
AURA: Programming with
authorization and audit

Jeff Vaughan

Department of Computer and Information Science
University of Pennsylvania

Thesis Defense
September 28, 2009

A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

A distributed access control example

(DancingQueen, Alice)

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song)→ (p: prin) → Mp3Of s

1/39

International Cartel for Fonograph Players Policy

Policy Statement (Simple):
Songs have one or more owners.
An owner may authorize principals to play songs he owns.

Policy Enforcement Problems (Hard):
distributed decision making
mutual distrust
prominent use of delegation

2/39

International Cartel for Fonograph Players Policy

Policy Statement (Simple):
Songs have one or more owners.
An owner may authorize principals to play songs he owns.

Policy Enforcement Problems (Hard):
distributed decision making
mutual distrust
prominent use of delegation

2/39

AURA: Enforce policy with proof carrying access control.

Programs build proofs attesting to their access rights.

Proof components
standard rules of inference
evidence capturing principal intent (e.g. signatures)

AURA runtime:
checks proof structure (well-typedness)
logs appropriate proofs for later audit

Proof Carrying Code [Necula+ ’98], Grey Project [Bauer+ ’05],
Protocol Analysis [Fournet+ ’07], Aura [CSF ’08, ICFP ’08]

3/39

Encoding policy at the ICFP server

shareRule ≡ ICFP says (
(o: prin) → (s: Song)→ (r : prin) →
(Owns o s)→
(o says (MayPlay r s)) →
(MayPlay r s)))

playFor: (s: Song)→ (p: prin) →
pf (ICFP says (MayPlay p s))→ Mp3Of s

Key Property

A program can only call playFor when it has an appropriate
access control proof.

4/39

Encoding policy at the ICFP server

shareRule ≡ ICFP says (
(o: prin) → (s: Song)→ (r : prin) →
(Owns o s)→
(o says (MayPlay r s)) →
(MayPlay r s)))

playFor: (s: Song)→ (p: prin) →
pf (ICFP says (MayPlay p s))→ Mp3Of s

Key Property

A program can only call playFor when it has an appropriate
access control proof.

4/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

sign(ICFP,shareRule):
 ICFP says shareRule

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

ICFP says ...

Alice says ...

shareRule

ICFP says (MayPlay Bob, TakeFive)

...

...

 p

⎫⎜⎜⎬⎜⎜⎭
5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

Auditor

5/39

Using the ICFP policy.

5/39

Using the ICFP policy.

Signatures used to
grant Bob access to TakeFive:

sign(ICFP,shareRule):
 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

5/39

Access control alone can’t ensure some properties.

6/39

Access control alone can’t ensure some properties.

6/39

Access control alone can’t ensure some properties.

6/39

AURAconf protects confidential data.

Types provide a formal description of confidentiality policy.
Encryption provides an enforcement mechanism.
Encryption works the level of (lazy) data values—not
communication channels.

Design Motivation

Secure sessions are transient.
Secure data is persistent.

7/39

for types described encrypted data.

playForEnc: (s: Song)→ (p: prin) →
pf (ICFP says MayPlay p s)→
(Mp3Of s) for p

8/39

for types described encrypted data.

10111001

playForEnc: (s: Song)→ (p: prin) →
pf (ICFP says MayPlay p s)→
(Mp3Of s) for p

8/39

for types described encrypted data.

10111001

playForEnc: (s: Song)→ (p: prin) →
pf (ICFP says MayPlay p s)→
(Mp3Of s) for p

8/39

for types described encrypted data.

10111001

?

playForEnc: (s: Song)→ (p: prin) →
pf (ICFP says MayPlay p s)→
(Mp3Of s) for p

8/39

Outline

1 Introduction

2 Review of Core AURA

3 A Confidentiality Extension for AURA

4 Conclusion

9/39

Review of Core AURA

10/39

Aura’s says modality represents affirmation.

The proposition “principal Alice affirms proposition P.”

Alice says P: Prop

Principals may actively affirm propositions with signatures.

sign(Alice, P): Alice says P

Principals affirm “true” propositions

return Alice p: Alice says P

when p: P.

DCC [Abadi+ ’06], Logic with Explicit Time [DeYoung+ ’08]

11/39

Assertions define access control predicates.

Example (Example: An assertion definition)

assert Owns: prin→ Song→ Prop

Intuition: Assertions ≈ type variables.
Assertions have no introduction form.

Owns is uninhabited
But A says Owns B S is inhabited by signs.

