ciphertext, it records a fact associating the new ciphertext with

the appropriate type. As evaluation proceeds, programs accumulate a context of facts which are used

to typecheck known ciphertexts. We assume fact contexts are part of a host’s local state and are not

shared between different principals. (Groups of colluding attackers can be modeled as a single

principal that obeys this rule.) True casts are also permitted when the typechecker can statically

access an appropriate decryption key. Thus the above cast can be typechecked on Bob’s machine,

where it originated, as well as on Alice’s machine, where it will be used. Evaluating a return yields

a ciphertext annotated with a true cast.

True casts alone are insufficient for writing some protocols. Consider two programs, running

with Bob and Charlie’s authority respectively, jointly constructing an int for Alice using the return

and bind operators. In particular, Charlie’s program may need to bind a ciphertext previously

created by Bob. Because facts are not shared between different principals, and because Charlie

cannot access Alice’s private key, there’s no way Charlie will be able to typecheck the ciphertext

annotated with a true cast. Instead, Charlie’s program will need to work with a justified cast,

cast c to (int for Alice) blaming p : int for Alice

where p is a proof that ciphertext c has the correct form. Concretely,

p : (Bob says (c isa (int for Alice))).

Proposition constructor isa is a built-in constant with the job of witnessing these justified casts.

In combination, true and justified casts allows us to reason about ciphertexts, even those which

cannot be decrypted in a particular context. Subject reduction ensures that (for suitable fact con-

texts) decryption never fails for true-cast ciphertexts. Furthermore, while justified casts may lead to

decryption failures, such failures are accompanied by signed isa proofs that can be used to assign

blame.

Casting allows the programmer to assign a precise type to ciphertext. Conversely, asbits strips

a ciphertext’s annotation, resulting in a term with the following less informative type.

asbits (cast(E(Alice, 42, 0x2b63)) to (int for Alice)) : bits

CHAPTER 4. CONFIDENTIALITY IN AURA 82

1 (∗ This interface provides a basic API for a network library ∗)
2 Signature NetIO
3

4 assert OkToSend: prin→ Type→ Prop;
5

6 val attempt acquire weak credential:
7 (a: prin) → (T: Type)→ Maybe (pf (Kernel says OkToSend a T))
8

9 val attempt acquire strong credential :
10 (b: prin) →
11 Maybe ((a: prin) → (T: Type)→ pf (b says OkToSend a T)→
12 pf (Kernel says OkToSend a T))
13

14 val recv: (T: Type)→ T
15

16 val send: (T: Type)→ (a: prin) → T→
17 pf (Kernel says (OkToSend a T))→ Unit
18

19 End Signature

Figure 4.1: A simple communications library

Type bits classifies naked ciphertexts, and the above term reduces to

E(Alice, 42, 0x2b63) : bits .

4.3 Examples

This section shows sample programs that provide intuition for Auraconf. For purposes of illustration,

the samples use some features—particularly modules and some trivial type inference—that are not

part of the formal language definition.

Figure 4.1 defines a simple networking interface. The functions send and recv are intended to

send and receive data values. In addition to data to transmit, send consumes a proof that the system

(that is the principal Kernel) permits the operation. Concretely

send int Bob 42 p

sends the data value 42 to principal Bob when p is an appropriate access-control proof. Note that

both the confidential and non-confidential values may be transmitted over any channel. (This treat-

ment assumes that the system is configured a priori so that each principal is associated with a unique

server address ready to accept messages—a possible but not canonical situation.)

CHAPTER 4. CONFIDENTIALITY IN AURA 83

Assertion OkToSend and functions attempt acquire strong credential and attempt acquire weak

credential define an access control policy for the send function. This first function allows client b

to request a proof object permitting arbitrary network writes. The second requests credentials on

a transmission-by-transmission basis. The send and receive functions take and return fewer proofs

than suggested by Chapter 2’s methodology. These streamlined functions may be defined in terms

of earlier, fully-annotated versions, passing baked-in constant proofs as needed.

Suppose that a program running with Alice’s authority needs to build a secret message that will

eventually be read by Bob and perhaps for-bound by Charlie and Daniel.

let msg at ⊥=

let x at Bob = return (int for Bob) 312 in

let y at ⊥= asbits x in

cast y to (int for Bob)

blaming (say Alice (y isa (int for Bob)))

in

send (int for Bob) Charlie msg (get cred y)

The program takes the annotated ciphertext created for Bob—which will have the form of a true

cast—strips its annotation with asbits, and creates a justified cast suitable for sending. The true

cast is stored in x, whose at Bob annotation reflects that the true cast may only be typed in certain

contexts—those where Bob’s key or relevant facts are available. In contrast, y and msg may be

interpreted anywhere; this is reflected by the at ⊥ annotations. Finally, get cred is assumed to return

an appropriate access-control proof. Even this simple program relies on the harmonious interaction

of several language features: both casts, asbits, return, isa, and let at.

Figure 4.2 illustrates a larger program that uses the NetIO interface to implement a storage

server. Clients use the NetworkedStore program to store encrypted objects. Each principal has a

storage area with a set of slots indexed by natural numbers. A request of form r put Alice 3 v

instructs the server to store value v (of type String for Alice) in principal Alice’s third storage cell.

This value can be retrieved with request r get Alice 3. The server allows anyone to store or retrieve

data from any storage location, even those belonging to another principal. Confidentiality of slot

contents is maintained by the use of for-types and encryption. It is also possible to add a layer of

proof-based access-control to limit access to ciphertexts.

CHAPTER 4. CONFIDENTIALITY IN AURA 84

1 Module NetworkedStore Of Server
2

3 (∗ Use the a module which implements the NetIO interface. ∗)
4 open NetIOImp: NetIO;
5

6 (∗ The type of network requests to this server ∗)
7 data request: Type {
8 | r put : (a: prin) → (id : Nat) → String for a → request
9 | r get : prin → Nat→ request

10 }
11

12 (∗ The Map datatype stores for each principal a natural-number-indexed
13 set of confidential Strings. ∗)
14 data Map: Type {
15 | m intro : ((a: prin) → Nat→ Maybe (String for a)) → Map
16 }
17

18 let empty map: Map = m intro (λa: prin. λid: Nat. nothing (String for a)) in
19

20 let lookup: Map→ (a: prin) → Nat→ Maybe (String for a) =
21 λm: Map. λa: prin. λn: Nat.
22 match m with Maybe (String for a) {
23 | m intro → λf : (a: prin) → Nat→ Maybe (String for a). f a n
24 }
25 in
26

27 let insert : Map→ (a: prin) → Nat→ (String for a) → Map =
28 λm: Map. λa: prin. λid: Nat. λmsg: String for a.
29 m intro (λa′: prin. λ id ′ : Nat.
30 if a = a′

31 then
32 match eqnat id id′ with Maybe (String for a′) {
33 | true → 〈 just (String for a) msg: Maybe(String for a′)〉
34 | false → lookup m a′ id ′

35 }
36 else lookup m a′ id ′)
37 in
38

39

40 (∗ A helper function that lets that lets us compose functions of
41 type T→ S with the for monad. Bind alone only works with
42 T→ (S for a) functions. ∗)
43 let for lift : (T: Type)→ (S: Type)→ (a: prin) →
44 (T→ S) → T for a → S for a =
45 λT: Type. λS: Type. λa: prin. λf : T→ S.
46 λx: T for a.
47 bind y = x
48 in (return (f y) as (S for a)) as (S for a)
49 in

Figure 4.2: Code for confidential storage server

CHAPTER 4. CONFIDENTIALITY IN AURA 85

51 (∗ rewrite cred uses say and a proof signed by the kernel to produce a new,
52 more useful proof access-control proof. ∗)
53 let rewrite cred :
54 ((a: prin) → (T: Type)→ pf (self says OkToSend a T)→
55 pf (Kernel says OkToSend a T)) −{self}→
56 ((a: prin) → (T: Type)→ pf (Kernel says OkToSend a T)) =
57 λ{self} p1: ((a: prin) → (T: Type)→ pf (self says OkToSend a T)→
58 pf (Kernel says OkToSend a T)).
59 let p2: pf (self says ((b: prin) → (S: Type)→ OkToSend b S)) =
60 say ((b: prin) → (S: Type)→ OkToSend b S) in
61 let p3: (b: prin) → (S: Type)→ pf (self says (OkToSend b S)) =
62 λb:prin. λS:Type.
63 bind p2
64 (λp2′:self says ((b:prin) → (S:Type)→ OkToSend b S).
65 return (bind p2′

66 (λp2′′ : (b:prin) → (S:Type)→ OkToSend b S.
67 return self (p2′ ′ b S))))
68 in
69 λc: prin. λU: Type. p1 c U (p3 c U)
70 in
71

72 (∗ attempt acquire credential gets a proof allowing access to the send
73 function and rewrites it into a useful form using rewrite cred . ∗)
74 let attempt acquire credential :
75 Unit −{self}→ Maybe ((a: prin)→ (T: Type)→ pf (Kernel says OkToSend a T)) =
76 λ{self} x: Unit .
77 match (attempt acquire strong credential self) with
78 Maybe ((a: prin) → (T: Type)→ pf (Kernel says OkToSend a T)) {
79 | just → λ{self} p: (a: prin) → (T: Type)→
80 pf (self says OkToSend a T)→
81 pf (Kernel says OkToSend a T).
82 just ((a: prin) → (T: Type)→
83 pf (Kernel says OkToSend a T))
84 (rewrite cred p)
85 | nothing → nothing ((a: prin) → (T: Type)→
86 pf (Kernel says OkToSend a T))
87

88 }
89 in
90

91 (∗ The main server loop. This reads input requests from the network and
92 ∗ stores or retrieves confidential values as needed. ∗)
93 let server loop: ((a: prin) → (T: Type)→ pf (Kernel says OkToSend a T))→
94 Map→ Unit =
95 λp: (a: prin) → (T: Type)→ pf (Kernel says OkToSend a T).
96 fun rec: Map→ Unit =
97 λm: Map. rec
98 match recv request with Map {
99 | r put → λa: prin. λid: Nat. λmsg: String for a. insert m a id msg

Code for confidential storage server (cont.)

CHAPTER 4. CONFIDENTIALITY IN AURA 86

100 | r get → λa: prin. λid: Nat.
101 let u: Unit =
102 match lookup m a id with Unit {
103 | just → λmsg: String for a.
104 send (String for a) a
105 (for lift String String a time stamp msg)
106

107 (p a (String for a))
108 | nothing → send (String for a) a
109 (String a ”not found”)
110 (p a (String for a))
111 }
112 in m
113 }
114 in rec end
115 in
116

117 (∗ This code starts the server loop after acquiring necessary credentials.
118 If such credentials are not available , it fails . ∗)
119 match attempt acquire credential unit with Unit {
120 | just → λp: ((a: prin) → (T: Type)→ pf (Kernel says OkToSend a T)).
121 server loop p empty map
122 | nothing → unit
123 }
124

125 End Module

Code for confidential storage server (cont.)

The NetworkedStore module is annotated with Of Server, indicating that it defines code that

will be typechecked and run on behalf of principal Server. In the terminology of Section 4.4, the

module’s top-level terms must be typechecked with statically available key, soft decryption limit,

and effect label all equal to singleton world Server. Furthermore, the code must be run with authority

Server.

At the heart of this example is the server loop function. This reads incoming requests from

the network and adds values to, or finds values in, the store. In the case of an r get request, the

loop adds a time stamp to the retrieved value (Line 106). Note that whether or not returned values

are timestamped does not affect the type of the resulting object; in general the ability to compose

computations with ciphertexts allows the server’s behavior to change without breaking existing

interfaces. This composition is made possible by function for lift which is defined using bind

(Lines 43–48).

CHAPTER 4. CONFIDENTIALITY IN AURA 87

As with Section 3.5’s music server, the storage server must acquire access-control proofs and

rewrite them into useful forms. Function attempt acquire credential (Lines 74–89) attempts to get

a proof, which permits liberal use of send, from the network module’s attempt acquire strong

credential function. Success yields a proof with the form of a delegation:

(a: prin) → (T: Type)→ pf (Server says OkToSend a T)→ pf (Kernel says OkToSend a T).

This is rewritten to a simpler form using rewrite cred (Lines 53–53). Function rewrite cred uses say

to create a fresh (Server says ...) proof and compose it with the delegation above. Evaluating say

requires Server’s private key, and this fact is recorded as a latent effect in rewrite cred’s type. The

following section discusses effects annotations is more detail.

4.4 Language Definition

This section describes the definition of Auraconf and its metatheory.

In type-safe languages such as Auraconf, a conservative algorithm identifies and rejects programs

that might go wrong—that is crash—at runtime. There are many ways that a program can crash,

such as by accessing a memory location out of scope or jumping to an invalid instruction sequence.

Auraconf’s type system, like Aura’s or ML’s, rules out these particular errors. However, an Auraconf

program could potentially go wrong in several other ways, and the type system must address the

following two challenges just to ensure soundness.

Challenge 1 Ensure decryption failures—in which a ciphertext cannot be decrypted to a well-typed

plaintext—only occur where a proof can be used to assign blame. Failures without such

proofs constitute undefined behavior.

Challenge 2 Ensure that running programs only (attempt to) use private keys that are actually avail-

able at runtime. Programs that require unavailable keys for decryption or signing are stuck.

We address the first challenge by constraining the canonical forms of for types. Enforcing these

constraints requires types and terms to have (loosely) consistent meanings to typecheckers with

different capabilities, i.e. different access to private keys. Auraconf’s type system accomplishes this

using ideas based on modal type systems for distributed computing (Jia and Walker, 2004; Murphy

et al., 2004; Murphy, 2008).

CHAPTER 4. CONFIDENTIALITY IN AURA 88

Worlds
W,V,U ::= ⊥ Bottom world (no keys)

| t Singleton worlds
| > Top world (all keys)

Terms
t ::= . . . (Standard Aura syntax)
| (x : t)→{W} t Implication, quantification, arrow
| λ{W}x : t. t Abstraction
| a forP Type of encrypted data
| returnf e as t Private computation
| bindf x = e1 in e2 as t Composition of private computations
| runf e Extract private data
| cast e to t True case
| cast e to t blaming p Justified cast
| say aP Saying
| E(a, e, n) Ciphertext
| fail p Decryption-failed exception

Figure 4.3: Auraconf Syntax

We address the second challenge by statically tracking the use of say and run, the only operators

that use private keys, and ensuring that required keys will be accessible at runtime. To do so,

we blend ideas from modal type systems with those from type-and-effect analysis (Lucassen and

Gifford, 1988; Talpin and Jouvelot, 1992).

Syntax

Auraconf adds to and modifies Aura’s syntax. These changes are summarized in Figure 4.3, and in-

clude the new operators introduced in Section 4.2. To enable the type-and-effect analysis described

above, abstractions and arrows are now labeled with worlds that summarize latent uses of private

keys.

Syntactically, the set of worlds is the set of terms augmented with distinguished top and bottom

elements. Auraconf’s static semantics identify only some worlds as well formed: namely principal

constants, variables of type prin, >, and ⊥. We define a partial order on worlds,

⊥ vW W vW W v >

CHAPTER 4. CONFIDENTIALITY IN AURA 89

and can visualize the lattice of well-formed worlds as follows.

>
v

oooooooooooooo

��
��

��
�

??
??

??
??

QQQQQQQQQQQQQQ

A

OOOOOOOOOOOOOO B · · ·

??
??

??
? x

��
��

��
��

y · · ·

mmmmmmmmmmmmmm

⊥
Intuitively W v U when U describes more private keys than W . World > represents the set of

all private keys. Generalizing worlds to arbitrary principal sets would work formally, but is less

appealing from a cryptographic perspective.

Unlike in Aura, the say operator is now annotated with a principal, so that

say Alice P : Alice says P

This allows removal of the self constant and makes for a consistent treatment of principals through-

out Auraconf.

The special term fail p represents fatal exceptions caused by decryption failures. Argument p

represents a proof to blame for the exception.

Dynamic semantics

The dynamic semantics for Auraconf makes precise the notion of a program’s authority, realistically

models the state necessary to perform (pseudo-)randomized cryptography, and enables reasoning

about dynamically created ciphertexts.

The evaluation judgment is written

Σ;F0;W ` {|e, n|} 7→ {|e′, n′|} learning F .

This says that an expression e running withW ’s authority—with the private keys described by world

W—steps to e′. Expression e may, as described below, dynamically invoke the type checker, so the

evaluation relation contains a signature Σ and fact context F0 for this purpose. Natural number n

represents the initial seed of a randomization vector for encryption; the step updates it to n′. Finally

F is a fact context, with zero or one elements, containing facts about freshly created ciphertexts.

In general Auraconf’s evaluation relation subsumes Aura’s. For intuition, when e 7→ e′ in Aura,

Σ;F0; self ` {|e, n|} 7→ {|e′, n|} learning ·

CHAPTER 4. CONFIDENTIALITY IN AURA 90

holds in Auraconf. Figure 4.4 lists the evaluation rules for new operators. (The square-bracket

notation in STEP-ASBITS defines a rule that works for both flavors of cast.)

Rules STEP-FORRET and STEP-FORBIND introduce new ciphertexts. In each case the current

randomization seed, n, is inserted into the ciphertext and the seed is incremented. Additionally a

fact describing the ciphertext is learned. While STEP-FORRET is simple, STEP-FORBIND is more

complicated. The latter builds an expression using let at that can be run by the destination machine

and that performs necessary decryptions.

Rule STEP-FORRUN-OK, STEP-FORRUN-ILLTYPED, and STEP-FORRUN-JUNK attempt to

decrypt and typecheck an annotated ciphertext, signaling an error as needed.

Figure 4.4 elides several congruence rules. They are all similar to STEP-APP-CONGL, which

copies its premise’s new facts and randomization seed.

Finally, we assume newly generated facts are recorded for future typechecking. It is tempting

omit fact generation and collection from an implementation, and a type-erasing compiler could do

so while retaining a weakened type soundness property. (Preservation would not hold). Such an

implementation would be unable to recheck ciphertexts it had created, sent to a third-party, and

received again. Balancing improved execution speed against lost expressivity is perhaps best left to

users—an implementation could allow compilation both with and without recording new facts.

Static Semantics

Auraconf’s static semantics is based on Aura’s, but with several substantial changes. Auraconf type-

checks programs using the following judgments.

Well-formed signature Σ ` �

Well-formed typing environment Σ;F ;W | ` E

Well-formed world (V) Σ;F ;W |E;V ` �

Well-formed worlds (V and U) Σ;F ;W |E;V ;U ` �

Well-typed term Σ;F ;W |E;V ;U ` t : s

Well-typed match branches Σ;F ;W |E;V ;U ; s; args ` branches : t

The typing relation (well-typed term) has grown substantially. How can we read this judgment?

CHAPTER 4. CONFIDENTIALITY IN AURA 91

Σ;F0;W ` {|e1, n1|} 7→ {|e2, n2|} learning F

STEP-LETAT
val v

Σ;F0;W ` {|let x atV = v in e, n|} 7→ {|{v/x}e, n|} learning ·

STEP-FORRET

Σ;F0;W ` {|returnf e as (t for a), n|} 7→ {|cast E(a, e, n) to (t for a), n+ 1|}
learning E(a, e, n) : t for a

STEP-FORBIND
val v

Σ;F0;W ` {|bindf x = v in e as t for a, n|}
7→ {|cast E(a, let x at a = (runf v) in (runf e), n) to (t for a), n+ 1|}
learning E(a, let x at a = (runf v) in (runf e), n) : t for a

STEP-ASBITS
val(cast E(a, e,m) to t [blaming p])

Σ;F0;W ` {|asbits cast E(a, e,m) to t [blaming p], n|} 7→ {|E(a, e,m), n|} learning ·

STEP-FORRUN-OK
val(cast E(a, e,m) to t [blaming p]) Σ;F0;W | ·; a; a ` e : t a vW
Σ;F0;W ` {|runf (cast E(a, e,m) to t [blaming p]), n|} 7→ {|e, n|} learning ·

STEP-FORRUN-ILLTYPED
val(cast E(a, e,m) to t blaming p) Σ;F0;W | ·; a; a 6` e : t a vW

Σ;F0;W ` {|runf (cast E(a, e,m) to t blaming p), n|} 7→ {|fail p, n|} learning ·

STEP-FORRUN-JUNK
val(cast E(a, e,m) to (t for b) blaming p) b vW a 6= b

Σ;F0;W ` {|runf (cast E(a, e,m) to (t for b) blaming p), n|} 7→ {|fail p, n|} learning ·

STEP-APP-CONGL
Σ;F0;W ` {|e1, n|} 7→ {|e′1, n′|} learning F

Σ;F0;W ` {|e1 e2, n|} 7→ {|e′1 e2, n
′|} learning F

Figure 4.4: Selected Auraconf evaluation rules

CHAPTER 4. CONFIDENTIALITY IN AURA 92

Facts, worlds, and the typing judgment

Meta-variable F is a fact context as described in Section 4.2. It’s formally defined by the grammar

Fact Contexts

F ::= · | F , E(a, e, n) : t.

Intuitively, typechecking uses the fact context to associate typing information with newly created

ciphertexts. This is important, because ciphertexts are not generally amenable to inspection.

World W , the statically available key, describes which key is available to the typechecker at

compile time. As in the dynamic semantics, W represents the key that is currently on hand, ready

for use. We will only consider singleton and bottom worlds here; typechecking a program withW =

> corresponds to having all private keys available at once—a well-defined but unlikely scenario.

Together the fact context and statically available key determine a hard limit on the typechecker’s

ability to reason about ciphertext.

World V , the soft decryption limit, is a formal upper limit bounding which decryption keys or

facts should be used when typechecking a particular term. Intuitively the keys used to typecheck a

term are W u V . The soft decryption limit is necessary to deal with mobile code. Consider what

happens when Alice creates a string for Bob. She is building an object containing a subterm, say s,

that Bob must decrypt and typecheck as string . However, Bob must check s without the benefit of

Alice’s private key and using a different fact context. (Because smight be a computation containing

nested binds, Bob’s task is non-trivial.) To account for this, Alice’s typing derivation uses V = Bob

when checking s, thus ensuring Bob can understand s without Alice’s private information or state.

Typechecking a top-level program takes place with V = >, indicating no restriction on key or fact

use.

The interaction between fact context, statically available key and soft decryption limit can

be better understood by examining simplified versions of typing rules WF-TM-FORRET, WF-TM-

CASTDEC, and WF-TM-CASTFACT. WF-TM-FORRET has form

;F ;W | ; a; ` e : t a v V · · ·

;F ;W | ;V ; ` returnf e as (t for a) : t for a .

This rule is packaging expression e for consumption by principal a. The first premise checks that e

is classified by t under soft decryption limit a—this will ensure that the derivation will work even

CHAPTER 4. CONFIDENTIALITY IN AURA 93

when a does not have access to the facts in F or a private key indicated by W . Having checked e

under this restriction it’s ok to conclude that returnf e as (t for a) has type t for a in a less restricted

context, where soft decryption limit V contains a’s key (i.e., a v V).

Observe that elements right of the vertical bar differed between WF-TM-FORRET’s premise and

conclusion, but symbols on the bar’s left stayed the same. In general, symbols left of the bar are

parameters of the relation and are held constant throughout an entire derivation tree. Symbols right

of the bar are indices and may change within a derivation.

All typing rules in this section are simplified. Unabridged versions of these and other key typing

rules are written in standard notation in Figure 4.5. Appendix C gives all Auraconf definitions in Coq

notation.

The statically available key is used directly in rule WF-TM-CASTDEC.

b vW b v V ;F ;W | ;V ; ` e : t

;F ;W | ;V ; ` cast E(b, e, n) to (t for b) : t for b

Here an annotated ciphertext encrypted for b is type checked by decrypting and recursively type-

checking its contents. Premise b v W shows the statically available key is sufficient to perform

the decryption. WF-TM-CASTDEC may only be applied when current soft decryption limit V is

greater than b. This last point is important. Together with setting the soft decryption limit to a in

WF-TM-FORRET, it ensures that impossible decryptions are not required to later typecheck data

packaged by correct programs.

Finally, WF-TM-CASTFACT has form

(E(a, e, n) : t for b) ∈ F b v V

;F ;W | ;V ; ` cast E(a, e, n) to (t for b) : t for b .

This says that an annotated piece of ciphertext can have type t for b when a fact indicates the type.

As above, soft decryption limit V must be greater than b.

Auraconf typing contexts track a soft decryption limit for each bound variable. This is necessary

to ensure that the substitution property—replacing variables with appropriate values maintains a

term’s type—can be stated precisely (Lemma 10). Formally, Auraconf environments are defined by

CHAPTER 4. CONFIDENTIALITY IN AURA 94

Σ;F ;W |E;V ;U ` e : t

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` Type : Kind

WF-TM-TYPE

Σ;F ;W |E;⊥;⊥ ` u1 : k1 Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U0 ` � Σ;F ;W |E, x : u1 at⊥;⊥;⊥ ` u2 : k2

k2 ∈ {Type,Prop,Kind} k1 ∈ {Type,Prop} ∨ u1 ∈ {Type,Prop}
Σ;F ;W |E;V ;U ` (x :u1)→{U0} u2 : k2

WF-TM-ARR

Σ;F ;W |E;V ;U ` � (x : t atV0) ∈ E V0 v V
Σ;F ;W |E;V ;U ` x : t

WF-TM-VAR

Σ;F ;W |E;⊥;⊥ ` u1 : k1

Σ;F ;W |E;V ;U0 ` � Σ;F ;W |E, x : u1 at⊥;V ;U0 ` f : u2

Σ;F ;W |E;V ;U ` (x :u1)→{U0} u2 : k
k ∈ {Type,Prop} k1 ∈ {Type,Prop} ∨ u1 ∈ {Type,Prop}

Σ;F ;W |E;V ;U ` λ{U0}x :u1. f : (x :u1)→{U0} u2
WF-TM-ABS

Σ;F ;W |E;V ;U ` e1 : (x : t2)→{U0} u Σ;F ;W |E;⊥;U2 ` e2 : t2
Σ;F ;W |E;V ;U ` t2 : k2 Σ;F ;W |E;V ;U ` {e2/x}u : ku U0 v U(

(val e2 ∧ U2 = ⊥) ∨ (ku = Type ∧ x /∈ fv(u) ∧ U2 = U)
∨ (k2 ∈ {Prop,Kind} ∧ x /∈ fv(u) ∧ U2 = U)

)
Σ;F ;W |E;V ;U ` e1 e2 : {x/e2}u

WF-TM-APP

Σ;F ;W |E;V1;U ` e1 : t1
Σ;F ;W |E;V ;V1 ` � Σ;F ;W |E;⊥;⊥ ` t1 : k

Σ;F ;W |E, x : t1 atV1;V ;U ` e2 : t k ∈ {Type,Prop} V1 v V
Σ;F ;W |E;V ;U ` let x atV1 = e1 in e2 : t

WF-TM-LETAT

Σ;F ;W |E; b;U ` e1 : t1 for b Σ;F ;W |E; b ` �
Σ;F ;W |E;⊥;⊥ ` t1 : Type Σ;F ;W |E;⊥;⊥ ` t for b : Type

Σ;F ;W |E;V ` � Σ;F ;W |E, x : t1 at b; b; b ` e2 : t for b b v V
Σ;F ;W |E;V ;U ` bindf x = e1 in e2 as (t for b) : t for b

WF-TM-FORBIND

val a Σ;F ;W | ·;⊥;⊥ ` a : prin
Σ;F ;W | ·;⊥;⊥ ` P : Prop Σ;F ;W |E;V ;U ` P : Prop

Σ;F ;W |E;V ;U ` sign(a, P) : a saysP
WF-TM-SIGN

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` prin : Type

WF-TM-PRIN
Σ;F ;W |E;V ;U ` �

Σ;F ;W |E;V ;U ` bits : Type
WF-TM-BITS

Figure 4.5: Selected typing rules for Auraconf

CHAPTER 4. CONFIDENTIALITY IN AURA 95

Σ;F ;W |E;⊥;⊥ ` P : Prop
Σ;F ;W |E;V ;U ` � Σ;F ;W |E;⊥;⊥ ` a : prin a v U val a

Σ;F ;W |E;V ;U ` say aP : pf (a saysP)
WF-TM-SAY

Σ;F ;W |E;V ;⊥ ` t : Type
Σ;F ;W |E;V ;⊥ ` a : prin Σ;F ;W |E;V ;U ` � val t val a

Σ;F ;W |E;V ;U ` t for a : Type
WF-TM-FOR

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` E(t1, t2, n) : bits

WF-TM-ENC

Σ;F ;W |E;V ;U ` � E |∼ e : t for a

Σ;F ;W |E;V ;U ` asbits e : bits
WF-TM-ASBITS

Σ;F ;W |E; a; a ` e : t
Σ;F ;W |E;V ;U ` � Σ;F ;W |E;⊥;⊥ ` t for a : Type a v V

Σ;F ;W |E;V ;U ` returnf e as (t for a) : t for a
WF-TM-FORRET

Σ;F ;W |E;V ;U ` t for b : Type Σ;F ;W |E;V ;U ` e : bits val e

Σ;F ;W |E;V ;U ` e isa t for b : Prop
WF-TM-ISA

Σ;F ;W |E;V ;U ` e : t for a a v V a v U
Σ;F ;W |E;V ;U ` runf e : t

WF-TM-FORRUN

Σ;F ;W |E;V ;U ` e : t1
Σ;F ;W |E;V ;U ` t2 : Type converts E t1 t2 at V

Σ;F ;W |E;V ;U ` 〈e : t2〉 : t2
WF-TM-CASTCONV

(E(a, e, n) : t for b) ∈ F
Σ;F ;W |E;⊥;⊥ ` t for b : Type Σ;F ;W |E;V ;U ` � b v V

Σ;F ;W |E;V ;U ` cast E(a, e, n) to (t for b) : t for b
WF-TM-CASTFACT

Σ;F ;W | ·; b; b ` e : t Σ;F ;W | ·;⊥;⊥ ` t for b : Type
Σ;F ;W |E;V ;U ` � Σ;F ;W | ·; b ` � b v V b vW

Σ;F ;W |E;V ;U ` cast E(b, e, n) to (t for b) : t for b
WF-TM-CASTDEC

Σ;F ;W |E;V ;U ` p : pf (a says (e isa t for b))
Σ;F ;W |E;V ;U ` e : bits Σ;F ;W |E;⊥;⊥ ` t for b : Type val e

Σ;F ;W |E;V ;U ` cast e to (t for b) blaming p : t for b
WF-TM-CASTJUST

Selected typing rules for Auraconf (cont.)

CHAPTER 4. CONFIDENTIALITY IN AURA 96

the following grammar.

Environments

E ::= · | E, x : t at W | E, x∼(t1 = t2):u at W

Equalities in the environment are also annotated with worlds. At present this mainly provides

uniformity but also allows for language extensions that consider local equalities.

The typing relation’s final new metavariable, U , is the judgment’s effect label. This summarizes

the keys that are necessary to successfully execute a piece of code. Effect label U = ⊥ indicates

that an expression is pure—that it can execute with no private keys. For instance, typing say looks

like

Σ;F ;W |E;⊥;⊥ ` P : Prop Σ;F ;W |E;⊥;⊥ ` a : prin a v U · · ·

Σ;F ;W |E;V ;U ` say aP : pf a saysP .

Operator say needs to sign P with a’s private key, and premise a v U records that fact. Additionally

Auraconf typing maintains the invariant that type-level terms, such as a saysP , are pure. Checking

the rule’s premises with bottom effect label helps to enforce this condition.

It’s important to understand the distinction between a judgment’s soft decryption limit and effect

label. The soft decryption limit controls access to a private key used statically for type checking. In

contrast, the effect label describes keys used dynamically for decryption and signing. It’s appealing

to attempt to conflate these, but my attempts to do so were imprecise, inelegant, or plain incorrect.

The difficulties arise from several considerations. Consider the application f(λx.e) where f does

not apply λx.e. We want the type system to require a sufficient soft decryption limit to analyze e’s

embedded ciphertexts. In contrast, e’s latent effects will never be forced we would like the applica-

tion to check with bottom effect label. It’s unclear how a single annotation can accommodate both

views; using a separate soft decryption limit and effect label resolves this tension. More generally,

the type system treats soft decryption limits like Jia and Walker’s (2004) at modality, while the

effect labels are inspired by standard type-and-effect systems. Technically, these analyses are quite

different and it’s unsurprising that to reap the benefits of both requires incorporating mechanisms

inspired by each.

CHAPTER 4. CONFIDENTIALITY IN AURA 97

Auxiliary judgments

Auraconf’s well-formed signature judgment is a translation of Aura’s, accounting for the new arrow

syntax and the typing judgment’s new shape. All types in a signature are required to typecheck in

the empty fact context and with each of the statically available key, soft decryption limit, and effect

label as bottom

The well-typed match branches judgment is updated to deal with effects in the natural way.

A list of branches checks under effect label U when each constituent branch also checks under U .

Note that, by (a generalization of) Lemma 8, this is equivalent to letting branches check with various

effect labels, each less than U .

The formal definitions of the foregoing relations are elided. The Coq code mechanizing the

definitions is given in Appendix C. Additionally, these rules may be readily reconstructed from the

corresponding definitions for Aura, written in standard notation in Appendix B.

Definitions of environment, world, and worlds well-formedness are more novel and are detailed

in Figure 4.6.

The well-formed environment relation checks that all world annotations are themselves well-

formed. Additionally, type-level variables (i.e., those classified by Type or Prop) may only be

annotated with world ⊥. The well-formed environment relation also ensures that the statically

available key is a simple world—either a principal constant or ⊥. Intuitively this ensures statically

available keys are actual keys, not just variables.

The well-formed world relation always accepts > and ⊥. If the world wraps a term, it must be

value of type prin. The well-formed worlds relation checks that two worlds, typically representing

a soft decryption limit and effect label, are well-formed.

New and modified language constructs

Moving from Aura to Auraconf requires broad changes to the static semantics. Here we will examine

the most interesting aspects of the new static semantics, using simplified typing rules. Again, full

versions of these rules are printed in Figure 4.5.

CHAPTER 4. CONFIDENTIALITY IN AURA 98

simple W

simple ⊥
SW-BOT

a ∈ {A,B,C . . .}
simple a

SW-PRINCONST

Σ;F ;W | ` E

simple W
Σ;F ;W | ` ·

WF-ENV-NIL

Σ;F ;W | ` E Σ;F ;W |E;V ` � Σ;F ;W |E;⊥;⊥ ` t : k
x fresh (k ∈ {Type,Prop}) ∨ (t ∈ {Type,Prop} ∧ V = ⊥)

Σ;F ;W | ` E, x : t atV
WF-ENV-CONSVAR

Σ;F ;W | ` E Σ;F ;W |E;⊥;U ` e1 : t
Σ;F ;W |E;⊥;U ` e2 : t atomic Σ t x fresh

val e1 val e2 Σ;F ;W |E;⊥;⊥ ` t : Type Σ;F ;W |E;V ` �
Σ;F ;W | ` E, x∼(e1 = e2) : t atV

WF-ENV-CONSEQ

Σ;F ;W |E;V ` �

Σ;F ;W | ` E

Σ;F ;W |E;⊥ ` �
WF-WORLD-BOT

Σ;F ;W |E;⊥;⊥ ` a : prin val a

Σ;F ;W |E; a ` �
WF-WORLD-PRIN

Σ;F ;W | ` E

Σ;F ;W |E;> ` �
WF-WORLD-TOP

Σ;F ;W |E;V ;U ` �

Σ;F ;W |E;V ` � Σ;F ;W |E;U ` �
Σ;F ;W |E;V ;U ` �

WF-WORLDS

Figure 4.6: Major auxiliary judgments for Auraconf’s static semantics

CHAPTER 4. CONFIDENTIALITY IN AURA 99

Variables and binding with soft decryption limits

Application, abstraction, and variable expressions are changed when moving from Aura to Auraconf.

This is necessary to work with soft decryption limits and effect labels.

The variable rule is

Σ;F ;W |E;V ;U ` � (x : t atV0) ∈ E V0 v V

Σ;F ;W |E;V ;U ` x : t .

From an Auraconf perspective the important part is the premise V0 v V . Elsewhere, we ensure that

whenever some value v is substituted for x that value is well typed with soft decryption limit V0.

Lemmas 8 and 9 ensure that v will typecheck under x’s soft decryption limit and effect label, V and

U .

A function’s type is annotated with its body’s suspended effects. The typing rule looks like

Σ;F ;W |E;V ;U0 ` � Σ;F ;W |E, x : u1 at⊥;V ;U0 ` f : u2 · · ·

Σ;F ;W |E;V ;U ` λ{U0}x :u1. f : (x :u1)→{U0} u2 .

The rule could be generalized by allowing latent effect label U0 to depend on x. This was omitted

in the interest of simplicity. Dependent effects can still be written; they must reference variables

quantified at a surrounding abstraction. To avoid annotating every abstraction with a soft decryption

limit, this rule binds x at bottom.

Abstractions are used at applications. The essence of application typing is as follows.

Σ;F ;W |E;V ;U ` e1 : (x : t2)→{U0} u Σ;F ;W |E;⊥;U2 ` e2 : t2

(val e2 ∧ U2 = ⊥) ∨ (x /∈ fv(u) ∧ U2 = U) U0 v U · · ·

Σ;F ;W |E;V ;U ` e1 e2 : {x/e2}u

Application ensures that argument e2 is typeable with bottom soft decryption limit; this matches

with abstraction typing. Because evaluating the abstraction may trigger latent effect U0, we require

U0 v U . When e2 is not a value—which implies e1’s type is not dependent—e2 may also have

have an effect label up to U .

So far we’ve only seen a way to introduce variables at⊥. The let at construct allows us to rea-

son about variables with different soft decryption limits. This construct’s typing rule is summarized

CHAPTER 4. CONFIDENTIALITY IN AURA 100

by

Σ;F ;W |E;V1;U ` e1 : t1 Σ;F ;W |E, x : t1 atV1;V ;U ` e2 : t V1 v V · · ·

Σ;F ;W |E;V ;U ` let x atV1 = e1 in e2 : t .

Here e1 is checked with soft decryption limit V1 and is bound to x in e2. In e2’s environment, x is

typed atV1. The restriction V1 v V is necessary to prevent let ats from raising the soft decryption

limit and allowing the unsafe use of facts or statically available keys. While let at could be defined

as a derived form, based on an enhanced version of abstraction, the independent construct simplifies

function definition and breaks the language into simple, orthogonal pieces.

The ciphertext and the for monad

The Auraconf type system always interprets unannotated ciphertexts as unintelligible blobs.

Σ;F ;W |E;V ;U ` �

Σ;F ;W |E;V ;U ` E(t1, t2, n) : bits

As discussed above, more precise typings maybe given to ciphertexts annotated with true casts or

justified casts.

The main operators for working with confidential values are return, run, and bind. The return

operator packages an expression as a confidential computation and is typed as follows.

Σ;F ;W |E; a; a ` e : t a v V · · ·

Σ;F ;W |E;V ;U ` returnf e as (t for a) : t for a .

Because e will eventually be run with a’s authority it is type checked with soft decryption limit and

effect label a. Typically W 6v a so setting the soft decryption limit to a prevents statically available

key W from being used when checking e—important because W will not be on hand when a’s

program needs to check e. Likewise effect label a rules out inappropriate occurrences of say or

runf . Typing for bindf works analogously; see rule WF-TM-FORBIND.

The runf operator decrypts and evaluates annotated ciphertexts. It’s typed by:

Σ;F ;W |E;V ;U ` e : t for a a v V a v U

Σ;F ;W |E;V ;U ` runf e : t

CHAPTER 4. CONFIDENTIALITY IN AURA 101

E |∼ e : t

(x : t atV) ∈ E
E |∼x : t

GE-TM-VAR
E |∼ E(a, e, n) : bits

GE-TM-ENC

val cast e to t for a [blaming p]
E |∼ e : bits ∀x ∈ vars(p) ∪ vars(t for a).∃tx, Vx.(x : tx atVx) ∈ E

E |∼ cast e to t for a [blaming p] : t for a
GE-TM-CAST

Figure 4.7: Approximate typing judgment used by WF-TM-ASBITS

Premise a v U forces effect label U to record that the runf uses a’s private key. Premise a v V

prevents problems with nested occurrences of runf . For example when a evaluates runf (runf e1)

to runf e2, term e2 might be contain true-casts for a. Hence V must be greater than a to ensure

preservation.

Finally, asbits transforms an annotated ciphertext with for type into bare a ciphertext with type

bits. This operator is typed as follows.

Σ;F ;W |E;V ;U ` � E |∼ e : t for a

Σ;F ;W |E;V ;U ` asbits e : bits

The first premise maintains the invariant that the typing judgment’s subjects are well-formed. The

second premise uses a liberal over-approximation of typing to check that e is almost a t for a. The

approximation, formalized in Figure 4.7, types variables and bare encryptions as usual, but always

trusts the annotation on true or justified casts. It’s sound to use the approximation here because

asbits dynamically discards casts, returning the underlying ciphertexts; asbits launders bad fors

into good bits. The typing rule is desirable because the typing of asbits e is independent of the

facts context and statically available key, a useful property for defining mobile code.

It appears sound to allow any term to have type bits. Type bits would function like type Dynamic

(Abadi et al., 1991). However, leaving this out of Auraconf provides two major benefits. First,

Auraconf’s type system is both syntax directed and assigns terms unique types—useful properties

that would be be lost. Second, using type Dynamic requires a general typecase mechanism, and

Auraconf has enough features already!

CHAPTER 4. CONFIDENTIALITY IN AURA 102

Basic metatheory and soundness

Auraconf satisfies two important properties: syntactic soundness and noninterference. Syntactic

soundness guarantees that all well-typed programs have a well-defined evaluation semantics. Non-

interference (Volpano et al., 1996; Askarov et al., 2008), states that a program’s outputs are not

affected (up to a natural equivalence induced by cryptography) by inputs intended to be secret.

Auraconf’s type system has several non-standard aspects; consequently, the technical statements and

proofs of these properties are novel.

Except as noted, all properties of Auraconf are formalized as constructive proofs in the Coq proof

assistant.

The following two properties are needed to prove soundness and, as discussed above, impact

the design of Auraconf’s type system.

Lemma 8 (Promotion). Suppose Σ;F ;W |E;V1;U1 ` e : t, and world inequalities U1 v

U2 and V1 v V2 hold. Furthermore, assume Σ ` � and Σ;F ;W |E;V2;U2 ` �. Then

Σ;F ;W |E;V2;U2 ` e : t.

Lemma 9 (Pure values). Suppose Σ ` � and Σ;F ;W |E;V ;U ` v : t. If val v then

Σ;F ;W |E;V ;⊥ ` v : t.

The substitution property, stated below, follows Jia and Walker (2003). Note that we require

that v’s statically available key matches the x’s at annotation.

Lemma 10 (Substitution). Assume Σ ` � and Σ;F ;W |E, z : u atV0;V ;U ` e : t. If val v and

Σ;F ;W |E;V0;U ` v : u, then Σ;F ;W |E; {v/z}V ; {v/z}U ` {v/z}e : {v/z}t.

Stating preservation and progress requires defining when a term has reached an exceptional

state. This is intended to occur only after a decryption failure, and identifies a proof to be used

when diagnosing the failure. We write e blames p when (fail p) is a subterm of e, not located under

a returnf or a bindf . In Coq this is defined as an inductive predicate over the syntax of terms. In

principle this could also be handled with an exception that programs could catch for error recovery.

The type system is designed so programs that have reached a blame-state are no longer typeable.

This property simplifies the statement of progress.

CHAPTER 4. CONFIDENTIALITY IN AURA 103

Lemma 11. If Σ;F0;W |E;V ;U ` e : t then there is no p such that e blames p.

Preservation states that if a well-typed term steps either the resulting term has the same type,

or else a decryption failed and the evaluator’s state identifies a proof for blame assignment. Here

notation F0 ++F denotes a fact context containing the elements of F0 and F .

Lemma 12 (Preservation). Assume Σ ` � and Σ;F0;W |E;V ;U ` e : t. Then Σ;F0;W `

{|e, n|} 7→ {|e′, n′|} learning F implies either Σ;F0 ++F ;W |E;V ;U ` e′ : t or there exists p such

that e′ blames p.

The above lemma misses an important aspect of evaluation. Running an Auraconf program

doesn’t simply reduce an input term to a result; it also generates a sequence of new facts. There are

terms that typecheck under bad fact contexts, but get stuck at evaluation. Thus we must ensure that

newly generated facts are, in the following sense, semantically valid.

Definition 13 (validΣF). We write validΣF when both the following hold. First, Σ ` �. Second,

for every E(a, e, n) : t for b in F it is the case that a = b and Σ; ·; b | ·; b; b ` e : t.

Intuitively this predicate holds when decrypting each ciphertext in a fact context would validate

the declared types. Certain bogus facts, say "hello" : int, aren’t harmful to soundness, and are

ignored. The empty fact context is trivially valid.

Importantly validΣF is not defined as a typing judgment because its truth, in general, may

only be ascertained with access to every principal’s private key. Such a property is useless when

implementing a typechecker. Thus it is better to consider validity as a semantic property existing

beside but distinct from Auraconf’s type system.

The following lemma shows facts generated during reduction are valid.

Lemma 14 (New Fact Validity). Assume Σ ` � and Σ;F0;W |E;V ;U ` e : t. Then validΣF0

and Σ;F0;W ` {|e, n|} 7→ {|e′, n′|} learning F implies validΣF .

We assume that, as shown for Aura in Chapter 3, type checking Auraconf is decidable. This

is a reasonable conjecture because Auraconf is syntax directed and designed with decidability in

mind. Transliterating the earlier proof would be tedious but should yield no deep difficulties or

insights. Decidability is of independent theoretic interest, but also matters because evaluating runf

CHAPTER 4. CONFIDENTIALITY IN AURA 104

W ` t1 ' t2

W ` x ' x
SIM-VAR

W ` t11 ' t12 W ` t21 ' t22

W ` (t11 t21) ' (t12 t22)
SIM-APP

a vW W ` e1 ' e2

W ` E(a, e1, n1) ' E(a, e2, n2)
SIM-DECRYPT

a 6vW b 6vW
W ` E(a, e1, n1) ' E(b, e2, n2)

SIM-OPAQUE

Figure 4.8: Selected rules from the definition of similar terms

dynamically invokes the type checker. Were the type system not decidable, runf could instead

conservatively approximate; otherwise the progress lemma would not hold.

Conjecture 15 (Decidability). If Σ ` � then it is decidable if Σ;F ;W |E;V ;U ` e : t.

The Auraconf statement of progress follows. Note that it describes the behavior of terms that are

well-typed using a valid fact context. Additionally, any simple world greater than U and V—that is

with the private keys specified by the soft decryption limit and effect label—has enough authority

to step a program without getting stuck.

Lemma 16 (Progress). Assume Conjecture 15 holds. Assume also that Σ ` �, validΣF0, and

Σ;F0;W0 |E;V ;U ` e : t. Now suppose W is a simple world where U v W and V v W . Then

either e is a value, or there exist e′, n′, and F where Σ;F0;W ` {|e, n|} 7→ {|e′, n′|} learning F .

Lemmas 12, 14, and 16 together imply Auraconf is sound.

Noninterference

Noninterference properties, which state that a program’s secret inputs do not influence its public

outputs, are a common way of defining security for programming languages (Volpano et al., 1996;

Vaughan and Zdancewic, 2007). Such properties are formalized by saying programs which differ

only in their secret components are similar and showing that similar terms reduce to similar values.

The following develops a noninterference property for Auraconf.

CHAPTER 4. CONFIDENTIALITY IN AURA 105

Auraconf similarity is defined relative to particular set of keys used to analyze ciphertexts. Fig-

ure 4.8 gives the key rules from the definition of similarity. Most often, two terms are related when

they are identical, as in SIM-VAR, or share a top-level constructor with similar subterms, as in SIM-

APP. The figure elides a tedious quantity of rules implementing this scheme. Similarity is more

interesting for ciphertexts. Rule SIM-DECRYPT finds two ciphertexts similar when they are en-

crypted with the same key, can be decrypted by W (captured by premise a vW), and have similar

payloads. This formalizes the idea that encrypting similar terms should yield similar results. Finally,

SIM-OPAQUE states two ciphertexts are similar when neither can be decrypted. This captures the

intuition that ciphertexts are black boxes, immune to analysis without a key. We implicitly assume

ciphertexts are (randomly) padded such that ciphertext length cannot be used at a side channel. A

faithful implementation will require care to properly handle Auraconf’s rich data structures.

The following lemma gives Auraconf’s noninterference property. It considers running two terms,

e1 and e2, that step without error under authority W . If the terms are similar at W (or any higher

worldW0), the resulting terms, e′1 and e′2, are similar as well. In particular, running a program twice

with two different confidential inputs yields outputs that only be distinguished with a sufficiently

privileged private key.

Lemma 17 (Noninterference). Assume Σ ` � and Σ;F1;W | ·;V ;U ` e1 : k1. Pick W0 and e2

where W0 ` e1 ' e2 and W vW0. If

• Σ;W ;F1 ` {|e1, n1|} 7→ {|e′1, n′1|} learning F ′1,

• Σ;W ;F2 ` {|e2, n2|} 7→ {|e′2, n′2|} learning F ′2,

• there is no p such that e′1 blames p, and

• there is no p such that e′2 blames p,

then W0 ` e′1 ' e′2.

CHAPTER 4. CONFIDENTIALITY IN AURA 106

4.5 Discussion

Information-flow and Aura

Information-flow analyses (Sabelfeld and Myers, 2003) inspired this chapter’s goal of augmenting

Aura to handle confidential data. However, while these techniques influenced and informed the

design of Auraconf, they cannot be directly applied.