Assertions have no elimination form.
There are no “naive” proofs of

ICFP says (Owns Bob Thriller)→
(P:Prop)→ ICFP says P.

cf. Noninterference in DCC [Abadi ’07]

12/39

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P: Prop)→ Bob says P→ P)

Example (Bob acts for Alice only regarding jazz)

Alice says ((s: Song)→ isJazz s →
Bob says (MayPlay Bob s)→ MayPlay Bob s)

Restricted formulation of dependent types:
expressive enough for access control and confidentiality
too weak for general correctness properties
AURA feels more like ML than Coq

13/39

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P: Prop)→ Bob says P→ P)

Example (Bob acts for Alice only regarding jazz)

Alice says ((s: Song)→ isJazz s →
Bob says (MayPlay Bob s)→ MayPlay Bob s)

Restricted formulation of dependent types:
expressive enough for access control and confidentiality
too weak for general correctness properties
AURA feels more like ML than Coq

13/39

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P: Prop)→ Bob says P→ P)

Example (Bob acts for Alice only regarding jazz)

Alice says ((s: Song)→ isJazz s →
Bob says (MayPlay Bob s)→ MayPlay Bob s)

Restricted formulation of dependent types:
expressive enough for access control and confidentiality
too weak for general correctness properties
AURA feels more like ML than Coq

13/39

Programs build proofs explicitly.

A baked-in proof search algorithm would either limit the
logic’s expressiveness (e.g. no quantifiers) or be
incomplete.
Expressive first-, and higher-, order predicates are useful.
Applications can build specialized heuristics for proof
search.

Design Principle

Don’t let proof search mechanism constrain policy definitions.

14/39

Access control systems can be too restrictive.

The HypothetIcal Patient Privacy Act:

A patient chooses who may read his chart.

(patient : prin) → (a: prin) → (c: chart patient)
→ patient says (MayRead a c)
→ HIPPA says (MayRead a c)

Doctors can read their patients’ charts.

(patient : prin) → (d: prin) → (DoctorOf patient d)
→ (c: chart patient)
→ HIPPA says (MayRead d c)

What happens in an emergency when the patient and
designated doctors are not available?

15/39

Access control systems can be too restrictive.

The HypothetIcal Patient Privacy Act:

A patient chooses who may read his chart.

(patient : prin) → (a: prin) → (c: chart patient)
→ patient says (MayRead a c)
→ HIPPA says (MayRead a c)

Doctors can read their patients’ charts.

(patient : prin) → (d: prin) → (DoctorOf patient d)
→ (c: chart patient)
→ HIPPA says (MayRead d c)

What happens in an emergency when the patient and
designated doctors are not available?

15/39

Audit enables escape hatches in access control.

emergency: (patient: prin) → (a: prin)
→ (c: chart patient)
→ (reason: string)
→ HIPPA says (MayRead a c)

Justification
Logged actions can be evaluated after the fact by social,
administrative or legal means—worthwhile when a false deny
may be worse than a false allow.

16/39

Audit enables escape hatches in access control.

emergency: (patient: prin) → (a: prin)
→ (c: chart patient)
→ (reason: string)
→ HIPPA says (MayRead a c)

Justification
Logged actions can be evaluated after the fact by social,
administrative or legal means—worthwhile when a false deny
may be worse than a false allow.

16/39

Using evidence minimizes the trusted computing base.

17/39

Using evidence minimizes the trusted computing base.

17/39

Using evidence minimizes the trusted computing base.

Resource

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

Proof Evidence

Log

KernelCode

17/39

Using evidence minimizes the trusted computing base.

Resource

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

Proof Evidence

Log

KernelCode

Typed

Interface

Typed

Interface

17/39

Using evidence minimizes the trusted computing base.

Trusted Computing Base

Resource

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

Proof Evidence

Log

KernelCode

17/39

Using evidence minimizes the trusted computing base.

Custom Code and Policy Resource

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

Proof Evidence

Log

KernelCode

17/39

Using evidence minimizes the trusted computing base.

17/39

Using evidence minimizes the trusted computing base.

Custom & Trusted Resource

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

sign(ICFP,shareRule):

 ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)

Proof Evidence

Log

KernelCode

17/39

A Confidentiality Extension for AURA

18/39

AURAconf adds support for confidential data to AURA

The real-world contains lots of confidential information.
Financial, medical, social data . . .
Data leaks have consequences: legal, financial. . . .

Goals of AURAconf

Establish a natural connection between confidential
expressions and cryptography.
Minimize disruptive changes to AURA’s design.

Avoid straining the complexity budget for end-users.
(But Coq proofs help us manage meta-theoretic complexity.)

Provide for relevant auditing—decryption failures are
interesting.

19/39

There is a large, partially explored, design space.

Notable approaches to confidentiality in distributed settings:

Direct use of cryptography
Applied Crytpo. [Schneier ’96]

Language operations supporting cryptography
Spi Calculus [Abadi+ ’98], λseal [Sumii+ ’04]

Information flow + explicit cryptography
Key-