In standard information-flow systems, programmers use labels to express confidentiality and

integrity constraints on data, and the language’s typing judgment is specialized to deal with these

labels (Volpano et al., 1996). Well-typed terms are correct by construction; they satisfy nonin-

terference. (However, increasingly expressive information-flow languages often satisfy variously

weakened versions of the property (Chong and Myers, 2006; Myers et al., 2006).) Most conven-

tional information-flow languages are limited by a focus on closed systems: the programmer must,

for example, manually encrypt confidential data leaving the program with an unsafe declassification

operator. Aura as described in Chapter 3 can encode this style of of information flow analysis (Jia

and Zdancewic, 2009).

In previous work with Steve Zdancewic (2007), I described an information-flow language,

SImp, suitable for programming in open systems. SImp resolves the mismatch between policy

specification and enforcement by connecting information flow labels directly with public key cryp-

tography. Policies and data may be combined into packages that use digital signatures and encryp-

tion to ensure only principals with appropriate keys may access data.

SImp policies are specified by annotating data values and heap locations with semantically rich

labels. Labels are lists of security sublabels with owner, confidentiality, and integrity components.

Sublabel o : r !w means owner o certifies that any principal in set r may read from the associated

location, and any principal in set w may write. Full labels allow (groups of) principals to read or

write when each sublabel is satisfied. This is a variant of Myers and Liskov’s (2000) decentralized

label model (DLM).

Although SImp’s design influenced Auraconf, its technical mechanisms could not be adopted

wholesale. Information-flow analysis with DLM labels, the basis for SImp, provides a very different

model of declarative information security than Aura. In particular Aura’s says monad decorates

propositions to express endorsement, while SImp’s integrity sublabels described tainted data. While

CHAPTER 4. CONFIDENTIALITY IN AURA 107

intuitively related, these concepts demand different treatments. It is unclear how to understand DLM

owners in Aura. Additionally, interpreting the semantics of a DLM label—that is, calculating its

effective reader and writer sets—requires knowledge of the global delegation relation, or “acts-

for hierarchy,” information that cannot be reliably obtained in Aura’s distributed setting. SImp’s

design did provide direct inspiration for several aspects of Auraconf, including declarative policy

specification, a key-based notion of identity, and automatic encryption.

On Noninterference

Auraconf’s noninterference property (Lemma 17) is weak in the following sense. It discusses what

happens when a pair of terms with different secrets successfully take a step, but does not deal with

the situation in which one steps successfully and the other fails. The reason is subtle. Consider the

following terms:

ok : E(a, ”hi ”, 1) → Prop

e1 ≡ ok(E(a, ”hi ”, 1))

e2 ≡ ok(E(a, ”hi ”, 2))

Terms e1 and e2 represent differently randomized encryptions of the same string. It’s intuitively

appealing that these are similar for purposes of noninterference, and indeed a ` e1 ' e2. However

term e1 is well-typed, but e2 is not. Terms like these can cause runf to show different failure

behavior when applied to similar terms. Consequently, Lemma 17’s definition of noninterference is

an example of termination-insensitive noninterference (Askarov et al., 2008).

Termination insensitivity is required because Auraconf and its metatheory have the following

three properties. First, the language can express singleton types on ciphertexts—useful in general

and necessary for isa propositions. Second, it features a typesafe decryption operator that works

at arbitrary types—a design goal. Third, the similarity relation is aligned with standard Dolev-

Yao (1983) cryptanalysis. While it’s possible to alter one of these properties to induce a stronger

form of noninterference, such a change appears counterproductive.

CHAPTER 4. CONFIDENTIALITY IN AURA 108

4.6 Related Work

Modal type theory

Modal logics provide a framework to describe the way in which a proposition holds. Common

modalities can specify that a sentence is necessarily vs. possibly true or that a condition will be met

eventually vs. from-now-on. In the vernacular of Kripke structures this is a technique for reasoning

about different worlds, a terminology that Auraconf borrows (Goldblatt, 2003). Pfenning and Davies

(2001) introduced a constructive, type-theoretic treatment of modal logic. Their account focuses

on the logical foundations of the system. Jia and Walker (2004) studied a similar theory from a

distributed-programming perspective, interpreting modal operators as specifying the locations at

which code may run. While Pfenning discusses three judgments, truth, validity and possibility, Jia

presents an indexed judgment form that can describe a large quantity of locations. Murphy’s (2008)

dissertation describes a full-scale programming language based on these ideas.

The systems above have an absolute static semantics. That is, although executing code may

depend on location or resource availability, checking that a type (or proposition) is well formed can

happen anywhere. Auraconf’s ability to make typing more precise using statically available keys

appears novel.

Cryptography and programming languages

One intended semantics for Auraconf implements objects of form sign(a, P) as digital signatures and

objects like E(a, e, n) as ciphertext. All cryptography occurs at a lower level of abstraction than the

language definition. This approach has previously been used to implement declarative information

flow policies (Vaughan and Zdancewic, 2007). An alternative approach is to treat keys as types or

first class objects and to provide encryption or signing primitives in the language (Askarov et al.,

2006; Chothia et al., 2003; Smith and Alpı́zar, 2006; Laud and Vene, 2005; Laud, 2008; Fournet

and Rezk, 2008). Such approaches typically provide the programmer with additional flexibility but

complicate the programming model.

Askarov, Hedin, and Sabelfeld (Askarov et al., 2006) recently investigated a type system for

programs with encryption and with the property that all well typed programs are noninterfering.

Their work differs from ours in several ways. They treat encryption, decryption, and key gener-

CHAPTER 4. CONFIDENTIALITY IN AURA 109

ation as language primitives. In contrast, we use cryptography implicitly to implement high-level

language features. Askarov’s language appears superior for modeling cryptographic protocols, and

ours provides a cleaner and simpler interface for applications programming.

Chothia, Duggan, and Vitek (Chothia et al., 2003) examine a combination of DLM-style policies

and cryptography, called the Key-Based DLM (KDLM). Their system, like Askarov’s, provides an

extensive set of language level cryptographic primitives and types inhabited by keys. Similarly to

Auraconf, KDLM security typing is nominal—labels have names and each name corresponds to a

unique cryptographic key. While they prove type soundness, Chothia and colleagues do not provide

more specific security theorems such as noninterference.

Sumii and Pierce (2004) studied λseal, an extension to lambda calculus with terms of form {e}e′ ,

meaning e sealed-by e′, and a corresponding elimination form. Like Askarov and colleagues, they

make seal (i.e. key) generation explicit in program text; however their dynamic semantics, which

include runtime checking of seals, is simpler than Askarov’s. Additionally, λseal includes black-

box functions that analyze sealed values, but cannot be disassembled to reveal the seal (key). It is

unclear how to implement these functions using cryptography.

Heintze and Riecke’s (1998) SLam calculus is an information flow lambda calculus in which the

right to read a closure corresponds to the right to apply it. This sidesteps the black-box function issue

from λseal. In SLam, some expressions are marked with the authority of the function writer. The

annotations control declassification, and, we conjecture, are analogous to the pretranslated labels in

the SImp language (Section 4.5). Additionally SLam types have a nested form where, for example,

the elements in a list and the list itself may be given different security annotations. Combined with

pack, such nesting could facilitate defining data structures with dynamic and heterogeneous security

properties.

We use the algebraic Dolev-Yao model to study the connection connection between information

flow and cryptography. Laud and Vene (2005) examined this problem using a computational model

of encryption. More recently, Smith and Alpı́zar (2006) extended this work to include a model of

decryption. They prove noninterference for a simple language without declassification (or packing)

and a two-point security lattice. Like Chothia and colleagues, they map labels to fixed keys.

Abadi and Rogaway (2002) proved that Dolev-Yao analysis is sound with respect to compu-

tational cryptographic analysis in a setting similar to Vaughan and Zdancewic’s (2007). However,

CHAPTER 4. CONFIDENTIALITY IN AURA 110

there are several significant differences between these approaches. In particular, Abadi and Rog-

away do not discuss public key cryptography, which we use extensively. Backes and Pfitzmann

(2005) with Waidner (Backes et al., 2003) have also investigated the connection between symbolic

and computational models of encryption. They define a Dolev-Yao style library and show that pro-

tocols proved secure with respect to library semantics are also secure with respect to computational

cryptographic analysis. Likewise Barthe et al. (2009) have published a Coq formalization of sev-

eral cryptographic algorithms, including ElGamal digital signatures. These techniques and artifacts

might provide an excellent foundation for further rigorous analysis of Auraconf.

Chapter 5

Conclusion

Aura0, Aura, and Auraconf were designed to explore the technical essence of integrating access

control, audit, and confidentiality mechanisms in a programming language. These languages also

provide a concrete platform for further experiments in declarative information security. This chapter

first looks back at these languages, then forward to possible extensions.

5.1 Summary

This dissertation presented the Aura family of programming languages, which use a combination

of dependent types and cryptography to support access control, confidentiality and audit. Programs

written in these languages are capable of specifying security properties that are automatically en-

forced by language semantics, freeing the programmer from, for example, explicit key management.

Policies are stated using the propositional fragment of Aura’s type system. This provides a founda-

tional and expressive language for policy definition.

Aura’s audit model and the formalism given in Chapter 2 represent a first step toward the de-

velopment of a precise theory of audit for secure systems. Understanding this heretofore neglected

topic may enable more rigorous analysis of security sensitive programs.

Auraconf’s treatment of cryptography includes several novel elements. Because Auraconf uses

statically available keys and fact contexts to augment compile-time typechecking, it places unusual

demands on its type system. In particular, the very notion of well-typedness is dependent on which

keys are available statically, and it is challenging to predict where a term can typecheck. Addition-

111

CHAPTER 5. CONCLUSION 112

ally, evaluation can also use private keys, and programs will get stuck if run in the wrong context.

Auraconf answers “where can a term be typechecked?” and “where can it be run?” by combining,

in a new way, ideas from modal type theory and type-and-effect analysis.

5.2 Possible Extensions

Programming with signature revocation and expiry

In Aura signatures are permanent—once created they are valid indefinitely and unconditionally.

This is undesirable when a proposition is erroneously signed, a private key is compromised, or an

institutional policy changes. Implemented digital signature protocols, including OpenPGP (Callas

et al., 2007), address this in two ways: by allowing signatures to be annotated with an expiration

time, and by defining revocation certificates which witness that a particular signature is invalid.

These concepts could be applied in Aura to enforce time-limited delegation or to implement mutable

policies based on revocation.

Elegantly integrating signature expiration and revocation into Aura is a design challenge. The

simplest implementation strategy is to maintain the logic’s current form and to accept that some

proofs will expire unexpectedly at runtime. This approach requires that operations dynamically

validate signatures before logging, thus making all kernel operations partial. The situation could

be improved with a transaction mechanism that can ensure proofs are (and will be) current within

some lexical scope.

Alternatively, signature revocation could be modeled with linear or affine types, see Bauer et al.

(2006) for an authorization logic with linearity constraints. Linear and affine objects must be con-

sumed either exactly or at most once, and are appropriate for granting access to a resource a fixed

number of times.

DeYoung, Garg, and Pfenning (2008) studied a constructive access-control logic with explicit

time intervals. Their syntax includes propositions of the form P@[I], meaning “P holds during

interval I .” The logic requires that intervals are consistent with only weak algebraic axioms, and

the approach generalizes to constraints unrelated to time. Incorporating these ideas could allow

Aura to address temporal policies while providing a robust platform for future extensions to its

authorization logic.

CHAPTER 5. CONCLUSION 113

Computation language enhancements

The design of both core Aura and Auraconf could be enhanced in several ways. The following

describes a selection of interesting directions.

Aura is a verbose language, with many type annotations and explicit type instantiations. While

this is desirable for an intermediate language, it suggests several challenges that must be met in

providing surface syntax. Because Aura generalizes System F, type inference is likely undecidable.

(Recall that Chapter 3 provided decidability of type checking.) However, an incomplete inference

algorithm guided by annotations, in the style of Pierce and Turner (1998), would be an essential

component of a surface language. Aura’s proof-passing style also suggests investigating heuristics

for proof inference. Auraconf’s type system poses an additional challenge, in that surface language

would require a user-friendly way to identify and report type errors due to problems with statically

available keys, soft decryption limits, and effect labels.

Aura’s restrictions on dependency and its weak notion of type refinement facilitate decidable

typechecking. However, it’s likely that more liberal variants of the type system would retain decid-

ability as well. Future versions of Aura could be extended to include a generalized match construct,

perhaps inspired by GADTs (Peyton Jones et al., 2006) or Agda (Norell, 2007). Similarly, Aura’s

conservative positivity constraint on inductive proposition definitions could be relaxed following

Paulin-Mohring (1993). This would allow propositions to represent more sophisticated predicates.

However even with a more expressive propositional fragment, Aura would not be tuned for general-

purpose mathematical reasoning.

Currently Auraconf provides a fail-stop semantics: decryption failures lead to an uncatchable,

fatal exception. It would be better to handle these errors programmatically, and a variety of tech-

niques could be brought to bear. Most promising, Auraconf could be extended with a general purpose

exception mechanism like ML’s or Java’s. Doing this properly requires merging exceptions with ef-

fects analysis with higher-order types, a design space that is still being explored (Leroy and Pessaux,

2000; Blume et al., 2008; Benton and Buchlovsky, 2007). A more readily implementable scheme

might have runf return a discriminated union.

Auraconf’s worlds provide a simple model of key management. Programs may be run and type-

checked using zero or one statically available keys. The typing judgment additionally allows > to

CHAPTER 5. CONCLUSION 114

represent “all keys” in effect labels and soft decryption limits. However worlds are treated primarily

as lattice elements and it appears interesting to define worlds using a richer structure, such as sets of

keys or DLM-inspired labels. This generalization would require making (hopefully) straightforward

modifications to the language metatheory and, more interestingly, carefully designing an expressive

and practical security lattice. Were Auraconf re-engineered to use a more expressive formulation of

worlds, it might also be fruitful to index the for and says monads by worlds instead of principals.

References

Martı́n Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium on Logic in

Computer Science (LICS’03), pages 228–233, June 2003.

Martı́n Abadi. Access control in a core calculus of dependency. In Proceedings of the 11th ACM

SIGPLAN International Conference on Functional Programming, ICFP 2006, Portland, Oregon,

USA, September 16-21, 2006, pages 263–273. ACM, 2006.

Martı́n Abadi. Access control in a core calculus of dependency. Computation, Meaning, and Logic:

Articles dedicated to Gordon Plotkin ENTCS, 172:5–31, April 2007.

Martı́n Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. Dynamic typing in a stat-

ically typed language. ACM Transactions on Programming Languages and Systems (TOPLAS),

13(2):237–268, April 1991. Also appeared as SRC Research Report 47.

Martı́n Abadi, Michael Burrows, Butler W. Lampson, and Gordon D. Plotkin. A calculus for access

control in distributed systems. Transactions on Programming Languages and Systems, 15(4):

706–734, September 1993.

Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of dependency.

In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages 147–160,

San Antonio, TX, January 1999.

Apache Tutorial: .htaccess files. The Apache Software Foundation, 2009. Available from http:

//httpd.apache.org/docs/2.2/howto/htaccess.html.
115

http://httpd.apache.org/docs/2.2/howto/htaccess.html
http://httpd.apache.org/docs/2.2/howto/htaccess.html

REFERENCES 116

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In CCS ’99: Proceedings

of the 6th ACM conference on Computer and communications security, pages 52–62, New York,

NY, USA, 1999. ACM. ISBN 1-58113-148-8.

Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically masked information flows.

In Proceedings of the International Static Analysis Symposium, LNCS, Seoul, Korea, August

2006.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive non-

interference leaks more than just a bit. In ESORICS ’08: Proceedings of the 13th European Sym-

posium on Research in Computer Security, pages 333–348, Berlin, Heidelberg, 2008. Springer-

Verlag. ISBN 978-3-540-88312-8. doi: http://dx.doi.org/10.1007/978-3-540-88313-5 22.

Lennart Augustsson. Cayenne–a language with dependent types. In Proc. 3rd ACM SIGPLAN

International Conference on Functional Programming (ICFP), pages 239–250, September 1998.

S. Axelsson, U. Lindqvist, U. Gustafson, and E. Jonsson. An approach to UNIX security logging. In

Proc. 21st NIST-NCSC National Information Systems Security Conference, pages 62–75, 1998.

URL citeseer.ist.psu.edu/axelsson98approach.html.

Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.

Engineering formal metatheory. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL, 2008.

Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE Trans.

Dependable Secur. Comput., 2(2):109–123, 2005. ISSN 1545-5971. doi: http://dx.doi.org/10.

1109/TDSC.2005.25.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library with

nested operations. In CCS ’03: Proceedings of the 10th ACM conference on Computer and

communications security, pages 220–230, Washington D.C., USA, 2003. ACM Press. ISBN

1-58113-738-9. doi: http://doi.acm.org/10.1145/948109.948140.

citeseer.ist.psu.edu/axelsson98approach.html

REFERENCES 117

Henk P. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M. Gabbay, and

Thomas S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 117–

309. Clarendon Press, Oxford, 1992.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-

based cryptographic proofs. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 90–101, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-379-2. doi: http://doi.acm.org/10.1145/1480881.

1480894.

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis, Princeton

U., November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and Peter Ruten-

bar. Device-enabled authorization in the Grey system. In Information Security: 8th International

Conference, ISC 2005, pages 431–445, September 2005a.

Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-control

systems. In Proceedings of the 2005 IEEE Symposium on Security & Privacy, pages

81–95, May 2005b. URL http://www.ece.cmu.edu/˜lbauer/papers/2005/

sp2005-distributed-proving.pdf.

Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter. Consumable credentials in

logic-based access control. Technical Report CMU-CYLAB-06-002, Carnegie Mellon Univer-

sity, February 2006.

Lujo Bauer, Lorrie Faith Cranor, Robert W. Reeder, Michael K. Reiter, and Kami Vaniea. A user

study of policy creation in a flexible access-control system. In CHI ’08: Proceeding of the

twenty-sixth annual SIGCHI conference on Human factors in computing systems, pages 543–

552, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi: http://doi.acm.org/10.

1145/1357054.1357143.

Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs. Technical report, Computer

Science and Engineering Department, University of California at San Diego, November 1997.

http://www.ece.cmu.edu/~lbauer/papers/2005/sp2005-distributed-proving.pdf
http://www.ece.cmu.edu/~lbauer/papers/2005/sp2005-distributed-proving.pdf

REFERENCES 118

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.

Refinement types for secure implementations. In CSF ’08: Proceedings of the 2008 21st IEEE

Computer Security Foundations Symposium, pages 17–32, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3182-3. doi: http://dx.doi.org/10.1109/CSF.2008.27.

Nick Benton and Peter Buchlovsky. Semantics of an effect analysis for exceptions. In Proceedings

of the Third ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI

’07), Nice, France, January 2007. ACM.

Matt Bishop. Computer Security: Art and Science. Addison-Wesley Professional, 2002.

Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role of trust man-

agement in distributed systems security. In Secure Internet programming: security issues for

mobile and distributed objects, pages 185–210. Springer-Verlag, London, UK, 1999a. ISBN

3-540-66130-1.

Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust management for public-

key infrastructures (position paper). Lecture Notes in Computer Science, 1550:59–63, 1999b.

Matthias Blume, Umut A. Acar, and Wonseok Chae. Exception handlers as extensible cases. In

Proceedings of the Sixth ASIAN Symposium on Programming Languages and Systems (APLAS

2008), Bangalore, India, 2008. To appear.

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP Message Format.

RFC 4880 (Proposed Standard), November 2007. URL http://www.ietf.org/rfc/

rfc4880.txt.

J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle, and J.I. den Hartog. An audit logic for account-

ability. In The Proceedings of the 6th IEEE International Workshop on Policies for Distributed

Systems and Networks, 2005.

Steve Chong and Andrew C. Myers. Decentralized robustness. In Proceedings of the 19th IEEE

Computer Security Foundations Workshop (CSFW’06), pages 242–253, Los Alamitos, CA, USA,

July 2006.

http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4880.txt

REFERENCES 119

Tom Chothia, Dominic Duggan, and Jan Vitek. Type based distributed access control. In Pro-

ceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03), Asilomar, Ca.,

USA, July 2003.

Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin Strauss. REFEREE:

Trust management for web applications. Computer Networks and ISDN Systems, 29:953–964,

1997.

Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2):

56–68, June 1940.

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Sub-

version. O’Reilly Media, 2008. Free online edition, version 1.5. Avaliable from http:

//svnbook.red-bean.com/.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed

Standard), May 2008. URL http://www.ietf.org/rfc/rfc5280.txt.

The Coq Proof Assistant Reference Manual. The Coq Development Team, LogiCal Project, 2006.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76, 1988.

Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic, volume 1. North-Holland,

Amsterdam, 1958.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae, 34

(5):381–392, 1972. Also published in the Proceedings of the Koninklijke Nederlandse Akademie

van Wetenschappen, Amsterdam, series A, 75, No. 5.

John DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE Sym-

posium on Security and Privacy, pages 105–113, May 2002.

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://www.ietf.org/rfc/rfc5280.txt

REFERENCES 120

Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with explicit time. In

Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF-21), Pittsburgh,

June 2008.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information

Theory, 2(29), 1983.

Derek Dreyer and Andreas Rossberg. Mixin’ up the ml module system. SIGPLAN Not., 43(9):

307–320, 2008. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1411203.1411248.

C. Ellison and B. Schneier. Ten risks of pki: What you’re not being told about public key infras-

tructure. Computer Security Journal, 16(1):1–7, 2000.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI Certificate The-

ory. RFC 2693 (Proposed Standard), 1999. URL http://www.ietf.org/rfc/rfc2963.

txt.

Sandro Etalle and William H. Winsborough. A posteriori compliance control. In SACMAT ’07:

Proceedings of the 12th ACM symposium on Access control models and technologies, pages 11–

20, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-745-2. doi: http://doi.acm.org/10.

1145/1266840.1266843.

Cédric Fournet and Tamara Rezk. Cryptographically sound implementations for typed information-

flow security. In Proc. 35rd ACM Symp. on Principles of Programming Languages (POPL),

pages 323–335, New York, NY, USA, 2008. ACM.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization policies.

In Proc. of the 14th European Symposium on Programming, April 2005.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization in

distributed systems. In Proc. of the 20th IEEE Computer Security Foundations Symposium, July

2007.

Deepak Garg and Frank Pfenning. A proof-carrying file system. Technical Report CMU-CS-09-

123, Computer Science Department, Carnegie Mellon University, June 2009.

http://www.ietf.org/rfc/rfc2963.txt
http://www.ietf.org/rfc/rfc2963.txt

REFERENCES 121

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic. In Proc. of

the 19th IEEE Computer Security Foundations Workshop, pages 283–296, 2006.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09: Proceedings of

the 41st annual ACM symposium on Theory of computing, pages 169–178, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-506-2. doi: http://doi.acm.org/10.1145/1536414.1536440.

Herman Geuvers. A short and flexible proof of strong normalization for the calculus of construc-

tions. In TYPES ’94: Selected papers from the International Workshop on Types for Proofs and

Programs, pages 14–38, London, UK, 1995. Springer-Verlag. ISBN 3-540-60579-7.

Robert Goldblatt. Mathematical modal logic: a view of its evolution. J. of Applied Logic, 1(5-6):

309–392, 2003. ISSN 1570-8683. doi: http://dx.doi.org/10.1016/S1570-8683(03)00008-9.

Nataliya Guts, Cédric Fournet, and Francesco Zappa Nardelli. Reliable evidence: Auditability

by typing. In ESORICS 2009: 14th European Symposium on Research in Computer Security,

number 5789 in Lecture Notes in Computer Science, pages 168–183. Springer-Verlag, 2009.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Proceedings of

the 14th Annual Conference of the EACSL on Computer Science Logic, pages 317–331, London,

UK, 2000. Springer-Verlag. ISBN 3-540-67895-6.

M. A. Harrison, W. L Ruzzo, and J. D. Ullman. Protection in operating systems. Comm. of the

ACM, 19(8):461–471, August 1976.

Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy and integrity.

In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 365–377, New York, NY, USA, 1998. ACM Press. ISBN 0-

89791-979-3. doi: http://doi.acm.org/10.1145/268946.268976.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindly,

editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus, and Formalism, pages

479–490. Academic Press, New York, 1980.

REFERENCES 122

Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems:

Abstract properties and applications to term rewriting systems. J. ACM, 27(4):797–821, 1980.

ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322217.322230.

Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logical language for expressing

authorizations. In SP ’97: Proceedings of the 1997 IEEE Symposium on Security and Privacy,

page 31. IEEE Computer Society, 1997.

Limin Jia and David Walker. Modal proofs as distributed programs. Technical Report TR-671-03,

Princeton University, August 2003.

Limin Jia and David Walker. Modal proofs as distributed programs (extended abstract). In Pro-

gramming Languages and Systems: 13th European Symposium on Programming (ESOP 2004),

2004.

Limin Jia and Steve Zdancewic. Encoding information flow in aura. In PLAS ’09: Proceedings

of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security,

pages 17–29, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-645-8. doi: http://doi.acm.

org/10.1145/1554339.1554344.

Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and

Steve Zdancewic. Aura: A programming language for authorization and audit. In Proceedings of

the 2008 ACM SIGPLAN International Conference on Functional Programming (ICFP), pages

27–38, 2008.

C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical programs in dis-

tributed systems: a specification-based approach. In SP ’97: Proceedings of the 1997 IEEE

Symposium on Security and Privacy, page 175, Washington, DC, USA, 1997. IEEE Computer

Society.

Peeter Laud. On the computational soundness of cryptographically masked flows. SIGPLAN Not.,

43(1):337–348, 2008. ISSN 0362-1340.

REFERENCES 123

Peeter Laud and Varmo Vene. A type system for computationally secure information flow. In

Proceedings of the 15th International Symposium on Fundamentals of Computational Theory,

volume 3623, pages 365–377, Lübeck, Germany, 2005.

Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Standard ML.

In POPL ’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 173–184, 2007. ISBN 1-59593-575-4.

Xavier Leroy and François Pessaux. Type-based analysis of uncaught exceptions. ACM Trans.

Program. Lang. Syst., 22(2):340–377, 2000. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/

349214.349230.

Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based approach

to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1), 2003.

Sam Lindley. Normalisation by Evaluation in the Compilation of Typed Functional Programming

Languages. PhD thesis, University of Edinburgh, College of Science and Engineering, School of

Informatics, June 2005.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL ’88: Proceedings of the

15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 47–

57, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi: http://doi.acm.org/10.1145/

73560.73564.

Conor McBride. The Epigram Prototype: a nod and two winks, April 2005. Available from http:

//www.e-pig.org/downloads/epigram-system.pdf.

Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon, January 2008.

URL http://tom7.org/papers/. (draft).

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal lambda

calculus for distributed computing. In Proceedings of the 19th IEEE Symposium on Logic in

Computer Science (LICS 2004). IEEE Press, July 2004.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model. ACM

Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

http://www.e-pig.org/downloads/epigram-system.pdf
http://www.e-pig.org/downloads/epigram-system.pdf
http://tom7.org/papers/

REFERENCES 124

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification and

qualified robustness. Journal of Computer Security, 2006. To appear.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare Type Theory. In

Proc. 11th ACM SIGPLAN International Conference on Functional Programming (ICFP), 2006.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM

Trans. Comput. Logic, 9(3):1–49, 2008. ISSN 1529-3785. doi: http://doi.acm.org/10.1145/

1352582.1352591.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden, September 2007.

Christine Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In TLCA

’93: Proceedings of the International Conference on Typed Lambda Calculi and Applications,

pages 328–345, London, UK, 1993. Springer-Verlag. ISBN 3-540-56517-5.

Simon Peyton Jones and Erik Meijer. Henk: A typed intermediate language. In Proceedings of the

Types in Compilation Workshop, Amsterdam, June 1997.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Simple

unification-based type inference for GADTs. In Proceedings of the Eleventh ACM SIGPLAN

International Conference on Functional Programming, 2006. ISBN 1-59593-309-3.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical.

Structures in Comp. Sci., 11(4):511–540, 2001. ISSN 0960-1295. doi: http://dx.doi.org/10.1017/

S0960129501003322.

Benjamin C. Pierce and David N. Turner. Local type inference. In ACM SIGPLAN–SIGACT Sym-

posium on Principles of Programming Languages (POPL), San Diego, California, 1998.

Dörte K. Rappe. Homomorphic Cryptosystems and Their Applications. PhD thesis, University of

Dortmund, Germany, 2004.

REFERENCES 125

Andreas Rossberg. Typed Open Programming – A higher-order, typed approach to dynamic mod-

ularity and distribution. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany, January

2007. Preliminary version.

Andreas Rossberg, Guido Tack, and Leif Kornstaedt. Status report: HOT pickles, and how to serve

them. In Claudio Russo and Derek Dreyer, editors, 2007 ACM SIGPLAN Workshop on ML, pages

25–36. ACM, 2007.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1):5–19, January 2003.

Bruce Schneier and John Kelsey. Cryptographic support for secure logs on untrusted machines.

In Proceedings of the 7th on USENIX Security Symposium, pages 53–62, Berkeley, CA, USA,

January 1998.

Helmut Schwichtenberg. Normalization. Lecture Notes for Marktoberdorf Summer School, 1989.

Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams,

Pierre Habouzit, and Viktor Vafeiadis. Acute: High-level programming language design for

distributed computation. J. Funct. Program., 17(4-5):547–612, 2007. ISSN 0956-7968. doi:

http://dx.doi.org/10.1017/S0956796807006442.

Geoffrey Smith and Rafael Alpı́zar. Secure information flow with random assignment and encryp-

tion. In Proceedings of The 4th ACM Workshop on Formal Methods in Security Engineering:

From Specifications to Code (FSME’06), pages 33–43, Alexandria, Virgina, USA, November

2006.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System F

with type equality coercions. In TLDI ’07: Proceedings of the 2007 ACM SIGPLAN international

workshop on Types in languages design and implementation, pages 53–66, New York, NY, USA,

2007. ACM. ISBN 1-59593-393-X.

Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In Principals of Pro-

gramming Languages, Venice, Italy, January 2004.

REFERENCES 126

Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for enforcing user-defined

security policies. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland),

May 2008.

Don Syme, Adam Granicz, and Antonio Cisternino. Expert F]. Apress, Berkeley, CA, 2007.

J.-P. Talpin and P. Jouvelot. The type and effect discipline. In Conference on Logic in Computer

Science (LICS’92). IEEE Press, June 1992.

Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized label model. In IEEE

Symposium on Security and Privacy, pages 192–206, Berkeley, California, 2007.

Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based audit. In Proc.

of the 21th IEEE Computer Security Foundations Symposium, pages 177–191, 2008. Extended

version available as U. Pennsylvania Technical Report MS-CIS-08-09.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(3):167–187, 1996.

Geoffrey Washburn. Cause and effect: type systems for effects and dependencies. Technical Re-

port MS-CIS-05-05, University of Pennsylvania, Computer and Information Science Department,

Levine Hall, 3330 Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2005.

Geoffrey Alan Washburn. Principia narcissus: how to avoid being caught by your reflection. PhD

thesis, Philadelphia, PA, USA, 2007.

B. Waters, D. Balfanz, G. E. Durfee, and D. K. Smetters. Building an encrypted and searchable

audit log. In 11th Annual Network and Distributed Security Symposium (NDSS ’04), San Diego,

CA, USA, February 2004.

Christopher Wee. LAFS: A logging and auditing file system. In Annual Computer Security Appli-

cations Conference, pages 231–240, New Orleans, LA, USA, December 1995.

E. Westbrook, A. Stump, and I. Wehrman. A language-based approach to functionally correct

imperative programming. In B. Pierce, editor, 10th ACM SIGPLAN International Conference on

Functional Programming, Tallinn, Estonia, 2005.

REFERENCES 127

Hongwei Xi. Applied Type System (extended abstract). In post-workshop Proceedings of TYPES

2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proc. 26th ACM

Symp. on Principles of Programming Languages (POPL), San Antonio, Texas, September 1998.

Tatu Ylonen. SSH – secure login connections over the Internet. In The Sixth USENIX Security

Symposium Proceedings, pages 37–42, San Jose, California, 1996.

Appendix A

Proofs for Aura0

This section gives proofs of subject reduction and strong normalization for Aura0 propositions.

Subject reduction for Aura0 propositions

Lemma 18 (Weakening). If Σ; Γ,Γ′ ` t1 : t2 and Σ ` Γ, x : t3,Γ′ then Σ; Γ, x : t3,Γ′ ` t1 : t2.

Proof. By structural induction on the typing derivation.

Lemma 19 (Inversion Var—Same). If Σ; Γ, z : u,Γ′ ` z : s then u = s.

Proof. Inverting the typing derivation (which ends in T-VAR) yields z : y ∈ Γ, z : u,Γ′ and

Σ ` Γ, z : u,Γ′. Proof precedes by a trivial induction on the environment’s well-formedness.

Lemma 20 (Inversion Var—Different). If Σ; Γ, z : u,Γ′ ` x : s and x 6= z then x : s ∈ Γ or

x : s ∈ Γ′.

Proof. By inverting the typing derivation, than structural induction on the environment’s well

formedness.

Lemma 21 (Variables closed in context). If Σ; Γ ` s : t and x ∈ fv(t) ∪ fv(s) then x ∈ dom(Γ).

Proof. Proof by induction on the typing derivation.

Lemma 22 (Context Ordering). If Σ ` Γ, z : u and x : s ∈ Γ then z /∈ fv(s).

128

APPENDIX A. PROOFS FOR AURA0 129

Proof. By the definition of ∈, we know Γ = Γ1, x : s,Γ2. The well-formedness of Γ1, x : s,Γ2, z :

u shows that (1) dom(z) /∈ Γ1 and (2) Σ; Γ1 ` s : k for some k. From these and Lemma 21 we can

conclude z /∈ fv(s).

Lemma 23 (Well-formedness). (1) If Σ; Γ ` t : s then s ∈ {KindP,KindT} or there exists k such

that Σ; Γ ` s : k.

(2) If Σ ` Γ and x : s ∈ Γ then there exists k such that Σ; Γ ` s : k.

(3) If Σ ` � and a : s ∈ Γ then there exists k such that Σ; · ` s : k.

Proof. By mutual induction on the typing, well-formed signature, and well-formed environment

judgments.

Lemma 24 (Substitution, strong form for induction). Assume Σ; Γ ` tu : u. Then

(1) Σ; Γ, z : u,Γ′ ` t : s implies Σ; Γ, {tu/z}Γ′ ` {tu/z}t : {tu/z}s. And

(2) Σ ` Γ, z : u,Γ′ implies Σ ` Γ, {tu/z}Γ′.

Proof. By mutual structural induction over the typing and well-formed environment derivations.

Proceed with inversion on the form of the last typing or well-formedness rule.

Case T-PROP. We have t = Prop and s = KindP. So it suffices to show Σ ` Γ, {tu/z}Γ′. This

follows immediately from the induction hypothesis.

Case T-VAR. Suppose t = z. Then, by Lemma 19 s = u. Therefore it suffices to show

Σ; Γ, {tu/z}Γ′ ` tu : u, which we get by applying weakening (finitely many times) to the assump-

tion Σ; Γ ` tu : u. Instead suppose t = x 6= z. Then we must show Σ; Γ, {tu/z}Γ′ ` x : {tu/z}s.

By Lemma 20, either x : s ∈ Γ or x : s ∈ Γ′. Suppose x : s ∈ Γ. Then by Lemma 22 we find

z /∈ fv(s) so s = {tu/z}s. Thus it suffices to show Σ; Γ, {tu/z}Γ′ ` x : s, which follows from

T-VAR, the induction hypothesis and the form of Γ. Lastly, consider the case that x : s ∈ Γ′. Then

x : {tu/z}s ∈ {tu/z}Γ′, and we conclude using this, T-VAR, and the induction hypothesis.

Case T-LAM. We have t = λx:t1. t2 and s = (x:t1) → P . Without loss of gener-

ality assume x 6= z. The induction hypothesis yields Σ; Γ, {tu/z}(Γ′, x : t1) ` {tu/z}t2 :

{tu/z}P and Σ; Γ, {tu/z}Γ′ ` {tu/z}(x:t1)→ P : Prop. We conclude by applying T-LAM

and the following facts about substitution: {tu/z}(Γ′, x : t1) = ({tu/z}Γ′), x : ({tu/z}t1) and

{tu/z}((x:t1)→ t2) = (x:{tu/z}t1)→ {tu/z}t2. (The latter holds because x 6= z.)

APPENDIX A. PROOFS FOR AURA0 130

Case T-BIND. This case is similar to T-LAM, but uses the additional fact that, for all t1 and t2,

{tu/z}(t1 says t2) = ({tu/z}t1) says ({tu/z}t2).

Case T-SIGN. We have t = sign(t1, t2) and s = t1 says t2. From Lemma 21, we find fv(t1) =

fv(t2) = ∅. Hence {tu/z}t = t and {tu/z}s = s, so to use T-SIGN, we need only show Σ `

Γ, {tu/z}Γ′. This follows immediately from the induction hypothesis.

Case T-PAIR. We have s = {s1:x; s2}. Assume without loss of generality x 6= z. This case fol-

lows from the induction hypothesis and the fact {tu/z}({t1/x}s2) = {({tu/z}t1)/x}({tu/z}t2).

The remaining cases are similar to T-PROP (T-TYPE, T-STRING, T-CONST, T-PRIN, T-LITSTR,

T-LITPRIN), or T-LAM (T-ARR, T-PAIRTYPE), or are trivial (T-SAYS, T-RETURN, T-APP).

Subject reduction will need both substitution (above) and the following strengthening lemma

(below). Note that strengthening is not a special case of of substitution, as strengthening works

even when u is uninhabited.

Lemma 25 (Strengthening). If Σ; Γ, z : u,Γ′ ` t : s and Σ ` Γ,Γ′ and z /∈ fv(t) ∪ fv(s) then

Σ; Γ,Γ′ ` t : s.

Proof. Proof by structural induction on the typing relation.

Case T-VAR. Then t is a variable, x. By the definition of fv(·), x 6= z. Inverting the typing

relation yields x : s ∈ Γ, z : u,Γ′. Thus z ∈ Γ,Γ′, and we conclude with T-VAR.

Case T-PAIR. We have s = {x:s1; s2} for some x, s1, and s2. By 23 and a simple case analysis,

Σ; Γ ` s : k where k ∈ {Prop, Type,KindP,KindT}. Thus z /∈ fv(k). Thus the case follows from

the induction hypothesis and T-PAIR.

All other cases follow directly from the induction hypothesis.

Lemma 26 (Subject Reduction). If ` t→ t′ and Σ; Γ ` t : s then Σ; Γ ` t′ : s.

Proof. Proof is by structural induction on the reduction relation. Proceed by case analysis on the

last rule used.

APPENDIX A. PROOFS FOR AURA0 131

Case R-BETA. We have t = (λx:t1. t2) t3 and t′ = {t3/x}t2. Term t could only have been

typed by a derivation ending in

T-APP

T-LAM

...

Σ; Γ, x : t1 ` t2 : s2 . . .

Σ; Γ ` λx:t1. t2 : (x:t1)→ s2

...

Σ; Γ ` t3 : s3

Σ; Γ ` (λx:t1. t2) t3 : {s3/x}s2

for some s2 and s3. So s = {t3/x}t2. That Σ; Γ ` t′ : s holds follows directly from Lemma 24 and

the judgments written in the above derivation.

Case R-BINDS. We have t = bind x = t1 in t2 and t′ = t2. Term t could only be typed

by T-BIND, and inverting this rule gives s = a says s2 and Σ; Γ, x : s1 ` t2 : a says s2. Before

concluding with Lemma 25, we must show x /∈ a says s2. This is a consequence of Lemma 21,

and the hypothesis that a says s2 is a type assignment in Γ.

Case R-BINDT. We have t = bind x = return@[t0] t1 in t2 and t′ = {t1/x}t2 and s =

t0 says s2. Term t can only be typed by a derivation ending with, for some s1,

T-BIND

T-APP

...

...

Σ; Γ ` t1 : s1

Σ; Γ ` return@[t0] t1 : t0 says s1

...

Σ; Γ, x : s1 ` t2 : t0 says s2

Σ; Γ ` bind x = return@[t0] t1 in t2 : t0 says s2

By Lemma 24, we find Σ; Γ ` {t1/x}t2 : {t1/x}(t0 says s2). The contrapositive of Lemma 21

shows x /∈ t0 says s2, so we can rewrite the above to Σ; Γ ` t′ : s.

Case R-BINDC. We have t = bind x = (bind y = t1 in t2) in t3 and s = u says s3. Fol-

lowing the Barendregt variable convention, assume y /∈ fv(Γ) ∪ {x}. Inverting the typing deriva-

tion twice shows, for some s1 and s2, that Σ; Γ ` t1 : u says s1, Σ; Γ, y : s1 ` t2 : u says s2,

Σ; Γ, x : s2 ` t3 : u says s3, and x /∈ fv(s3). With Lemma 18 we find Σ; Γ, y : s1, x : s2 ` t3 :

u says s3. With Lemma 21, y /∈ fv(s3). We conclude using T-BINDC twice.

The remaining cases follow directly from the induction hypothesis.

APPENDIX A. PROOFS FOR AURA0 132

Strong normalization for Aura0 propositions

We prove Aura0 is strongly normalizing by translating Aura0 to the Calculus of Construction ex-

tended with product dependent types (CC).

The main property of the translation, which we will prove later in this section, is that the trans-

lation has to preserves both the typing relation and the reduction relation. The translation of terms

has the form: JtK∆ = (s,∆′), where context ∆ is a typing context for variables. To translate a

Aura0 term, we take in a context ∆, and produce a new context ∆′ together with a term in CC.

Before we present the formal definitions of the translation, we define the following auxiliary

definitions.

Definitions

• unique(∆) if for all fvar1, fvar2 ∈ dom(∆), ∆(fvar1) 6= ∆(fvar2).

• wf(Γ):

wf(·)

Γ `CC t : s s ∈ {∗,�} v /∈ dom(Γ)

wf(Γ, v : t)

The translation of Aura0 terms to CC terms is defined in Figure A. The translation collapses

KindP and KindT to the kind � in CC, and Prop, Type to ∗. We translate all base types to unit, and

constants to (). The interesting cases are the translation of DCC terms. The translation drops the

monads, and translates the bind expression to lambda application. The term sign(t1, t2) has type

t1 says t2; therefore, it has to be translated to a term whose type is the translation of t2. One way

to find such a term is to generate a fresh variable and assign its type to be the translation of t2.

The context ∆ is used to keep track of the type mapping of those fresh variables generated. There

are two cases in translation sign(t1, t2). In the first case, the variable we need has already been

generated. In the second case, we need to generate a fresh variable and append its type binding to

∆1 as the output context. To make proofs easier, we assume that the fresh variables are denoted by

a fvar, not to be confused with the variable x.

APPENDIX A. PROOFS FOR AURA0 133

Both of Aura0’s signature Σ and context Γ are translated into CC’s typing context. The trans-

lation of Σ has the form JΣK = Σ′. The translation of Γ context has the form JΓKΣ = (Γ′,∆′).

The context ∆′ contains all the fresh variables generated while translating the types in Γ. One sub-

tlety of the context translation is that it has “weakening” built-in. Notice that in the translation of

Γ, v : t, the translation of Γ yields Σ1,∆1, but t is translated in the larger context Σ1,∆1,∆2. This

also means that the translation of context Γ is not unique. The judgment JΓKΣ = (Γ′,∆′) is more

precisely read as (Γ′,∆′) is a legitimate translation of Γ given Σ. This is good enough for our proof

because we only need to show that for any well-typed Aura0 term t, there is a typing derivation for

the translation of t in CC.

Lemma 27 (Translation Weakening). If JtK∆1 = (s,∆2), unique(∆), and (∆1,∆2) ⊆ ∆, then

JtK∆ = (s, ·).

Proof. By induction on the structure of t. The key is when t is sign(t1, t2).

case: t = sign(t1, t2).

By assumptions,

unique(∆) (1)

Jsign(t1, t2)K∆1 = (x,∆2)

and Jt2K∆1 = (s,∆2), (∆1,∆2)(fvar) = s (2)

(∆1,∆2) ⊆ ∆ (3)

By I.H. on t2,

Jt2K∆ = (s, ·) (4)

By (2), (1), (3),

∆(fvar) = s (5)

By the rules for translation,

Jsign(t1, t2)K∆ = (fvar, ·) (6)

case: t = sign(t1, t2).

By assumptions,

unique(∆) (1)

Jsign(t1, t2)K∆1 = (fvar1, (∆2, fvar1 : s))

APPENDIX A. PROOFS FOR AURA0 134

JtK∆ = (s,∆′)

if t ∈ {KindP,KindT}
JtK∆ = (�, ·)

if t ∈ {Prop, Type}
JtK∆ = (∗, ·)

if t ∈ {"a", . . . ,A . . .}
JtK∆ = ((), ·)

if t ∈ {string, prin}
JtK∆ = (unit, ·) JaK∆ = (a, ·) JxK∆ = (x, ·) Jt1 says t2K∆ = Jt2K∆

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
J(x:t1)→ t2K∆ = ((x:s1)→ s2, (∆1,∆2))

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
J(x : t1) ⇒ t2K∆ = ((x:s1)→ s2, (∆1,∆2))

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
J{x:t1; t2}K∆ = ({x:s1; s2}, (∆1,∆2))

Jt2K∆ = (s,∆1) (∆,∆1)(fvar) = s

Jsign(t1, t2)K∆ = fvar,∆1)

Jt2K∆ = (s,∆1) not exists fvar ∈ dom(∆,∆1)s.t.(∆,∆1)(fvar) = s y is fresh

Jsign(t1, t2)K∆ = (freshvar, (∆1, y : s))

Jreturn@[t1] t2K∆ = Jt2K∆

Jt0K∆ = (s,∆1) Jt1K∆,∆1 = (s1,∆2) Jt2K∆,∆1,∆2 = (s2,∆3)
Jbind x:t0 = t1 in t2K∆ = ((λx:s. s2) s1, (∆1,∆2,∆3))

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
Jλx:t1. t2K∆ = (λx:s1. s2, (∆1,∆2))

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
Jt1 t2K∆ = (s1 s2, (∆1,∆2))

Jt1K∆ = (s1,∆1) Jt2K∆,∆1 = (s2,∆2)
J〈t1, t2〉K∆ = (〈s1, s2〉, (∆1,∆2))

Figure A.1: Translation of Aura0’s terms to CC

and Jt2K∆1 = (s,∆2),

@fvar ∈ dom(∆2) s.t. (∆,∆2)(fvar) = s (2)

(∆1,∆2, fvar : s) ⊆ ∆ (3)

By I.H. on t2,

Jt2K∆ = (s, ·) (4)

APPENDIX A. PROOFS FOR AURA0 135

JΣK = Σ′

J·K = ·
JΣK = Σ′ JtKΣ = (s,∆2)
JΣ, v : tK = (Σ′,∆2, v : s)

JΓKΣ = (Γ′,∆)

J·KΣ = (·, ·)

JΓKΣ = (Γ′,∆1) wf(Σ,∆1,∆2) unique(Σ,∆1,∆2) JtKΣ,∆1,∆2 = (s,∆3)
JΓ, v : tKΣ = ((Γ′, v : s), (∆1,∆2,∆3))

Figure A.2: Translation of Aura0 contexts to CC

By (1), (3),

∆(fvar1) = s (5)

By the rules for translation,

Jsign(t1, t2)K∆ = (fvar1, ·) (6)

The remaining cases are straightforward.

Lemma 28 (CC Typing Weakening). If Γ1,Γ2 `CC t : s, and wf(Γ1,Γ′,Γ2), then Γ1,Γ′,Γ2 `CC

t : s.

Proof. By induction on structure of the derivation E :: Γ1,Γ2 `CC t : s.

Lemma 29 (CC well-formed term gives well-formed environment). If Γ `CC t : s then wf(Γ).

Proof. By induction on the typing derivation.

Lemma 30 (CC well-formed term gives well-formed type). If Γ `CC t : s then either s = � or

exists k such that Γ `CC s : k.

Proof. By induction on the typing derivation.

Lemma 31 (Substitution). If Σ; Γ ` t1 : k, unique(∆), Jt1K∆ = (s1, ·) and Jt2K∆ = (s2, ·), then

J{t2/x}t1K∆ = ({s2/x}s1, ·).

APPENDIX A. PROOFS FOR AURA0 136

Proof. By induction on the structure of t1.

case: t1 = sign(t, p).

By assumption,

Jt2K∆ = (s2, ·) (1)

Σ; Γ ` sign(t, p) : k (2)

Jsign(t, p)K∆ = (fvar, ·) (3)

By the definition of translation, (3),

JpK∆ = (s, ·) (4)

and ∆(fvar) = s (5)

By inversion on (2),

Σ; · ` p : Prop (6)

x /∈ fv(p) (7)

{t2/x}p = p (8)

By (8), (4), (5),

J{t2/x}(sign(t, p))K∆ = (fvar, ·) = ({s2/x}fvar, ·) (9)

The remaining cases are straightforward.

Lemma 32 (Correctness of Translation). 1. If Σ ` �, JΣK = Σ1, then wf(Σ1) and unique(Σ1).

2. If Σ ` Γ, JΣK = Σ1, JΓKΣ1 = (Γ1,∆), then wf(Σ1,∆,Γ1) and unique(Σ1,∆).

3. If E :: Σ; Γ ` t : s, JΣK = Σ1, JΓKΣ1 = (Γ1,∆1), wf(Σ1,∆1,∆2,Γ1), unique(Σ1,∆1,∆2),

JtKΣ1,∆1,∆2 = (t1,∆3), then Σ1,∆1,∆2,∆3,Γ1 `CC t1 : s1, and JsK(Σ1,∆2,∆3) = (s1, ·)

and unique(Σ1,∆1,∆2,∆3).

4. If E :: Σ; Γ ` t, JΣK = Σ1, JΓKΣ1 = (Γ1,∆1), wf(Σ1,∆1,∆2,Γ1), unique(Σ1,∆1,∆2),

JtKΣ1,∆1 = (t1,∆3), then Σ1,∆1,∆2,∆3,Γ1 `CC t1 : ∗/� (read as t3 is classified by ∗ or

�), and unique(Σ1,∆1,∆2,∆3).

Proof. In the proof of 1 and 2, we use 3 only when Σ or Γ is smaller.

1. By induction on the structure of (Σ).

case: Σ = Σ′, a : t

APPENDIX A. PROOFS FOR AURA0 137

By assumption,

Σ′, a : t ` � (1)

JΣ′, a : tK = (Σ1,∆, a : s) (2)

where JΣ′K = Σ1 (3)

andJtKΣ1 = (s,∆) (4)

By inversion of (1),

Σ′ ` � (5)

Σ′; · ` t : KindP (6)

By I.H. on Σ′,

wf(Σ1) and unique(Σ1) (7)

By 3, (6), (7), (4),

Σ1,∆ `CC s : � and unique(Σ1,∆) (8)

By definition of wf and unique, and (8),

wf(Σ1,∆, a : s), and unique(Σ1,∆, a : s) (9)

2. By induction on the structure of Γ.

case: Γ = Γ′, x : t

By assumption,

Σ ` Γ′, x : t (1)

JΣK = Σ1 (2)

JΓ′, x : tKΣ1 = ((Γ1, x : s), (∆1,∆2,∆3)) (3)

where JΓ′KΣ1 = (Γ1,∆1) (4)

and wf(Σ1,∆1,∆2), unique(Σ1,∆1,∆2) (5)

and JtKΣ1,∆1,∆2 = (s,∆3) (6)

By inversion of (1),

Σ ` Γ′ (7)

Σ; Γ′ ` t : KindP/KindT/Prop/Type (8)

By 3, (2), (3), (4), (5), (6), (8),

Σ1,∆1,∆2,∆3,Γ1 `CC s : �/∗ (9)

and unique(Σ1,∆1,∆2,∆3) (10)

APPENDIX A. PROOFS FOR AURA0 138

By definition of wf, and (9),

wf(Σ1,∆1,∆2,∆3,Γ1, x : s) (11)

3. By induction on the structure of the derivation E .

case: E ends in T-PROP.

By assumption,

E =

E ′ :: Σ ` Γ

Σ; Γ ` Prop : KindP (1)

JΣK = Σ1 (2)

JΓKΣ1 = (Γ1,∆1) (3)

JPropKΣ1,∆1 = (∗, ·) (4)

By ax rule,

· `CC ∗ : � (5)

By 2, E ′, (2), (3),

wf(Σ1,∆1,Γ1) and unique(Σ1,∆1) (6)

By Lemma weakening,

Σ1,∆1,Γ1 `CC ∗ : � (7)

case: E ends in T-ARR.

By assumption,

E =

E1 :: Σ; Γ ` t1 : (KindP, Type,Prop)

E2 :: Σ; Γ, x : t1 ` t2 : k2 k2 ∈ {KindP,Prop}

Σ; Γ ` (x:t1)→ t2 : k2 (1)

JΣK = Σ1 (2)

JΓKΣ1 = (Γ1,∆1) (3)

wf(Σ1,∆1,∆2) and unique(Σ1,∆1,∆2) (4)

J(x:t1)→ t2KΣ1,∆1,∆2 = ((x:s1)→ s2, (∆3,∆4)) (5)

where Jt1KΣ1,∆1,∆2 = (s1,∆3) (6)

and Jt2KΣ1,∆1,∆2,∆3 = (s2,∆4) (7)

By I.H. on E1,

APPENDIX A. PROOFS FOR AURA0 139

Σ1,∆1,∆2,∆3,Γ1 `CC s1 : (∗,�) (8)

and unique(Σ1,∆1,∆2,∆3) (9)

By Definition of the translation of Γ, (3), (4),

JΓ, x : t1KΣ1 = ((Γ1, x : s1), (∆1,∆2,∆3)) (10)

By Lemma 29, (8),

wf(Σ1,∆1,∆2,∆3,Γ1) (11)

By I.H. on E2, (7), (10), (11), (9),

Σ1,∆1,∆2,∆3,∆4,Γ1, x : s1 `CC s2 : (∗/�) (12)

and unique(Σ1,∆1,∆3,∆4) (13)

By Π, (8), (12),

Σ1,∆1,∆2,∆3,∆4,Γ1 `CC (x:s1)→ s2 : (∗/�) (14)

case: E ends in T-SIGN.

By assumption,

E =

E1 :: Σ ` Γ Σ; · ` t1 : prin E2 :: Σ; · ` t2 : Prop

Σ; Γ ` sign(t1, t2) : t1 says t2 (1)

JΣK = Σ1 (2)

JΓKΣ1 = (Γ1,∆1) (3)

wf(Σ1,∆1,∆2), unique(Σ1,∆1,∆2) (4)

Jsign(t1, t2)KΣ1,∆1,∆2 = (fvar,∆3) (5)

where Jt2KΣ1,∆1,∆2 = (s2,∆3) (6)

and (Σ1,∆1,∆2,∆3)(fvar) = s2 (7)

By I.H. on E2, (2), (4), (6),

Σ1,∆1,∆2,∆3 `CC s2 : ∗ (8)

and unique(Σ1,∆1,∆2,∆3) (9)

By (7), (8), Lemma 28 weakening,

Σ1,∆1,∆2,∆3 `CC fvar : s2 (10)

By 2 on E1, (2), (3),

wf(Σ1,∆1,Γ1) (11)

By Weakening and the domain of Γ1 and ∆2 ∆3 are disjoint,

APPENDIX A. PROOFS FOR AURA0 140

wf(Σ1,∆1,∆2,∆3,Γ1) (12)

By Lemma 28 weakening, (12), (10),

Σ1,∆1,∆2,∆3,Γ1 `CC fvar : s2 (13)

case: E ends in T-SIGN.

By assumption,

E =

E1 :: Σ ` Γ Σ; · ` t1 : prin E2 :: Σ; · ` t2 : Prop

Σ; Γ ` sign(t1, t2) : t1 says t2 (1)

JΣK = Σ1 (2)

JΓKΣ1 = (Γ1,∆1) (3)

wf(Σ1,∆1,∆2), unique(Σ1,∆1,∆2) (4)

Jsign(t1, t2)KΣ1,∆1,∆2 = (fvar1, (∆3, fvar1 : s2)) (5)

where Jt2KΣ1,∆1,∆2 = (s2,∆3) (6)

and @fvar such that (Σ1,∆1,∆2,∆3)(fvar) = s2, and fvar is fresh (7)

By I.H. on E2, (2), (4), (6),

Σ1,∆1,∆2,∆3 `CC s2 : ∗ (8)

and unique(Σ1,∆1,∆2,∆3) (9)

By var rule, (8),

Σ1,∆1,∆2,∆3, fvar : s2 `CC fvar : s2 (10)

By (9), (7),

unique(Σ1,∆1,∆2,∆3, fvar : s2) (11)

By 2 on E1, (2), (3),

wf(Σ1,∆1,Γ1) (12)

By Weakening and the domain of Γ1 and ∆2 (∆3, fvar1 : s2) are disjoint,

wf(Σ1,∆1,∆2,∆3, fvar1 : s2,Γ1) (13)

By Lemma 28 weakening, (13), (10),

Σ1,∆1,∆2,∆3, fvar1 : s2,Γ1 `CC fvar : s2 (14)

case: E ends in T-APP rule

By assumption,

APPENDIX A. PROOFS FOR AURA0 141

E =

E1 :: Σ; Γ ` t1 : (x:u2)→ u E2 :: Σ; Γ ` t2 : u2

Σ; Γ ` t1 t2 : {t2/x}u (1)

JΣK = Σ1 (2)

JΓKΣ1 = (Γ1,∆1) (3)

wf(Σ1,∆1,∆2), unique(Σ1,∆1,∆2) (4)

Jt1 t2KΣ1,∆1 = (s1 s2, (∆2,∆3,∆4)) (5)

and Jt1KΣ1,∆1,∆2 = (s1,∆3) (6)

and Jt2KΣ1,∆1,∆2,∆3 = (s2,∆4) (7)

By I.H. on E1,

Σ1,∆1,∆2,∆3,Γ1 `CC s1 : k (8)

and (k, ·) = J(x:u2)→ uKΣ1,∆1,∆2,∆3 (9)

and unique(Σ1,∆1,∆2,∆3) (10)

By (8), and Lemma 29,

wf(Σ1,∆1,∆2,∆3,Γ1) (11)

By I.H. on E2, (10), (11), (7),

Σ1,∆1,∆2,∆3,∆4,Γ1 `CC s2 : k2 (12)

where (k2, ·) = Ju2KΣ1,∆1,∆2,∆3,∆4 (13)

and uniqueΣ1,∆1,∆2,∆3,∆4 (14)

By translation weakening Lemma 27 and (9),

and (k, ·) = J(x:u2)→ uKΣ1,∆1,∆2,∆3,∆4 (15)

By definition of translation and (15), (13),

k = (x:k2)→ ku and (ku, ·) = JuKΣ1,∆1,∆2,∆3,∆4 (16)

By app rule, (8), (12), (16),

Σ1,∆1,∆2,∆3,∆4,Γ1 `CC s1 s2 : {s2/x}ku (17)

By translation weakening Lemma 27 and (7),

Jt2KΣ1,∆1,∆2,∆3,∆4 = (s2, ·) (18)

By Lemma 31, (16), (18),

J{t2/x}uKΣ1,∆1,∆2,∆3,∆4 = ({s2/x}ku, ·) (19)

4. By induction on the structure of the derivation E .

APPENDIX A. PROOFS FOR AURA0 142

The following β′ reduction rule mirrors the commute reduction rule in Aura0.

Special Reduction Rule:

(λx:t. t1)((λy:s. t2)u)→β′ (λy:s. ((λx:t. t1)t2))u

Calculus of Construction extended with product dependent types is known to be strongly nor-

malizing (Geuvers, 1995). We use SN(β) to denote the set of terms that are strongly normalizing

under β reductions in CC; similarly, SN(ββ′) is the set of terms that are strongly normalizing under

the β and β′ reduction rules. We demonstrate that CC augmented with β′ is also strongly normaliz-

ing.

Lemma 33 (Strong normalization of ββ′-reduction in CC). For all term t ∈ SN(β), t ∈ SN(ββ′).

Proof. We use the technique presented in Lindley’s thesis (Lindley, 2005). We assign an ordering

between terms as the dictionary order of a pair (β(t), δ(t)), where β(t) is the maximum beta-

reduction steps of t, and δ(t) is defined as follows. δ(x) = 1, δ(λx:t. s) = δ(s), δ(t1 t2) =

δ(t1) + 2δ(t2). We then prove that if t →β′ t′ then β(t′) ≤ β(t), by examining all possible β-

reductions of t′, and showing that t has an corresponding reduction that takes at least the same

number of β-reduction steps as t′. Now δ((λy:s. ((λx:t. t1)t2))u) = δ(t1) + 2δ(t2) + 2δ(u), and

δ(λx:t. t1)((λy:s. t2)u) = δ(t1) + 2δ(t2) + 4δ(u). Therefore, when t →β′ t′, (β(t′), δ(t′)) <

(β(t), δ(t)). Thus, for all t ∈ SN(β), t ∈ SN(ββ′).

Now we prove that the reductions in CC augmented with the β′ reduction rule simulates the

reduction in Aura0.

Lemma 34 (Simulation). If t→ t′, and and JtK∆ = (s,∆), Jt′K∆ = (s′,∆), then s→+
β,β′ s′.

Proof. By examining all the reduction rules.

Lemma 35 (Strong normalization). Aura0 is strongly normalizing.

Proof. By Lemma 34, and Lemma 33. A diverging path in Aura0 implies a diverging path in CC.

Since CC is strongly normalizing, Aura0 is also strongly normalizing.

Lemma 36. If s→ s′, then {t/x}s→∗ {t/x}s′.

Proof. By induction on the structure of s.

APPENDIX A. PROOFS FOR AURA0 143

Lemma 37. If t→ t′, then {t/x}s→∗ {t′/x}s.

Proof. By induction on the structure of s.

Lemma 38 (Weak Confluence). If t→ t1, t→ t2, then exists t3 such that t1 →∗ t3, and t2 →∗ t3.

Proof. By induction on the structure of t. We invoke induction hypothesis directly in most of the

cases. We show a few key cases below.

Case : t = λx:u. s

By assumption,

t1 = λx:u. s1 where s→ s1 (1)

t2 = λx:u. s2 where s→ s2 (2)

By I.H. on s,

∃s3 such that s1 →∗ s3, and s2 →∗ s3 (3)

By reduction rules,

t3 = λx:u. s3 such that t1 →∗ t3 and t2 →∗ t3 (4)

Case: t = (λx:u. s1)s2, t1 = {s2/x}s1, and

t2 = (λx:u. s′1)s2 where s1 → s′1.

By Lemma 37,

t1 →∗ {s2/x}s′1 (1)

By reduction rules,

t2 → {s2/x}s′1 (2)

Case: t = bind x = s1 in s2

where s1 = bind y = return@[a]u1 in u2

By assumption,

t1 = bind x = {u1/x}u2 in s2 (1)

t2 = bind y = return@[a]u1 in bind x = u2 in s2

and y /∈ fv(s2) (2)

By reduction R-BINDT,

t2 → bind x = {u1/y}u2 in {u1/y}s2 (3)

APPENDIX A. PROOFS FOR AURA0 144

By (2), (3),

t2 → bind x = {u1/y}u2 in s2 (4)

Case: t = bind x = s1 in s2

where s1 = bind y = u1 in u2

and u1 = bind z = w1 in w2

By assumption,

t1 = bind x = s′1 in s2

where s′1 = bind z = w1 in bind y = w2 in u2 (1)

t2 = bind y = u1 in bind x = u2 in s2

By applying R-BINDC rule many times,

t1 →∗ t3 (2)

t2 →∗ t3 (3)

where t3 = bind z = w1 in bind y = w2 in bind x = u2 in s2

The remaining cases are straightforward.

Appendix B

Formal Aura language definitions

This appendix provides definitions elided from Chapter 3.

Values and applied values

Values and applied values are defined as shown in Figure B.1. In addition to standard call-by-name

values some, proof-, type-, and higher-level constructs—for instance prin and Type—are considered

values. Such objects can never reduce, so it reasonable to consider them values. Usefully, this allows

applications (see rule WF-TM-APP) to treat uniformly different sorts of objects.

Aura’s signatures

Syntax

The formal definitions for Aura’s signatures are as follows.

Constructor Decls cdecls : : = · | cdecls|ctr : t

Data Decl ddecl : : = data ctr : t {cdecls}

Definitions defns : : = ddecl | defns with ddecl

Assertions assn : : = assert ctr : t

Bundle bundle : : = defns | assn

Signature S : : = · | S, bundle

145

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 146

val t

val Type
V-TYPE

val Prop
V-PROP

val Kind
V-KIND

val x
V-VAR

val λx : t1. t2
V-ABS

app-val t

val t
V-APP

val self
V-SELF

val (x : t1)→ t2
V-ARR

val v

val sign(v, p)
V-SIGN

val v says p
V-SAYS

val prin
V-PRIN

val p

val returnp p
V-PFRET

val returns a p
V-SAYSRET

val binds e1 e2
V-SAYSBIND

app-val t

app-val ctr
AV-CTR

app-val v1 val v2

app-val v1 v2
AV-APP

Figure B.1: Aura value and applied value relations

An Aura signature S is a list of bundles. Each bundle consists of either an assertion or a list

of mutually recursively defined datatype declarations. Each datatype declaration is a tuple of the

type constructor name, its type, and a list of its data constructor declarations. Each data constructor

declaration is itself a pair of the data constructor’s name and its type.

Typing rules for signatures

In Figure B.2, we present the auxiliary definitions used by the main typing judgments for well-

formed signatures.

To ensure the consistency of the Prop fragment, the data types in the Prop universe are subject to

positivity check. We write positive ctrs t to denote that the set of type constructors ctrs only appear

positively in type t. Aura’s positivity constraint is a simplified version of the strictly positivity

constraints. When t is t1 t2, ctrs only appear positively in t if ctrs appear positively in t1 but do not

appear in t2. When t is (x : t1) → t2, ctrs only appear positively in t if ctrs appear positively in t2

but do not appear in t1.

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 147

positive ctrs t

positive ctrs ctr

positive ctrs t1 ctrs ∩ ctrs of t2 = ∅
positive ctrs t1 t2

positive ctrs t2 ctrs ∩ ctrs of t1 = ∅
positive ctrs (x : t1)→ t2

wf dom(defns)

wf dom(·)

wf dom(defns)
dom(cdecls) ∩ dom(defns) = ∅ ctr /∈ dom(defns) ctr /∈ dom(cdecls)

wf dom((defns with data ctr : t {cdecls}))

get tctr defns(defns)

get tctr defns(·) = ·

get tctr defns(defns) = defns′

get tctr defns(defns with data c : t {cdecls}) = defns′ with data c : t {·}

Figure B.2: Auxiliary Definitions

Judgment wf dom(defns) checks that the type constructors and the data constructors are

uniquely declared in defns. Finally, we define a function get tctr defns(defns) that strips off the

data constructor declarations and returns only the type constructor definitions in defns.

The main judgments in checking the well-formedness of signatures are listed below.

Well-formed signatures S ` �

Well-formed definitions P; S1; S2 ` defns

Well-formed type constructors S ` defns : t

Well-formed data constructors P; S1; S2; ctr; t ` cdecls

Note the first two judgments require two signatures. This is because a datatype’s declaration

may mention constructors defined in the same bundle (e.g. defns) by mutual recursion. Such a

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 148

P; S1; S2; ctr; t ` cdecls

P; S1; S2; ctr; k ` · WF-CTR-DECLS-NIL

P; S1; S2; ctr; k ` cdecls (c, n) /∈ dom(cdecls) S1; S2; · ` t : T
t = x1 : s1 → x2 : s2 · · · → xm : sm → (ctr x1 · · ·xn)
k = k1 → · · · → kn → K where K = Type or Prop

m ≥ n positive P t

P; S1; S2; ctr; k ` cdecls|(c, n) : t
WF-CTR-DECLS-CONS

P; S1; S2 ` defns

P; S1; S2 ` · WF-BUNDLE-CTR-NIL

P; S1; S2 ` defns P; S1; S2; ctr; t ` cdecls

P; S1; S2 ` (defns with data ctr : t {cdecls})
WF-BUNDLE-CTR-CONS

Figure B.3: Aura signature typing rules

declaration is checked under a provisional assumption that the rest of its bundle is well-formed.

One signature, S1, is extended with only new type constructors. The other, S2, is extended with

the datatype’s entire bundle. The careful separation of S1 and S2 allows us to prove decidability

of type checking by induction on the structure of S1, while adding—via S2—necessary provisional

assumptions. We return to this point in Appendix B.

Judgment P; S1; S2; ctr; t ` cdecls checks that the data constructors cdecls defined for ctr are

well-formed. The signatures S1 and S2 are as explained above. P is a set of type constructors that

can only appear positively in the types in cdecls. The type t is the type of ctr.

Judgment P; S1; S2 ` defns checks that a definition is well-formed. S1, S2, and P have the same

meaning as above. Judgment S ` defns : t checks the well-formedness of the types given to the

type constructors in defns. Finally, S ` � is the top level judgment for signature well-formedness.

A summary of the rules for type checking signatures is presented in Figure B.3. Judgment S ` �

is recursively defined over the structure of S. The rule WF-ASSERT applies when the signature’s last

bundle an assertion. It checks that the assertion’s type constructs a Prop and is classified by Kind.

The rule WF-DEFN-TYPE applies when the bundle under scrutiny is composed of datatype defini-

tions in universe Type. It checks that the declared constructors are unique, and that the definitions

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 149

S ` defns : t

S; S; · ` t : Kind

S ` · : t
WF-TCTR-NIL

S ` defns : k S; S; · ` t : Kind t = (x1 : t1)→ · · · (xn : tn)→ k

S ` (defns with data ctr : t {cdecls}) : k
WF-TCTR-CONS

S ` �

· ` � WF-SIG-NIL

S ` �
S; · ` t : Kind t = (x1 : t1)→ · · · (xn : tn)→ Prop ctr /∈ dom(S)

S, assert ctr : t ` �
WF-ASSERT

S ` � S ` defns : Type wf dom(defns)
dom(defns) ∩ dom(S) = ∅ ·; (S, get tctr defns(defns)); (S, defns) ` defns

S, defns ` �
WF-DEFN-TYPE

S ` � S ` defns : Prop wf dom(defns) dom(defns) ∩ dom(S) = ∅
dom(defns); (S, get tctr defns(defns)); (S, defns) ` defns

S, defns ` �
WF-DEFN-PROP

Aura signature typing rules (cont.)

in defns are well-formed in the current signature. The WF-DEFN-PROP rule is similar to the WF-

DEFN-TYPE rule except that the definitions are in the Prop universe and occurrences of new type

constructors are subject to a positivity constraint. Both the WF-DEFN-TYPE and WF-DEFN-PROP

rules call an auxiliary judgments using two signatures as described above.

A bundle is checked for well-formedness by separately examining new type constructors and

the new data constructors. A bundle’s type constructors are analyzed by S ` defns : t. The

straightforward judgments ensures that the type constructors are well-formed and construct types of

the proper kind.

A bundle’s data constructors are analyzed by judgment:

P; S1; S2; ctr; t ` cdecls.

The rule WF-CTR-DECLS-CONS checks the main invariants for data constructors. These are:

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 150

S1; S2 ` E

S1; S2 ` · WF-ENV-NIL

S1; S2 ` E S1; S2; E ` t : k x fresh

S1; S2 ` E, x : t
WF-ENV-CONS-VAR

S1; S2 ` E S1; S2; E ` t1 : k S1; S2; E ` t2 : k
atomic S2 k S1; S2; E ` k : Type val(t1) val(t2) x fresh

S1; S2 ` E, x∼(t1 = t2):k
WF-ENV-CONS-EQ

Figure B.4: Aura environment typing rules

1. Data constructor declarations do not introduce name conflicts.

2. The data constructor’s type, t, is well-formed.

3. t is a curried arrow type with m-many arguments.

4. t’s first n arguments (note n ≤ m) instantiate type datatype’s (e.g. ctr’s) parameters.

5. t obeys the positivity constraint relative to the names in P . For declarations in Type, P will

be empty. For non-trivial declarations in Prop, P will be non-empty.

Summary of Typing Rules

Environment typing rules The typing rules for environments are in Figure B.4. The first two

rules are standard. The last rule WF-ENV-CONS-EQ ensures that an equality binding in the environ-

ment is well-formed. Aura allows equality tests between two values of atomic types; therefore, t1

and t2 have an atomic type k, and k is classified by Type. Since there is no β equivalence at the

type level, t1 and t2 both have to be values.

Term typing rules We summarize the term typing rules in Figures B.5 and B.6. As we mentioned

earlier, the typing judgment for terms needs to take two signature arguments. The typing rules

for terms presented in Section 3.3 is a simplified version and only takes one signature argument.

However, most of simplified rules can be made precise just by adding a second signature to the

typing judgment. The only interesting differences are in the WF-TM-CTR, WF-TM-MATCHES and

WF-TM-IF rules where one of the two signatures has to be picked for looking up the types of the

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 151

S1; S2 ` E

S1; S2; E ` Type : Kind
WF-TM-TYPE

S1; S2 ` E

S1; S2; E ` Prop : Kind
WF-TM-PROP

S1; S2 ` E S1(ctr) = t

S1; S2; E ` ctr : t
WF-TM-CTR

S1; S2 ` E E(x) = t

S1; S2; E ` x : t
WF-TM-FV

S1; S2; E, x : t1 ` t2 : k2 k2 ∈ {Type,Prop,Kind}
S1; S2; E ` (x : t1)→ t2 : k2

WF-TM-ARR

S1; S2; E ` t : k S1; S2; E, x : t ` u : k1

S1; S2; E ` (x : t)→ k1 : k2 k ∈ {Type,Prop,Kind} k2 ∈ {Type,Prop}
S1; S2; E ` λx : t. u : (x : t)→ k1

WF-TM-ABS

S1; S2; E ` t1 : (x :u2)→ u S1; S2; E ` t2 : u2 val(t2) or x /∈ fv(u)
S1; S2; E ` t1 t2 : {x/t2}u

WF-TM-APP

S1; S2; E ` e : s
s = ctr a1 a2 · · · an S1(ctr) = (x1 : t1)→ · · · (xn : tn)→ u

branches cover S2 branches ctr S1; S2; E; s; (a1, · · · , an) ` branches : t
S1; S2; E ` s : u S1; S2; E ` t : u u ∈ {Type,Prop}

S1; S2; E ` match e t with {branches} : t
WF-TM-MATCHES

Figure B.5: Aura typing rules, extended, functional programing

constructors or for looking up the data constructors of a type constructor. The two signatures only

differ when checking the types in datatype declarations; and that when they differ, S1 is always

well-formed but does not contain the data constructors definitions for the bundle that is currently

being examined, while S2 contains the complete data type declarations. S1 is used for looking up

the types of constructors, and S2 is used for operations that need to look up the data constructors

in a datatype declaration. Therefore, in the WF-TM-CTR rule, the type of ctr is looked up in S1; in

the WF-TM-MATCHES rule, S2 is used to check branches coverage; and in the WF-TM-IF rule, S2

is used to perform the check of atomic types.

Pattern matching Lastly we explain the typing rules for pattern matching, which are listed in

Figure B.7. The judgment for checking branches has the form S1; S2; E; s; args ` branches : t

where s is the type of the term being analyzed, args is the list of type parameters in s, and t is

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 152

S1; S2 ` E

S1; S2; E ` prin : Type
WF-TM-PRIN

S1; S2 ` E

S1; S2; E ` self : prin
WF-TM-SELF

S1; S2; E ` a : prin S1; S2; E ` P : Prop

S1; S2; E ` a saysP : Prop
WF-TM-SAYS

S1; S2; E ` a : prin val(a) S1; S2; E ` p : P S1; S2; E ` P : Prop

S1; S2; E ` returns a p : a saysP
WF-TM-SAYS-RET

S1; S2; E ` e1 : a saysP
S1; S2; E ` e2 : (x :P)→ a saysQ x /∈ fv(Q)

S1; S2; E ` binds e1 e2 : a saysQ
WF-TM-SAYS-BIND

S1; S2; · ` a : prin S1; S2; · ` P : Prop

S1; S2; E ` sign(a, P) : a saysP
WF-TM-SIGN

S1; S2; E ` P : Prop

S1; S2; E ` sayP : pf self saysP
WF-TM-SAY

S1; S2; E ` P : Prop

S1; S2; E ` pf P : Type
WF-TM-PF

S1; S2; E ` p : P S1; S2; E ` P : Prop

S1; S2; E ` returnp p : pf P
WF-TM-PF-RET

S1; S2; E ` e1 : pf P S1; S2; E ` e2 : (x :P)→ pf Q x /∈ fv(Q)
S1; S2; E ` bindp e1 e2 : pf Q

WF-TM-PF-BIND

S1; S2; E ` v1 : k S1; S2; E ` v2 : k atomic S2 k
val(v1) val(v2) S1; S2; E, x∼(v1 = v2):k ` e1 : t S1; S2; E ` e2 : t

S1; S2; E ` if v1 = v2 then e1 else e2 : t
WF-TM-IF

S1; S2; E ` e : s converts E s t

S1; S2; E ` 〈e : t〉 : t
WF-TM-CAST

Figure B.6: Aura typing rules, extended, access control

APPENDIX B. FORMAL AURA LANGUAGE DEFINITIONS 153

S1; S2; E; s; args ` branches : t

S1; S2; E; s; args ` · : t

S1; S2; E; s; args ` b : tr S1(c) = tc S1; S2; E ` body : tb S1; S2; s; args; tc; tb; tr ` �
S1; S2; E; s; args ` b| c ⇒ body : tr

S1; S2; s; args; tc; tb; tr ` �

S1; S2; s; ·; s; t; t ` �
S1; S2; s; ·; t;u; k ` �

S1; S2; s; ·; (x : t1)→ t; (x : t1)→ u; k ` �

S1; S2; s; args; {a/x}t;u; k ` �
S1; S2; s; a, args; (x : t1)→ t;u; k ` �

Figure B.7: Aura branch set typing rules

the result type of the match. For instance, if s is List nat, the args is (nat). The rule for the above

judgments make use of judgment S1; S2; s; args; tc; tb; tr ` � for checking the type invariants of

each branch.

In the judgment S1; S2; s; args; tc; tb; tr ` �, s and args have the same meaning as before, tc is

the type of the data constructor being matched against in the branch, i.e. the type of cons, tb is the

type of the body of the branches, and tr is the result of the pattern match. We illustrate the rules

through the following example branch.

cons→ λ x: nat. λ xs: List nat. b

In this branch, b is the branch body. The result of the pattern match is tr = nat and s =List nat.

tc = (x :Type)→ (y :x)→ (z : List x)→ List x.

tb = (x :nat)→ (xs : List nat)→ nat.

Intuitively, the types of the arguments that the branch body takes is directly linked to the ar-

gument types of cons, and the return type of the branch body should be the same as tr. In type

checking this branch, first we apply tc to the list of type parameters args (the third rule). In doing

so, we reveal the arguments that the branch body should take. Then we check that the tb takes

the same arguments as required by tc (the second rule). In the end, we should reach a state where

s = tc, and tb = tr (the first rule).

Appendix C

Mechanized Auraconf definitions

This appendix provides the definitions of Auraconf’s syntax and semantics as a deep embedding in

Coq. These definition are known to compile under Coq version 8.1pl3.

Auraconf is formalized in Coq using a locally nameless variable representation (Aydemir et al.,

2008). Free variables are represented by names, and bound variables by de Bruijn indices (de Bruijn,

1972). Some typing rules, like abstraction, need to locally treat a bound variable as free. The vari-

able’s new name may be selected from any co-finite subset of names. This representation provides

for convenient induction principals.

One nonstandard aspect of these definitions is the handling of built-in operators, such as

bind e1 e2. Instead of adding special productions to the syntax, we treated bind e1 e2 as two appli-

cations written in Coq as tm app (tm app TM PF BIND e1) e2. Though initially appealing this deci-

sion was problematic. When inverting the type derivation of a bind expression, one must rule out

the case that tm app TM PF BIND e1 is applied to e2 via the application rule. Such uninteresting in-

versions result in substantial overhead in the proofs. We introduced an alternative meta-application

operator, tm mapp, to avoid this problem with constructs added later in proof development.

This development is heavily based on the Coq scripts used to define Aura0 and core Aura.

Limin Jia, in particular, did a tremendous job refining these language definitions and developing

their metatheory.

154

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 155

C.1 Syntax

(∗∗∗ An encoding of the core language in Pure−Type−Systems−style, using
∗ multiple typing judgments to differentiate syntactic classes.
∗
∗ This approach is inspired by the PTS work and by the Henk intermediate
∗ language proposed by Simon Peyton Jones and Erik Meijer.
∗)

(∗∗ Terms −− these are the common datatype on which types, expressions,
∗ kinds, etc. are built .
∗)

Definition bv := nat.
Definition con := nat.
Definition ctr := prod nat nat.
(∗ the second nat indicate the number of params∗)
(∗ e.g. cons = (n, 1), because List: Type→Type∗)

Inductive principal const : Set :=
pc intro : string → principal const .

Inductive tm : Set :=
| tm fv : atom→tm (∗ free variables ∗)
| tm bv : bv→ tm (∗ bound variables ∗)
| tm con : con→ tm (∗ built−in constants like Type, Prop, says, sign, or IO ∗)
| tm ctr : ctr → tm (∗ user defined constructors, like Bool and List ∗)
| tm app : tm→ tm→ tm (∗ applications like (e1 e2) or e1[t]∗)
| tm mapp : tm→tm→ tm (∗ meta application not typable using arr rule (experimental) ∗)
| tm prin : principal const → tm (∗ principals ∗)
| tm abs : tm→ tm→ tm→ tm (∗ abstractions \ (x: t) .e or /\ (a ::K).e ∗)
| tm arr : tm→ tm→ tm→ tm (∗ dependent products (x:t) → e with a latent effect

annotation ∗)
| tm mat : tm→ tm→ tm→ tm (∗ single−level pattern matching ∗)
| tm brn : ctr → tm→ tm→ tm (∗ branch in the case construct ∗)
| tm cast : tm→ tm→ tm→ tm (∗ cast(e, t , reason) : t ∗)
| tm enc : tm→ tm→ nat → tm (∗ E(p, e, n) ∗)
| tm letat : tm→ tm→ tm→ tm (∗ let x at w = e1 in e2 ∗)
| tm forbnd : tm→ tm→ tm→ tm (∗ bind x at w = e1 in e2 ∗) .

Inductive world : Set :=
| w prin : tm→ world
| w bot : world
| w top : world.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 156

C.2 Environments

Inductive bnd : Set :=
| bnd var : tm→ world→ bnd
| bnd eq : tm→ tm→ tm→ world→ bnd
.

Notation ”a ˜: t @ U” := (a ˜ bnd var t U)
(at level 31, left associativity) : env scope.

Definition binds var x t V E :=
binds x (bnd var t V) E.

Definition binds eq x e1 e2 t V E :=
binds x (bnd eq e1 e2 t V) E.

Definition env := env bnd.

Inductive std bound var (E: env) (x: atom): Prop :=
sbv: forall t V, binds var x t V E→ std bound var E x.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 157

C.3 Constants and Worlds

(∗ Case list terminator ∗)
Definition TM NONE := tm con 00.

(∗ Sort constants ∗)
Definition S KIND := tm con 1. (∗ Box i .e. Type : S KIND and Prop : S KIND ∗)

(∗ Kind constants ∗)
Definition K TYPE := tm con 10.
Definition K PROP := tm con 11.

(∗ Prop constants ∗)
Definition P SAYS := tm con 20.
Definition P ISA := tm con 21.

(∗ Type constants ∗)
Definition T PRIN := tm con 30.
Definition T PF := tm con 31.
Definition T FOR := tm con 32.
Definition T BITS := tm con 33.

(∗ Expr constants ∗)
Definition TM PF RETURN := tm con 40.
Definition TM PF BIND := tm con 41.
Definition TM SAY := tm con 42.
Definition TM PIF := tm con 43.
Definition TM FOR RET := tm con 45.
Definition TM FOR BIND := tm con 46.
Definition TM FOR RUN := tm con 47.
Definition TM AS BITS := tm con 48.

(∗ Proof constants ∗)
Definition PF SAYS RETURN := tm con 50.
Definition PF SAYS BIND := tm con 51.
Definition PF SIGN := tm con 52.

(∗ Meta−terms ∗)
Definition STM FAIL := tm con 60.
Definition STM CONV CAST := tm con 61.
Definition STM TRUE CAST := tm con 62.
Definition STM JUST CAST := tm con 63.
Definition STM WORLD BOT := tm con 64.
Definition STM WORLD PRIN := tm con 65.
Definition STM WORLD TOP := tm con 66.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 158

(∗∗
∗ Simple Worlds
∗)

(∗ Simple world represent ”physical” keys ∗)
Inductive simple world: world→ Prop :=
| sw bot: simple world w bot
| sw const: forall p, simple world (w prin (tm prin p)) .

(∗∗
∗ More worlds
∗)

Definition world to tm (W: world): tm :=
match W with
| w bot⇒ STM WORLD BOT
| w prin p ⇒ tm mapp STM WORLD PRIN p
| w top⇒ STM WORLD TOP
end.

Inductive world lteq: world→ world→ Prop :=
wl refl : forall (W: world), world lteq W W
| wl bot : forall (W: world), world lteq w bot W
| wl top : forall (W: world), world lteq W w top.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 159

C.4 Values

(∗∗
∗ Value forms
∗)

(∗ Note:

This definition must change whenever new constants
are added to the language.
− other principal constants
− built−in values like 0, 1, 2, ”foo ”, etc.

∗)

Inductive value : tm→ Prop :=
| value TYPE: value K TYPE
| value PROP: value K PROP
| value KIND: value S KIND
| value var : forall x, value (tm fv x)
| value abs : forall t e U,

value (tm abs t e U)
| value app : forall t ,

applied value t → value t
| value prin : forall p, value (tm prin p)

| value arr : forall t1 t2 U, value (tm arr t1 t2 U)

| value sign: forall v p, value v → value (tm app (tm app PF SIGN v)p)

| value P SAYS: forall v p, value (tm app (tm app P SAYS v) p)
| value T PRIN: value T PRIN
| value T BITS: value T BITS
| value T FOR: forall a t , value (tm mapp (tm mapp T FOR a) t)
| value T ISA: forall e t , value (tm mapp (tm mapp P ISA e) t)
| value T PF: forall P, value (tm app T PF P)

(∗ We don’t care whether p contains redexes, since it is a proof ∗)
| value TM PF RETURN : forall p,

value p → value (tm app TM PF RETURN p)
| value PF SAYS RETURN: forall a p,

value (tm app (tm app PF SAYS RETURN a) p)
| value PF SAYS BIND: forall e1 e2, value (tm app (tm app PF SAYS BIND e1) e2)
| value enc: forall e1 e2 n, value (tm enc e1 e2 n)
| value cast true : forall v t ,

value v →
value (tm cast v t STM TRUE CAST)

| value cast just : forall v1 t v2,
value v1→
value v2→
value (tm cast v1 t (tm mapp STM JUST CAST v2))

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 160

(∗ applied values may safely use the tm app construct without
introducing any evaluation ∗)

with applied value : tm→ Prop :=
| applied value ctr : forall c, applied value (tm ctr c)
| applied value app : forall t1 t2 ,

applied value t1
→ value t2
→ applied value (tm app t1 t2)

.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 161

C.5 Type Signatures

(∗∗
∗ Signatures
∗)

(∗∗ Datatype definitions :

A signature [sig] is a list of bundles of mutually recursive Type (or Prop) declarations.

A bundle [bundle] is either a list of datatype definitions [data decl] or an assertion

Each data declaration contains:
− a Type (or Prop) constructor [tctr] identifier .
− the kind of the Type/Prop being declared
− a list of constructor [ctr] declarations [ctr decls]

CONVENTION: We use the notation [tctr] to refer to a Type or Prop constructor identifier .
We use the notation [ctr] to refer to an exp or proof constructor identifier .
Both [tctr] and [ctr] values have Coq type [ctr] (both ranged over by [c])

∗)

(∗ Definition of datatype declarations in the context ∗)
Definition ctr decls := list (ctr ∗ tm).
Definition data decl := (ctr ∗ tm ∗ (option ctr decls))%type.
Definition defns := list data decl.
Inductive bundle : Set :=
| bundle defns : defns→ bundle
| bundle assert : ctr → tm→ bundle
.
Definition sig := list (bundle).

(∗ Utilities for working with signatures ∗)

Definition dom ctr decls(L:ctr decls) :=
List .map (fun (x:ctr∗tm)⇒ let (n,) := x in n) L.

Fixpoint ctr decls lookup (c: ctr) (cdl : ctr decls) {struct cdl}: option tm :=
match cdl with
| nil ⇒ None
| (c ’, t) :: cdl ⇒

if (eq ctr dec c c ’) then Some t
else ctr decls lookup c cdl

end.

Fixpoint bundle defns ctr lookup (c: ctr) (defns: defns) {struct defns}:
option tm :=

match defns with
| nil ⇒ None

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 162

| (c ’, t , None)::ds⇒
if (eq ctr dec c c ’) then Some t

else bundle defns ctr lookup c ds
| (c ’, t , Some cdl)::ds⇒

if (eq ctr dec c c ’) then Some t
else match ctr decls lookup c cdl with

| None⇒bundle defns ctr lookup c ds
| Some t⇒Some t

end
end.

(∗ Gets the kind/type associated with constructor c in signature S
Returns:

[None] if c isn ’ t in S
[Some t] if c’s kind/type is t in S

∗)
Fixpoint sig lookup ctr (c: ctr) (S:sig) {struct S}: option tm :=

match S with
| nil ⇒ None
| b::bs⇒ match b with

| bundle defns defns⇒
match bundle defns ctr lookup c defns with
| Some t⇒Some t
| None⇒sig lookup ctr c bs

end
| bundle assert ⇒ sig lookup ctr c bs

end
end.

(∗ Gets the kind/type associated with an assertion c in signature S
returns: [None] if c isn ’ t in S

[Some t] if c’s kind/type is t in S
∗)
Fixpoint sig lookup assn (c:ctr) (S:sig) {struct S}: option tm :=

match S with
| nil ⇒ None
| b::bs⇒ match b with

| bundle defns defns⇒sig lookup assn c bs
| bundle assert c’ t ⇒

if eq ctr dec c c’ then Some t else sig lookup assn c bs
end

end.

Definition ctr decls has (c: ctr) (t : tm) (cdl : ctr decls) :=
ctr decls lookup c cdl = Some t.

Definition defns has ctr (c: ctr) (tp : tm) (d:defns) :=
bundle defns ctr lookup c d = Some tp.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 163

Definition sig has ctr (c: ctr) (t : tm) (S:sig) : Prop :=
sig lookup ctr c S = Some t.

Definition sig has assn (c: ctr) (t : tm) (S:sig) : Prop :=
sig lookup assn c S = Some t.

Fixpoint get defns ctrs of (c: ctr) (d:defns) {struct d} : option (list ctr) :=
match d with
| nil ⇒ None
| (c ’, t , cdl) :: ds⇒

if eq ctr dec c c’
then match cdl with

| None⇒None
| Some cdl’⇒Some (dom ctr decls cdl’)

end
else get defns ctrs of c ds

end.

(∗ Gets the list of expression constructors for type c from the signature S.
Returns: [None] if c is temporarily undefined in S

[Some None] if c is not defined in
[Some l], where l is the list of term constructors, otherwise

∗)
Fixpoint get ctrs of (c: ctr) (S:sig) {struct S}: option (list ctr) :=

match S with
| nil ⇒ None
| b::bs⇒ match b with

| bundle defns d⇒
match get defns ctrs of c d with
| Some l⇒Some l
| None⇒get ctrs of c bs

end
| bundle assert ⇒ get ctrs of c bs

end
end.

Definition get tctr defns of (d:defns) : defns :=
let strip x :=

match x with (n,t,) ⇒ (n, t ,None) end
in
List .map strip d.

Fixpoint dom defns (d:defns) {struct d}: list ctr :=
match d with
| nil ⇒ nil
| (c, ,None)::ds⇒ c ::(dom defns ds)
| (c, ,Some cdl)::ds⇒ c ::(dom ctr decls cdl)++(dom defns ds)
end.

Fixpoint dom bundle (b:bundle) : list ctr :=

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 164

match b with
| bundle defns d⇒dom defns d
| bundle assert c t ⇒ c :: nil

end.

Definition dom sig (S: sig) : list ctr :=
List .flat map (dom bundle) S.

Inductive is tm arr : tm→ Prop :=
| is tm arr arr : forall t1 t2 U, is tm arr (tm arr t1 t2 U)
.

(∗ [constructs tm s] is intended to hold when [tm] has form
[t1 → ... → tn → s] and s is not an arrow ∗)

Inductive constructs : tm→ tm→ Prop :=
| constructs base : forall s, ˜(is tm arr s) → constructs s s
| constructs arr : forall s t1 t2 ,

constructs t2 s → constructs (tm arr t1 t2 STM WORLD BOT) s.

Inductive fully applied args : tm→ ctr → list tm→ Prop :=
| fully applied args ctr : forall c, fully applied args (tm ctr c) c nil
| fully applied args app : forall t tn c args,

fully applied args t c args→
fully applied args (tm app t tn) c (tn :: args)

.

Inductive fully applied typ : tm→ ctr → tm→ Prop :=
| fully applied TYPE : forall c, fully applied typ (tm ctr c) c K TYPE
| fully applied PROP : forall c, fully applied typ (tm ctr c) c K PROP
| fully applied typ app : forall k1 k2 t tn c,

fully applied typ t c k2→
fully applied typ (tm app t tn) c (tm arr k1 k2 STM WORLD BOT)

.

(∗
∗ All tm bv holds when the list of terms consists entirely of bound variables.
∗)

(∗ The ordering of bound variables are relevant∗)
Inductive all tm bv : nat → (list tm) → Prop :=
| all tm bv nil : forall n, all tm bv n nil
| all tm bv cons : forall l n, all tm bv (n+1) l → all tm bv n ((tm bv n) :: l) .

(∗ has level t n if t = t1 → ... → tn → s∗)
Inductive has level: tm→ nat → Prop:=
| has level base: forall u, ˜ is tm arr u → has level u 0
| has level arr : forall u n t U,

has level u n → has level (tm arr t u U) (1+n).

(∗ ctrs of t = l where l is a list of (posibly non−unique)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 165

nats where each n in l occurence in t as (tm ctr n) ∗)
Fixpoint ctrs of (t :tm) : list ctr :=

match t with
| tm fv ⇒ nil
| tm bv ⇒ nil
| tm con ⇒ nil
| tm ctr c ⇒ c :: nil
| tm app t1 t2 ⇒ (ctrs of t1) ++ (ctrs of t2)
| tm mapp t1 t2 ⇒ (ctrs of t1) ++ (ctrs of t2)
| tm prin ⇒ nil
| tm abs t1 t2 U ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of U)
| tm arr t1 t2 U ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of U)
| tm mat t1 t2 t3 ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of t3)
| tm brn c t2 t3 ⇒ (ctrs of t2) ++ (ctrs of t3)
| tm cast t1 t2 t3 ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of t3)
| tm enc ⇒ nil (∗ encryptions are opaque ∗)
| tm letat t1 t2 t3 ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of t3)
| tm forbnd t1 t2 t3 ⇒ (ctrs of t1) ++ (ctrs of t2) ++ (ctrs of t3)
end.

Definition disjoint (L1 L2: list ctr) := forall n, (In n L1) → ˜(In n L2).

(∗ [positive (n 1, ... n m) t] is intended to hold
when construtor application of [n i] appear at most
positively in [t]. As definied this judgment is very
conservative ∗)

Inductive positive (ctrs : list ctr) : tm→ Prop :=
| positive arr : forall t1 t2 U,

disjoint ctrs (ctrs of t1)
→ positive ctrs t2
→ positive ctrs (tm arr t1 t2 U)

| positive app: forall t1 t2 ,
positive ctrs t1

→ disjoint ctrs (ctrs of t2)
→ positive ctrs (tm app t1 t2)

| postive ctr : forall n,
positive ctrs (tm ctr n).

Inductive branches cover aux : (list ctr) → tm→ Prop :=
| bca nil : branches cover aux nil TM NONE
| bca cons : forall c l t branches,

branches cover aux l branches→
branches cover aux (c::l) (tm brn c t branches).

(∗ [branches cover S branches ctr] is intended to hold when [branches] contains exactly
one [tm brn] per term constructor which creates a [ctr]. ∗)

Definition branches cover (S:sig) (branches:tm) (ctr : ctr) : Prop :=
exists l , get ctrs of ctr S = Some l /\ branches cover aux l branches.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 166

C.6 Conversion Relation

(∗∗
∗ Conversion relation
∗)

(∗ Note: E may contain conversion assumptions of
∗ the form: e1 = e2 : t
∗)

(∗ The world here is a dynamic world, which is used to
∗ index definitional equalities (x: t1 = t2 @ W) in the
∗ environment. Perhaps this is not currently useful .
∗ It would be useful if conversion included full beta−reduction ∗)

Inductive converts: env→ world→ tm→ tm→ Prop :=
(∗ equivalence axioms ∗)
| conv refl : forall E w t, lc t → converts E w t t

| conv sym : forall E w t1 t2 ,
converts E w t1 t2

→ converts E w t2 t1

| conv trans : forall t3 E w t1 t2 ,
converts E w t1 t2

→ converts E w t2 t3
→ converts E w t1 t3

(∗ definitional equality ∗)
| conv axiom : forall E w t1 t2 k V x,

binds eq x t1 t2 k V E
→ world lteq V w
→ converts E w t1 t2

(∗ congruence axioms ∗)
| conv app : forall E w t1 t2 u1 u2,

converts E w t1 u1
→ converts E w t2 u2
→ converts E w (tm app t1 t2) (tm app u1 u2)

| conv mapp : forall E w t1 t2 u1 u2,
converts E w t1 u1

→ converts E w t2 u2
→ converts E w (tm mapp t1 t2) (tm mapp u1 u2)

| conv abs : forall L E w t1 t2 u1 u2 U V,
converts E w t1 u1

→ (forall x, x\notin L → converts E w (t2 ˆˆ tm fv x) (u2ˆˆtm fv x))
→ converts E w U V
→ converts E w (tm abs t1 t2 U) (tm abs u1 u2 V)

| conv arr : forall L E w t1 t2 u1 u2 U V,

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 167

converts E w t1 u1
→ converts E w U V
→ (forall x, x\notin L → converts E w (t2 ˆˆ tm fv x) (u2ˆˆtm fv x))
→ converts E w (tm arr t1 t2 U) (tm arr u1 u2 V)

| conv letat : forall L E w e11 e12 e21 e22 U1 U2,
converts E w U1 U2

→ converts E w e11 e21
→ (forall x, x \notin L →

converts E w (e12 ˆˆ tm fv x) (e22 ˆˆ tm fv x))
→ converts E w (tm letat U1 e11 e12) (tm letat U2 e21 e22)

| conv forbnd : forall L E w e11 e12 e21 e22 U1 U2,
converts E w U1 U2

→ converts E w e11 e21
→ (forall x, x \notin L →

converts E w (e12 ˆˆ tm fv x) (e22 ˆˆ tm fv x))
→ converts E w (tm forbnd U1 e11 e12) (tm forbnd U2 e21 e22)

.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 168

C.7 Atomic Types

Inductive all enum decls: sig → list ctr → Prop :=
| all enum decls base: forall S, all enum decls S nil
| all enum decls ind1: forall S c n l , all enum decls S l →

sig has ctr c (tm ctr n) S→
all enum decls S (c :: l) .

Inductive atomic type: sig → tm→ Prop :=
| atomic type prin: forall S, atomic type S T PRIN
| atomic type ctr : forall S t l ,

get ctrs of t S = (Some l)→
all enum decls S l →
atomic type S (tm ctr t) .

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 169

C.8 Fact Contexts

(∗∗
∗ Fact contexts
∗)

Inductive fact ctx : Set :=
| fc empty : fact ctx
| fc cons : tm→ tm→ fact ctx → fact ctx .

Inductive fctx has: fact ctx → tm→ tm→ Prop :=
| fc here : forall F e t , fctx has (fc cons e t F) e t
| fc there : forall F e1 t1 e2 t2,

fctx has F e1 t1 → fctx has (fc cons e2 t2 F) e1 t1.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 170

C.9 Notation for Syntax

(∗∗
∗ Notation for common objects
∗)

Notation ”t ’FOR’ B” := (tm mapp (tm mapp T FOR t) B) (at level 68).
Notation ”t1 ’ ISA’ t2” := (tm mapp (tm mapp P ISA t1) t2) (at level 68).
Notation ”A ’SAYS’ P” := (tm app (tm app P SAYS A) P) (at level 68).
Notation ”’PF’ P” := (tm app T PF P) (at level 68).
Notation ”’FORRET’ [A , t] e” := (tm mapp(tm mapp(tm mapp TM FOR RET A) t) e)

(at level 68).
Notation ”’FORBND’ [A , t , e1 , e2]” := (tm forbnd (t FOR A) e1 e2)

(at level 68).
Notation ”’ASBITS’ e” := (tm mapp TM AS BITS e) (at level 68).
Notation A := (tm prin (pc intro ”Alice ”)) .
Notation B := (tm prin (pc intro ”Bob”)).
Notation C := (tm prin (pc intro ”Charlie”)) .
Notation ”’ tbot ’” := (world to tm w bot).
Notation ”’SAY’ [a] p” := (tm mapp (tm mapp TM SAY a) p) (at level 68).
Notation ”’FORRUN’ e” := (tm mapp TM FOR RUN e) (at level 68).
Notation ”’FAIL’ p” := (tm mapp STM FAIL p) (at level 68).
Notation ”’WORLD’ t” := (tm mapp STM WORLD BOT t) (at level 68).
Notation ”’SIGN’ [a] p” := (tm app (tm app PF SIGN a) p) (at level 68).

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 171

C.10 Typing Relation

(∗∗
∗ Typing rules
∗)

(∗ Not well−formed, just good−enough approximation of typing
to be used under ASBITS ∗)

Inductive ge tm (E: env): tm→ tm→ Prop :=
ge tm var: forall x t V, binds var x t V E→ ge tm E (tm fv x) t
| ge tm enc: forall a e n, ge tm E (tm enc a e n) T BITS
| ge tm cast: forall e t A r ,

value (tm cast e (t FOR A) r)→
ge tm E e T BITS→
lc r →
lc (t FOR A)→
(forall x,

x \in (fv r) \u (fv (t FOR A))→
std bound var E x)→

ge tm E (tm cast e (t FOR A) r) (t FOR A).

Inductive wf env (S:sig) (F: fact ctx) : world→ env→ Prop :=

(∗
simple world W
−−−−−−−−−−−−−−−−−−

S; F; W |− .
∗)
| wf env nil : forall W,

simple world W→
wf env S F W empty

(∗
S; F; W |− E
S; F; W; E; V; U |− t : k
x # E
<< side condition on t and k >>
−−−−−−−−−−−−−−−−−−−−
S |− E & x ˜: t @ V

∗)
| wf env cons var : forall k x t E W V,

wf env S F W E (∗premise is superfluous, but
avoids mutual inductions
later on ∗)

→ wf world S F W E V
→ wf tm S F W E w bot w bot t k
→ x # E
→ (k = K TYPE \/ k = K PROP) \/

((t = K TYPE \/ t = K PROP)
/\ V = w bot)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 172

→ wf env S F W (E & x ˜: t @ V)

(∗ S; F; W |− E
S; F; W; E; | ; U |− e1 : Prin
S; F; W; E; | ; U |− e2 : Prin
atomic S
val e1, e2
x # E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S; F; w bot |− E & x ˜ e1 = e2 : Prin

∗)
| wf env cons eq : forall x e1 e2 t W V U E,

wf env S F W E
→ wf tm S F W E w bot U e1 t
→ wf tm S F W E w bot U e2 t
→ atomic type S t
→ x # E
→ value e1
→ value e2
→ wf tm S F W E w bot w bot t K TYPE
→ wf world S F W E V
→ wf env S F W (E & x ˜ (bnd eq e1 e2 t V))

with wf world (S: sig) (F: fact ctx) : world→ env→ world→ Prop :=

(∗
∗ S; F; W |− E
∗ −−−−−−−−−−−−−−−−−−−
∗ S; F; W; E |− bot
∗)
| wf world bot: forall W E,

wf env S F W E→
wf world S F W E w bot

(∗
∗ S; F; W; E; bot; bot |− p: prin
∗ value p
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E |− (p)
∗)
| wf world prin : forall W E p,

wf tm S F W E w bot w bot p T PRIN→
value p →
wf world S F W E (w prin p)

(∗
∗ S; F; W |− E
∗ −−−−−−−−−−−−−−−−−−−
∗ S; F; W; E |− top
∗)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 173

| wf world top: forall W E,
wf env S F W E→
wf world S F W E w top

with wf worlds (S: sig) (F: fact ctx) : world→ env→ world→
world→ Prop :=

(∗
∗ S; F; W; E |− U
∗ S; F; W; E |− V
∗ S; F; W; E; V; U |− ok ∗)
| wf worlds intro : forall W E V U,

wf world S F W E V→
wf world S F W E U→
wf worlds S F W E V U

with wf tm (S:sig) (F: fact ctx) :
world→ env→ world→ world→ tm→ tm→ Prop :=

(∗
∗ S; F; W; E; V; U |− ok
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E; V; U |− Type : Kind
∗
∗)

| wf tm K TYPE : forall W E V U,
wf worlds S F W E V U→
wf tm S F W E V U K TYPE S KIND

(∗
∗ S;F;W;E;V;U |− ok
∗ −−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− Prop : Kind
∗
∗)

| wf tm K PROP : forall W E V U,
wf worlds S F W E V U→
wf tm S F W E V U K PROP S KIND

(∗
∗ S; F; W; E, x:u1 @w bot | wbot ; bot; bot|− u2: k2
∗ S; F; W: E; wbot; wbot|− u1 : k1
∗ S; F; W; E; V; U |− ok
∗ S; F; W; E; V; U0 |− ok
∗ k2 = Type/Prop/Kind
∗ k1 = Type/Prop or u1 = Type/Prop
∗ S; F; W; E |− U0
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W: E; w bot; w bot |− (x:k1) −−U0→ u2 : k2

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 174

∗)
| wf tm arr : forall L W E u1 u2 k1 k2 V U U0,

wf tm S F W E w bot w bot u1 k1→
wf worlds S F W E V U→
wf worlds S F W E V U0→
(forall x,

x \notin L →
wf tm S F W (E & x ˜: u1 @ w bot) w bot w bot (u2 ˆˆ (tm fv x)) k2) →

k2 = K TYPE \/ k2 = K PROP \/ k2 = S KIND→
u1 = K TYPE \/ u1 = K PROP \/ k1 = K TYPE \/ k1 = K PROP→
wf tm S F W E V U (tm arr u1 u2 (world to tm U0)) k2

(∗
∗ S; F; W; E |− V // WAS in Aura
∗ S; F; W; E; V; U |− t : k // New rule, rules out pathological
∗ types which don’t upgrade/promote due to the
∗ presence of modal operators, such as let−as;
∗ for now, sticking with the old rule
∗ (c : t) \in S where c is a constructor
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E; V; U |− c : t
∗
∗)
| wf tm ctr : forall W E c t V U,

wf worlds S F W E V U→
sig has ctr c t S→
wf tm S F W E V U (tm ctr c) t

(∗
∗ S; F; W; E; V; U |− ok
∗ (c : t) \in S where c is an assumption
∗ −−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E; V; U |− c : t
∗
∗)
| wf tm assn : forall W E c t V U,

wf worlds S F W E V U→
sig has assn c t S→
wf tm S F W E V U (tm ctr c) t

(∗
∗ S; F; W; E; V; U |− ok
∗ (x : t) @ V0 \in E
∗ V0 <= V
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E; V; U |− x: t
∗)
| wf tm var : forall V0 W E x t V U,

wf worlds S F W E V U→

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 175

binds var x t V0 E→
world lteq V0 V→
wf tm S F W E V U (tm fv x) t

(∗
∗ S; F; W; E; bot; bot|− u 1: k 1
∗ S; F; W; E,x:u1 @bot ; V; U0 |− fˆx: u 2
∗ S; F; E; W; w bot; w bot |− (x:u 1) −U0→ u2 : k
∗ k \in {Type, Prop}
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; F; W; E; V; U |− abs f : (x: u 1) −U0> u 2
∗)
| wf tm abs: forall L k k1 W E V U u1 u2 f U0,

wf tm S F W E w bot w bot u1 k1→
wf worlds S F W E V U0→
(forall x,

x \notin L →
wf tm S F W (E & x ˜: u1 @ w bot) V U0 (f ˆˆ tm fv x) (u2 ˆˆ tm fv x)) →

wf tm S F W E V U (tm arr u1 u2 (world to tm U0)) k→
k = K TYPE \/ k = K PROP→
k1 = K TYPE \/ k1 = K PROP \/ u1 = K TYPE \/ u1 = K PROP→
wf tm S F W E V U (tm abs u1 f (world to tm U0))

(tm arr u1 u2 (world to tm U0))

(∗
∗ S; F; W; E; V; U|− e1 : (x:t2) −−U→ u
∗ S; F; W; E; V; U2 |− e2 : t2
∗ S; F; W; E; V; U |− u{e2/x} : ku
∗ S; F; W; E; V; U |− t2 : k2
∗ value e2 /\ U2 = w bot
∗ or
∗ lc u /\ kinding restrictions /\ U2 = U
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; E |− e1 e2 : u{e2/x}
∗)
| wf tm app: forall u ku k2 U2 W E V U e1 e2 t2 U latent,

wf tm S F W E V U e1 (tm arr t2 u (world to tm U latent))
→ wf tm S F W E w bot U2 e2 t2
→ wf tm S F W E V U t2 k2
→ wf tm S F W E V U (u ˆˆ e2) ku
→ (value e2 /\ U2 = w bot)

\/
(ku = K TYPE /\ lc u /\ U2 = U)
\/

((k2 = K PROP \/ k2 = S KIND) /\ lc u /\ U2 = U)
→ world lteq U latent U
→ wf tm S F W E V U (tm app e1 e2) (u ˆˆ e2)

(∗
e1 e2 is ok when

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 176

∗ e2 is a pure value
∗ e1 is a non−dependent term, classified by a type, ”an ml function ,”

that is , ku = K TYPE
∗ e1 is not dependent, e2 is a pure expression
− and e2 is in prop, e2 : t2 : PROP
− or e2 is type−level, e2 : t2 : KIND

∗)

(∗
∗ S; F; W; E; V1; U |− e1 : t1
∗ S; F; W; E, x:t1 @V1 ; V; U |− e2 :t
∗ x \notin fv t
∗ −−
∗ S; F; W; E; V; U |− let x at V1 = e1 in e2: t
∗)
| wf tm letat : forall L W E V U V1 e1 e2 t1 t k,

wf tm S F W E V1 U e1 t1→
wf worlds S F W E V V1→
wf tm S F W E w bot w bot t1 k→
(k = K TYPE \/ k = K PROP)→
(forall x,

x \notin L →
wf tm S F W (E & x ˜: t1 @ V1) V U (e2 ˆˆ (tm fv x)) t) →

world lteq V1 V→
wf tm S F W E V U (tm letat (world to tm V1) e1 e2) t

(∗
∗ S; F; W; E; B; U |− e1 : t1 for B
∗ S; F; W; E, x:t1 @B ; B; B |− e2 :t
∗ x \notin fv t
∗ −−
∗ S; F; W; E; V; U |− forbind x [t1 B] = e1 in e2: t for B
∗)
| wf tm forbnd: forall L W E V U B e1 e2 t1 t,

wf tm S F W E (w prin B) U e1 (t1 FOR B)→
wf world S F W E (w prin B)→
wf tm S F W E w bot w bot t1 K TYPE→
wf tm S F W E w bot w bot (t FOR B) K TYPE→
wf world S F W E V→
(forall x,

x \notin L →
wf tm S F W (E & x ˜: t1 @ (w prin B)) (w prin B) (w prin B)

(e2 ˆˆ (tm fv x)) (t FOR B))→
world lteq (w prin B) V→
wf tm S F W E V U (tm forbnd (t FOR B) e1 e2)

(t FOR B)

(∗∗ Language−specific constants ∗)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 177

(∗
∗ S;F;W;E;V;U |− v : T PRIN
∗ S;F;W;E;V;U|− P : K PROP (value v)
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;E |− v says p : K PROP
∗)
| wf tm P SAYS: forall W E V U v P,

wf tm S F W E V U v T PRIN
→ wf tm S F W E V w bot P K PROP (∗ A shortcut: We could get this from

higher in the derivation tree , but
putting it here simplifies induction. ∗)

→ value v
→ wf tm S F W E V U (tm app (tm app P SAYS v) P) K PROP

(∗ signatures:
∗
∗ Signatures should be unambiguous, in standard Aure we require that
∗ v and p check in the empty environment. Likewise, Aura−Conf requries
∗ that the dynamic environment be empty as well.
∗
∗ S;F;W;.;bot; U|− v : Prin
∗ value v
∗ S;F;W;.;bot; U |− p : Prop
∗ S;F;W;E;V; U |− p : Prop
∗ −−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V; U |− sign(v, p) : a says p
∗)
| wf tm PF SIGN : forall W E V U v p,

wf tm S F W empty w bot w bot v T PRIN
→ value v
→ wf tm S F W empty w bot w bot p K PROP
→ wf tm S F W E V U p K PROP
→ wf tm S F W E V U (tm app (tm app PF SIGN v) p) (tm app (tm app P SAYS v) p)

(∗
∗ S;F;W;E;V;U |− ok
∗ −−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− Prin : Type
∗)
| wf tm T PRIN : forall W E V U,

wf worlds S F W E V U
→ wf tm S F W E V U T PRIN K TYPE

(∗
∗ S;F;W;E;V;U |− ok
∗ S;F;W;E;V;U |− Bits: Type
∗)
| wf tm T BITS : forall W E V U,

wf worlds S F W E V U
→ wf tm S F W E V U T BITS K TYPE

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 178

(∗
∗ S;F;W;E;V;U |− t : Type
∗ S;F;W;E;V;U |− A : Prin
∗ −−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− t for A : Type
∗)
| wf tm T FOR : forall W E V U t a,

wf tm S F W E V w bot t K TYPE
→ wf tm S F W E V w bot a T PRIN
→ wf worlds S F W E V U
→ value t
→ value a
→ wf tm S F W E V U (t FOR a) K TYPE

(∗
∗ S;F;W;E;V;U |− P : K PROP
∗ −−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− pf P : Type
∗)
| wf tm T PF : forall W E V U P,

wf tm S F W E V w bot P K PROP (∗ another shortcut ∗)
→ wf worlds S F W E V U
→ wf tm S F W E V U (tm app T PF P) K TYPE

(∗
∗ S;F;W;E;V;U |− p : P
∗ S;F;W;E;V;U |− P : K PROP
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− return pf p : (Pf P)
∗)
| wf tm TM PF RETURN : forall W E V U p P,

wf tm S F W E w bot w bot p P
→ wf tm S F W E V U P K PROP (∗ another shortcut ∗)
→ wf worlds S F W E V U
→ wf tm S F W E V U (tm app TM PF RETURN p) (tm app T PF P)

(∗
∗ S;F;W;E;V;U |− e1 : (Pf P)
∗ S;F;W;E;V;U |− e2 : (x:P)→ (Pf Q) x \notin (fv Q)
∗ −−−
∗ S;F;W;E;V;U |− bind e1 e2 : (Pf Q)
∗)

(∗ NOTE: x can’t do a ’dependent−let’ style typing rule
because there’s nothing appropriate to substitute for x in Q ∗)

| wf tm TM PF BIND : forall P W E V U e1 e2 Q,
wf tm S F W E V U e1 (tm app T PF P)

→ wf tm S F W E V U e2 (tm arr P (tm app T PF Q) STM WORLD BOT)
→ lc Q
→ wf tm S F W E V U (tm app (tm app TM PF BIND e1) e2)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 179

(tm app T PF Q)

(∗
∗
∗ S;F;A;E;bot;bot |− P : K PROP
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;A;E;V;A |− say P : (Pf (A says P))
∗)
| wf tm TM SAY : forall W A E V U P ,

wf tm S F W E w bot w bot P K PROP
→ wf worlds S F W E V U
→ wf tm S F W E w bot w bot A T PRIN
→ world lteq (w prin A) U
→ value A
→ wf tm S F W E V U

(SAY [A] P)
(tm app T PF (tm app (tm app P SAYS A) P))

(∗
∗ S;F;W;E;w bot;U|− v1 : T1 (value v1)
∗ S;F;W;E;w bot;U|− v2 : T1 (value v2)
∗ S |− atomic [] T1
∗ S;F;W; E,v1=v2 @ w bot; V; U |− e1 : T
∗ S;F;W;E;V;U|− e2 : T
∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U|− PIF v1 v2 e1 e2 : T
∗)
| wf tm TM PIF : forall L W E V U v1 v2 e1 e2 T T1,

wf tm S F W E w bot U v1 T1
→ wf tm S F W E w bot U v2 T1
→ atomic type S T1
→ value v1
→ value v2
→ (forall x,

x \notin L →
wf tm S F W (E & x ˜ (bnd eq v1 v2 T1 w bot)) V U e1 T

)
→ wf tm S F W E V U e2 T
→ wf tm S F W E w bot w bot T1 K TYPE
→ wf tm S F W E V U

(tm app (tm app (tm app (tm app TM PIF v1) v2) e1) e2)
T

(∗ Generalizing SELF rule ∗)
(∗
∗ S;F;W;E |− V
∗ −−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V |− self : Prin
∗)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 180

| wf tm prin const : forall W E V U p,
wf worlds S F W E V U

→ wf tm S F W E V U (tm prin p) T PRIN

(∗
∗ S;F;W;E;V |− p : P
∗ S;F;W;E;V |− P : K PROP
∗ S;F;W;E;V |− a : T PRIN (value a)
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V |− return says a p : (a says P)
∗)
| wf tm PF SAYS RETURN : forall W E V U p P a,

wf tm S F W E V w bot p P (∗ another shortcut ∗)
→ wf tm S F W E V w bot P K PROP
→ wf tm S F W E V U a T PRIN
→ value a
→ wf tm S F W E V U (tm app (tm app PF SAYS RETURN a) p)

(tm app (tm app P SAYS a) P)

(∗
∗ S;F;W;E;V |− p1 : a says P
∗ S;F;W;E;V |− p2 : (x:P) → a says Q (x \notin (fv Q))
∗ −−−
∗ S;F;W;E;V |− bind p1 p2 : a says Q
∗)
| wf tm PF SAYS BIND : forall P W E V U a p1 p2 Q,

wf tm S F W E V w bot p1 (tm app (tm app P SAYS a) P)
→ wf tm S F W E V w bot p2 (tm arr P (tm app (tm app P SAYS a) Q) STM WORLD BOT)
→ lc Q
→ wf worlds S F W E V U
→ wf tm S F W E V U (tm app (tm app PF SAYS BIND p1) p2)

(tm app (tm app P SAYS a) Q)

(∗
∗ Pattern Matching
∗)
| wf tm mat TYPE: forall W E V U e s branches result typ ctr args k,

wf tm S F W E V U e s→
wf tm S F W E V U s K TYPE→ (∗ s is a TYPE ... ∗)
fully applied args s ctr args→ (∗ ... and is a fully applied to (List .

reverse [args]) ∗)
sig has ctr ctr k S→ (∗ ... which the sig says is a type con ∗)
fully applied typ s ctr k →

wf tm S F W E V U result typ K TYPE→ (∗ Homogeneous elimination only ∗)
wf branches S F W E V U s (List.rev args) branches result typ →

(∗ check branches ∗)
branches cover S branches ctr→ (∗ Coverage check ∗)
wf tm S F W E V U (tm mat e result typ branches) result typ

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 181

| wf tm mat PROP: forall W E V U e s branches result typ ctr args k,
wf tm S F W E V U e s→
wf tm S F W E V U s K PROP→ (∗ s is a PROP ... ∗)
fully applied args s ctr args→ (∗ ... and is a fully applied to (List .

reverse [args]) ∗)
sig has ctr ctr k S→ (∗ ... which the sig says is a type con ∗)
fully applied typ s ctr k →

wf tm S F W E V U result typ K PROP→ (∗ Homogeneous elimination only ∗)
wf branches S F W E V U s (List.rev args) branches result typ →

(∗ check branches ∗)
branches cover S branches ctr→ (∗ Coverage check ∗)
wf tm S F W E V U (tm mat e result typ branches) result typ

(∗ S; W; F; E; V; U; |− ok
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S; W; F; E; V; U; |− enc(A,e,n): bits ∗)
| wf tm enc: forall W E V U A e n,

wf worlds S F W E V U→
wf tm S F W E V U (tm enc A e n) T BITS

(∗ S; W; F; E; V; U |− e: t
∗ S; W; F; E; V; U |− ok
∗ S; W; F; E; V; U |− t FOR A : TYPE
∗ A <= V
∗ −−−
∗ S; W; E; V; U; |− return (t for A) e: (t FOR A) ∗)
| wf tm TM FOR RET: forall W E V U A e t,

wf tm S F W E (w prin A) (w prin A) e t →
wf worlds S F W E V U→
wf tm S F W E w bot w bot (t FOR A) K TYPE→
world lteq (w prin A) V→
wf tm S F W E V U (FORRET [A, t] e) (t FOR A)

(∗
∗ S;F;W;E;V;U |− ok
∗ good−enough E e (t FOR A)
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− ASBITS e : bits
∗)
| wf tm TM AS BITS: forall W E V U e t A,

wf worlds S F W E V U→
ge tm E e (t FOR A)→
wf tm S F W E V U (ASBITS e) (T BITS)

| wf tm P ISA: forall W E V U e t B,
wf tm S F W E V U (t FOR B) K TYPE→
wf tm S F W E V U e T BITS→
value e →
wf tm S F W E V U (e ISA (t FOR B)) K PROP

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 182

(∗
∗ S;F;W;E;V;U |− e : t FOR A
∗ A <= V
∗ A <= U
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ S;F;W;E;V;U |− run e : t
∗)
| wf tm TM FOR RUN: forall W E V U e t A,

wf tm S F W E V U e (t FOR A)→
world lteq (w prin A) V→
world lteq (w prin A) U→
wf tm S F W E V U (FORRUN e) t

(∗ Conversion rule:
∗
∗ S;F;W;E;V;U |− e : t1
∗ S;F;W;E;V;U |− t1 : K TYPE
∗ S;F;W;E;V;U |− t2 : K TYPE
∗ S;E |− t1 == t2
∗ −−−−−−−−−−−−−−−−−−
∗ S;E |− cast(e, t2 , CONV) : t2
∗)
| wf tm cast conv : forall W E V U e t1 t2,

wf tm S F W E V U e t1
→ wf tm S F W E V U t2 K TYPE (∗ added to make proof easier ∗)
→ converts E V t1 t2
→ wf tm S F W E V U (tm cast e t2 STM CONV CAST) t2

(∗ Fact Cast ∗)
(∗
∗ Enc(a,e,n): t for B \in F
∗ S;F;W;E;V;U |− t for B : TYPE
∗ B <= V
∗ −−
∗ S;F;W;E;V;U |− cast(Enc(a, e, n), t for B, TRUE),
∗)
| wf tm cast fact : forall W E V U a e n t B,

fctx has F (tm enc a e n) (t FOR B)→
wf tm S F W empty w bot w bot (t FOR B) K TYPE→

(∗ Facts with free type variables don’t make sense ∗)
wf worlds S F W E V U→
world lteq (w prin B) V→
wf tm S F W E V U (tm cast (tm enc a e n) (t FOR B) (STM TRUE CAST))

(t FOR B)

(∗ Decryption Cast ∗)
(∗
∗ S;F;W; . ;B;B |− e : t
∗ S;F;W;E;V;U |− t for B : Type
∗ B <= V

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 183

∗ −−
∗ S;F;B;E;V;U |− cast(Enc(B, e, n), t for B, TRUE),
∗)
| wf tm cast dec: forall E W V U e n t B,

wf tm S F W empty (w prin B) (w prin B) e t →
(∗ e is not allowed to dynamically reference variables (this

would break the strengthening lemma, and also does not
make sense. ∗)

wf tm S F W empty w bot w bot (t FOR B) K TYPE→
wf worlds S F W E V U→
wf world S F W empty (w prin B)→
world lteq (w prin B) V→
world lteq (w prin B) W→
wf tm S F W E V U

(tm cast (tm enc B e n) (t FOR B) (STM TRUE CAST))
(t FOR B)

(∗ Justified Cast ∗)
(∗
∗ S; F; W; E; V; U |− e2 : pf (A says (e1 isa (t for B)))
∗ S; F; W; E; V; U |− e2 : e1: bits
∗ S; F; W; E; | ; | |− t for B: TYPE
∗ −−−−−−−−−−−−−−−−−−−−−−−
∗)
| wf tm cast just : forall W E V U e1 t A B e2,

wf tm S F W E V U e2 (PF (A SAYS (e1 ISA (t FOR B))))→
wf tm S F W E V U e1 T BITS→
wf tm S F W E w bot w bot (t FOR B) K TYPE→
value e1→
wf tm S F W E V U (tm cast e1 (t FOR B) (tm mapp STM JUST CAST e2))

(t FOR B)

(∗ need secondary judgment to type check branches that records the
type we are matching ∗)

(∗ wf branches S E branches tctr args result typ ∗)
with wf branches (S:sig) (F: fact ctx) :

world→ env→ world→ world→ tm→ list tm→ tm→ tm→ Prop :=
| wf branches None : forall W E V U s args result type,

wf branches S F W E V U s args (TM NONE) result type

| wf branches Some : forall W E V U s args ectr ectr typ body body type rest result type ,
wf branches S F W E V U s args rest result type→
sig has ctr ectr ectr typ S→
wf tm S F W E V U body body type→
wf brn S F s args ectr typ body type result type U→
wf branches S F W E V U s args (tm brn ectr body rest) result type

(∗ wf brn ∗)
with wf brn (S:sig) (F: fact ctx) :

tm→ (list tm) → tm→ tm→ tm→ world→ Prop :=

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 184

(∗ Base case:
− The constructor takes no arguments, the datatype has no remaining parameters

so the type of the body must just be the result type of the match expression
− Example: when checking the ”Z” case of the datatype Nat:

data Nat : Type {
| Z : Nat
| S : Nat→ Nat
}

when pattern matching against a Nat, we have:
match e : Nat {
| Z→ body Z
| S→ \ (n:Nat).body S
}

∗)
| wf brn base :

forall s result type (U: world),
wf brn S F s nil s result type result type U

(∗ Inductive case:
− The constructor takes arguments in addition to the datatype parameters
− The parameters have already been stripped off, so the type of the body

must take an argument
− Continuing the example, when checking the successor branch for type Nat:

the constructor S has type Nat→Nat so the body should have type
Nat→ result typ
− The body should be of the form \ ([x]: Nat).body
− Note: This rule does not allow the result typ to depend on the

constructor argument
− Note: latent effects on branches must be bounded by provided world

∗)
| wf brn constructor arg :

forall L s T1 T U result typ (eff here : world) (eff bound: world),
(forall x,

x \notin L →
x \notin (fv result typ) →
wf brn S F s nil (Tˆˆ(tm fv x)) (Uˆˆ(tm fv x)) result typ eff bound) →

world lteq eff here eff bound→
wf brn S F s nil (tm arr T1 T (world to tm eff here))

(tm arr T1 U (world to tm eff here)) result typ eff bound

(∗ Inductive case:
− The datatype has a parameter (e.g. List : Type→Type)
− The type of the scrutinee is thus [tctr] applied to [args]
−We witness the generated equality by opening up the types

using the arguments in [args]

− For example: when checking the ’cons’ case of a match against
an expression of type (List Nat) we have [tctr] = List and
[args] = [Nat] The branch should look like:

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 185

match e {
| nil → body nil
| cons→\ (hd:0).\ (tl : List 1).body cons
}

∗)
| wf brn datatype param:

forall s arg args T1 T U eff here result type eff bound,
wf brn S F s args (T ˆˆ arg) U result type eff bound→
world lteq eff here eff bound→
wf brn S F s (arg ::args)

(tm arr T1 T (world to tm eff here)) U
result type eff bound

.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 186

C.11 Signature Well Formedness

(∗ wf sig : Ensures that a list of (mutually recursive sets of) data
∗ type declarations is well formed.
∗
∗ |− S wf
∗
∗)

Inductive wf dom defns: defns→Prop:=
| wf dom defns nil: wf dom defns nil
| wf dom defns cons: forall c k cdl d,

wf dom defns d→
disjoint (dom ctr decls cdl) (dom defns d)→
˜In c (dom ctr decls cdl) →
˜In c (dom defns d)→
wf dom defns ((c,k,Some cdl)::d)

| wf dom defns cons none: forall c k d,
wf dom defns d→
˜In c (dom defns d)→
wf dom defns ((c,k,None)::d).

Inductive wf dom sig: sig→ Prop:=
| wf dom sig nil: wf dom sig nil
| wf dom sig cons assn: forall c k S,

wf dom sig S→
˜ In c (dom sig S)→
wf dom sig (bundle assert c k::S)

| wf dom sig cons defns: forall d S,
wf dom defns d→
wf dom sig S→
disjoint (dom defns d) (dom sig S)→
wf dom sig (bundle defns d::S).

Inductive wf sig : sig → Prop :=

(∗
−−−−−−−−−−−−−−
|− nil wf sig
∗)
| wf sig nil : wf sig nil

(∗ assertion ∗)
| wf assertion : forall c k S,

wf sig S
→ wf tm S fc empty w bot empty w bot w bot k S KIND
→ constructs k K PROP
→ ˜(In c (dom sig S))

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 187

→ wf sig ((bundle assert c k) :: S)

(∗ Note: [b] means the bundle derived from b by considering only the type constructors in b
(and ignoring the constructors associated with them).

|− S wf sig
S |− b :: Type wf bundle tctrs
nil ; S,[b] |− b wf bundle ctrs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
|− S,b wf sig
∗)

| wf sig cons Type : forall (d:defns) (S:sig) ,
wf sig S

→ wf bundle tctrs S d K TYPE
→ disjoint (dom defns d) (dom sig S)
→ wf bundle ctrs nil ((bundle defns (get tctr defns of d)) :: S) d
→ wf dom defns d
→ wf sig ((bundle defns d)::S)

(∗ Note: [b] means the bundle derived from b by considering only the type constructors in b
(and ignoring the constructors associated with them).

|− S wf sig
S |− b :: Prop wf bundle tctrs
[b] ; S,[b] |− b wf bundle ctrs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
|− S,b wf sig
∗)
| wf sig cons Prop : forall (d:defns) (S:sig) ,

wf sig S
→ wf bundle tctrs S d K PROP
→ disjoint (dom defns d) (dom sig S)
→ wf bundle ctrs (dom defns (get tctr defns of d)) ((bundle defns (get tctr defns of

d)) :: S) d
→ wf dom defns d
→ wf sig ((bundle defns d)::S)

(∗ Ensures that each type constructor in the mutually recursive datatype
constructs an object (Type or Prop) of the same kind [k]
This means that props and types can’t be mutually recursively defined.

∗)
with wf bundle tctrs : sig → defns→ tm→ Prop :=

(∗
S;. |− k :: SORT
−−−−−−−−−−−−−−−−−−−−−−−
S |− nil :: k wf bundle tctrs

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 188

∗)
| wf bundle tctrs nil : forall S k,

wf tm S fc empty w bot empty w bot w bot k S KIND
(∗ Requires that k = Type or Prop ∗)

→ wf bundle tctrs S nil k

(∗
S |− b :: k wf bundle tctrs
c \notin dom (S,b)
S;. |− k : KIND
k == (x1:t1) → (x2:t2) → ... → K
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S |− (c,k,cdl) :: K wf bundle tctrs

∗)
| wf bundle tctrs cons : forall S c k K cdl d,

wf bundle tctrs S d K
→ ˜(In c (dom defns d)) (∗ c not already defined ∗)
→ wf tm S fc empty w bot empty w bot w bot k S KIND
→ constructs k K
→ wf bundle tctrs S ((c, k, cdl) :: d) K

(∗ First argument is a list of type constructors that must appear
positively in expression constructor types ∗)

with wf bundle ctrs : (list ctr) → sig → defns→ Prop :=

(∗ Note: could add |− S wf sig
(but that does a lot of re−checking of the signature)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P ; S |− nil wf bundle ctrs

∗)
| wf bundle ctrs nil : forall P S,

wf bundle ctrs P S nil

(∗
P ; S |− b wf bundle ctrs
P ; S |− c : k {cdl} wf ctr decls
dom (ctrs) \cap dom (b) = empty
dom (ctrs) \cap dom S = empty
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P ; S |− b and c:t {cdl} wf bundle ctrs

∗)
| wf bundle ctrs cons : forall P S c k cdl d,

wf bundle ctrs P S d
(∗ cdl is a well−formed constructor
∗ declaration list for c ∗)

→ wf ctr decls P S c k cdl
→ wf bundle ctrs P S ((c, k, Some cdl)::d)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 189

| wf bundle ctrs cons none : forall P S c k d,
wf bundle ctrs P S d
→ wf bundle ctrs P S ((c, k, None)::d)

with wf ctr decls : (list ctr) → sig → ctr → tm→ ctr decls → Prop :=
(∗
−−−−−−−−−−−−−−−−−
P ; S |− c : k {} wf ctr decls
∗)
| wf ctr decls nil : forall P S c k,

wf ctr decls S P c k nil

(∗
P ; S |− c : k {cdl} wf ctr decls
ctr \notin dom(cdl)
S ; . |− t : K
t == (x1:t1) → (x2:t2) → ... → (c x1 ... xm)
c inst = (c x1 ... xm) is saturated at kind k
constructors in P appear strictly positively in t
−−
P ; S |−
∗)
| wf ctr decls cons : forall K args c inst P S c k ctr n m t cdl ,

wf ctr decls P S c k cdl
→ ˜(In (ctr , n) (dom ctr decls cdl)) (∗ Constructor is used only once ∗)
→ wf tm S fc empty w bot empty w bot w bot t K (∗ Make sure the type definition

is of the right kind ∗)
→ has level t m
→ constructs t c inst (∗ t constructs an instance c inst ∗)
→ fully applied args c inst c args (∗ that is fully applied [c] of kind [k] ∗)
→ fully applied typ c inst c k
→ n = List . length args (∗ n is the number of args ∗)
→ ˜(m < n)
→ all tm bv (m−n) args (∗ and all the arguments are bound variables ∗)
→ positive P t (∗ Ensure tycons in P only occur positively ∗)
→ wf ctr decls P S c k (((ctr , n), t) :: cdl)

.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 190

C.12 Step Relation

Inductive step matches ctr: tm→ ctr → tm→ (tm ∗ nat ∗ list tm ∗ list tm) → Prop :=
| step matches ctr base: forall c body n,

step matches ctr (tm ctr (c, n)) (c, n) body (body, n, nil , nil)

| step matches ctr strip type arg : forall v1 v2 m c body args,
value v2

→ step matches ctr v1 c body (body, m, args, nil)
→ m > 0
→ step matches ctr (tm app v1 v2) c body (body, m−1, args++(v2::nil), nil)

| step matches ctr rec: forall v1 v2 c body e args args1,
value v2

→ step matches ctr v1 c body (e, 0, args, args1)
→ step matches ctr (tm app v1 v2) c body ((tm app e v2), 0, args, args1++ v2::nil)

.

Inductive step matches branches : tm→tm→tm→Prop :=
| step matches here: forall v c body rest e args args1,

step matches ctr v c body (e, 0, args, args1)
→ step matches branches v (tm brn c body rest) e

| step matches earlier: forall v c body rest e,
step matches branches v rest e

→ ˜ (exists r , step matches ctr v c body r)
→ step matches branches v (tm brn c body rest) e

.

Inductive step config : Type :=
sc basic : tm→ nat → step config.

Notation ”{| t , n |}” := (sc basic t n).

Inductive step (S: sig) (W:world) (F init : fact ctx) :
step config → step config → fact ctx → Prop :=

(∗ Computational rules ∗)

| step app: forall n t e v U,
value v

→ step S W F init {|(tm app (tm abs t e U) v) , n|}
{|(e ˆˆ v) , n |}
fc empty

| step letat : forall n V v1 e2,
value v1

→ step S W F init {| tm letat V v1 e2, n|} {|e2 ˆˆ v1, n|} fc empty

| step forbnd: forall n A t v e,
value v

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 191

→ step S W F init
{|FORBND [(tm prin A), t, v, e], n|}
{|tm cast (tm enc (tm prin A)

(tm letat (tm mapp
STM WORLD PRIN
(tm prin A)) (FORRUN v)

(FORRUN e))
n)

(t FOR (tm prin A))
STM TRUE CAST, 1+n |}

(fc cons (tm enc (tm prin A)
(tm letat (tm mapp

STM WORLD PRIN
(tm prin A)) (FORRUN v)

(FORRUN e))
n)

(t FOR (tm prin A)) fc empty)

| step pf bind : forall n p f ,
value f

→ value p
→ step S W F init

{|tm app (tm app TM PF BIND (tm app TM PF RETURN p)) f, n|}
{|tm app f p, n|} fc empty

| step say: forall A n p,
world lteq (w prin A) W→
step S W F init

{|SAY [A] p, n|}
{|tm app TM PF RETURN (tm app (tm app PF SIGN A) p), n|}
fc empty

| step pif1 : forall n v1 v2 e1 e2,
v1 = v2 (∗ note −− in principle, this should be equality defined

for runtime−principal values ∗)
→ step S W F init

{|tm app (tm app (tm app (tm app TM PIF v1) v2) e1) e2, n|}
{|e1, n|} fc empty

| step pif2 : forall n v1 v2 e1 e2,
v1 <> v2 (∗ note −− in principle, this should be equality defined

for runtime−principal values ∗)
→ step S W F init

{|tm app (tm app (tm app (tm app TM PIF v1) v2) e1) e2, n|}
{|e2, n|} fc empty

| step mat: forall n v t branches e,
value v

→ step matches branches v branches e
→ step S W F init {|tm mat v t branches, n|} {|e, n|} fc empty

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 192

| step ret for : forall A e t n,
step S W F init

{|FORRET [(tm prin A), t] e , n|}
{|tm cast (tm enc (tm prin A) e n)

(t FOR (tm prin A)) STM TRUE CAST, 1+n |}
(fc cons (tm enc (tm prin A) e n) (t FOR (tm prin A)) fc empty)

| step as bits : forall e1 e2 t n0 reason n,
value (tm cast (tm enc e1 e2 n0) t reason)→
step S W F init

{|ASBITS (tm cast (tm enc e1 e2 n0) t reason), n|}
{|tm enc e1 e2 n0, n|} fc empty

| step for run ok : forall n e0 A0 n0 t r ,
value (tm cast (tm enc A0 e0 n0)

(t FOR A0) r)
→ wf tm S F init W empty (w prin A0) (w prin A0) e0 t
→ world lteq (w prin A0) W
→ step S W F init

{|FORRUN (tm cast (tm enc A0 e0 n0)
(t FOR A0) r), n |}

{|e0, n|} fc empty

| step for run ill typed : forall n e0 A0 n0 t p,
value (tm cast (tm enc A0 e0 n0)

(t FOR A0)
(tm mapp STM JUST CAST p))

→ world lteq (w prin A0) W (∗ can decrypt ∗)
→ ˜ (wf tm S F init W empty (w prin A0) (w prin A0) e0 t) (∗ but can’t typecheck ∗)
→ step S W F init

{|FORRUN (tm cast (tm enc A0 e0 n0)
(t FOR A0)
(tm mapp STM JUST CAST p)), n |}

{|FAIL p, n|} fc empty

| step for run junk : forall n (A0: tm) e0 n0 t B p,
value (tm cast (tm enc A0 e0 n0)

(t FOR B)
(tm mapp STM JUST CAST p))

→ world lteq (w prin B) W (∗ decryption ought to succeed ∗)
→ A0 <> B (∗ but the cyphertext isn’ t encrypted with the correct key,

or maybe not any valid key at all ∗)
→ step S W F init

{|FORRUN (tm cast (tm enc A0 e0 n0)
(t FOR B)
(tm mapp STM JUST CAST p)), n |}

{|FAIL p, n|} fc empty

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 193

| step cast: forall n v t ,
value v

→ step S W F init {|tm cast v t STM CONV CAST, n|}
{|v, n|} fc empty

(∗ Stuctural congruence rules ∗)

| step app cong1: forall n e1 e1’ e2 n’ F,
step S W F init {|e1, n|} {|e1’, n ’|} F

→ step S W F init {|tm app e1 e2, n|} {|tm app e1’ e2, n’|} F

| step app cong2: forall n t e1 U e2 e2’ n’ F,
step S W F init {|e2, n|} {|e2’, n ’|} F

→ step S W F init {|tm app (tm abs t e1 U) e2, n|}
{|tm app (tm abs t e1 U) e2’, n ’|} F

| step app cong3: forall n v e2 e2’ n’ F,
applied value v

→ step S W F init {|e2, n|} {|e2’, n ’|} F
→ step S W F init {|tm app v e2, n|} {|tm app v e2’, n ’|} F

| step letat cong1: forall n V e1 e2 e1’ n’ F,
step S W F init {|e1, n|} {|e1’,n ’|} F

→ step S W F init {| tm letat V e1 e2, n|} {| tm letat V e1’ e2, n’|} F

| step forbnd cong: forall n V e1 e2 e1’ n’ F,
step S W F init {|e1, n|} {|e1’,n ’|} F

→ step S W F init {|tm forbnd V e1 e2, n|} {|tm forbnd V e1’ e2, n’|} F

| step pf ret cong: forall n e1 e1’ n’ F,
step S W F init {|e1, n|} {|e1’, n ’|} F

→ step S W F init {|tm app TM PF RETURN e1, n|}
{|tm app TM PF RETURN e1’, n’|} F

| step pf bind cong1: forall n e1 e1’ e2 n’ F,
step S W F init {|e1, n|} {|e1’, n ’|} F

→ step S W F init {|tm app (tm app TM PF BIND e1) e2, n|}
{|tm app (tm app TM PF BIND e1’) e2, n’|} F

| step pf bind cong2: forall n e1 e2 e2’ n’ F,
value e1

→ step S W F init {|e2, n|} {|e2’, n ’|} F
→ step S W F init {|tm app (tm app TM PF BIND e1) e2, n|}

{|tm app (tm app TM PF BIND e1) e2’, n’|} F

| step for run cong: forall n e e’ n’ F,
step S W F init {|e, n|} {|e ’, n ’|} F

→ step S W F init {|FORRUN e, n|} {|FORRUN e’, n’|} F

| step mat cong: forall n e1 e1’ branches t n’ F,

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 194

step S W F init {|e1, n|} {|e1’, n ’|} F
→ step S W F init {|tm mat e1 t branches, n|}

{|tm mat e1’ t branches, n’|} F

| step cast cong1: forall n e1 e1’ t reason n’ F,
step S W F init {|e1, n|} {|e1’, n ’|} F

→ step S W F init {|tm cast e1 t reason, n|}
{|tm cast e1’ t reason, n’|} F

| step cast cong2: forall n e1 e2 e2’ t n’ F,
value e1

→ step S W F init {|e2, n|} {|e2’, n ’|} F
→ step S W F init {|tm cast e1 t (tm mapp STM JUST CAST e2), n|}

{|tm cast e1 t (tm mapp STM JUST CAST e2’), n’|} F
.

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 195

C.13 Blame

Inductive blame mapp op: tm→Prop :=
bmo for: blame mapp op T FOR
| bmo isa: blame mapp op P ISA
| bmo forret: blame mapp op TM FOR RET
| bmo say: blame mapp op TM SAY
| bmo forrun: blame mapp op TM FOR RUN
| bmo justcast: blame mapp op STM JUST CAST
| bmo ind: forall e1 e2, blame mapp op e1→blame mapp op (tm mapp e1 e2).

(∗ This definition is is simplified by making all builtin
operations constants ∗)

Inductive blames (p: tm): tm→ Prop :=
bl exact : blames p (FAIL p)
| bl app l : forall e1 e2,

blames p e1→blames p (tm app e1 e2)
| bl app r : forall e1 e2,

blames p e2→blames p (tm app e1 e2)
| bl mapp l : forall e1 e2,

blames p e1→blames p (tm mapp e1 e2)
| bl mapp r : forall e1 e2,

blame mapp op e1→
blames p e2→blames p (tm mapp e1 e2)

| bl letat : forall U e1 e2,
blames p e1→blames p (tm letat U e1 e2)

| bl forbnd : forall U e1 e2,
blames p e1→blames p (tm forbnd U e1 e2)

| bl mat : forall e t bs,
blames p e→blames p (tm mat e t bs)

| bl cast 1 : forall e t r ,
blames p e→blames p (tm cast e t r)

| bl cast 2 : forall e t r ,
blames p r→ blames p (tm cast e t r) .

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 196

C.14 Similarity

Inductive similar (W: world): tm→ tm→ Prop :=
| sim fv: forall x, similar W (tm fv x) (tm fv x)
| sim bv: forall n, similar W (tm bv n) (tm bv n)
| sim con: forall n, similar W (tm con n) (tm con n)
| sim ctr : forall c, similar W (tm ctr c) (tm ctr c)
| sim app: forall t1 t2 u1 u2,

similar W t1 t2 →
similar W u1 u2→
similar W (tm app t1 u1) (tm app t2 u2)

| sim mapp: forall t1 t2 u1 u2,
similar W t1 t2 →
similar W u1 u2→
similar W (tm mapp t1 u1) (tm mapp t2 u2)

| sim prin: forall p, similar W (tm prin p) (tm prin p)
| sim abs: forall t1 e1 U1 t2 e2 U2,

similar W t1 t2 →
similar W e1 e2→
similar W U1 U2→
similar W (tm abs t1 e1 U1) (tm abs t2 e2 U2)

| sim arr: forall s1 t1 U1 s2 t2 U2,
similar W s1 s2→
similar W t1 t2 →
similar W U1 U2→
similar W (tm arr s1 t1 U1) (tm arr s2 t2 U2)

| sim mat: forall e1 t1 b1 e2 t2 b2,
similar W e1 e2→
similar W t1 t2 →
similar W b1 b2→
similar W (tm mat e1 t1 b1) (tm mat e2 t2 b2)

| sim brn: forall c e1 e2 b1 b2,
similar W e1 e2→
similar W b1 b2→
similar W (tm brn c e1 b1) (tm brn c e2 b2)

| sim cast: forall e1 t1 r1 e2 t2 r2,
similar W e1 e2→
similar W t1 t2 →
similar W r1 r2 →
similar W (tm cast e1 t1 r1) (tm cast e2 t2 r2)

| sim enc decrypt: forall a e1 e2 n1 n2,
world lteq (w prin (tm prin a)) W→
similar W e1 e2→
similar W (tm enc (tm prin a) e1 n1)

(tm enc (tm prin a) e2 n2)
| sim enc opaque: forall a1 a2 e1 e2 n1 n2,

˜(world lteq (w prin (tm prin a1)) W)→
˜(world lteq (w prin (tm prin a2)) W)→
similar W (tm enc (tm prin a1) e1 n1)

(tm enc (tm prin a2) e2 n2)

APPENDIX C. MECHANIZED AURACONF DEFINITIONS 197

| sim letat : forall U1 s1 t1 U2 s2 t2,
similar W U1 U2→
similar W s1 s2→
similar W t1 t2 →
similar W (tm letat s1 t1 U1) (tm letat s2 t2 U2)

| sim forbnd: forall U1 s1 t1 U2 s2 t2,
similar W U1 U2→
similar W s1 s2→
similar W t1 t2 →
similar W (tm forbnd s1 t1 U1) (tm forbnd s2 t2 U2).

	Introduction
	Motivation
	An Overview of Aura
	Aura in the Context of Practical Programming
	Contributions
	Bibliographic Notes

	Aura: Programming with Audit in Aura
	Introduction
	Kernel Mediated Access Control
	The Logic
	Examples
	Discussion
	Related Work

	Aura: A Language for Authorization and Audit
	Introduction
	Programming in Aura
	The Aura Core Language
	Validation and Prototype Implementation
	An Extended Example
	Related Work

	Confidentiality in Aura
	Introduction
	Confidential Computations and the For-Monad
	Examples
	Language Definition
	Discussion
	Related Work

	Conclusion
	Summary
	Possible Extensions

	References
	Proofs for Aura0
	Formal Aura language definitions
	Mechanized Auraconf definitions
	Syntax
	Environments
	Constants and Worlds
	Values
	Type Signatures
	Conversion Relation
	Atomic Types
	Fact Contexts
	Notation for Syntax
	Typing Relation
	Signature Well Formedness
	Step Relation
	Blame
	Similarity

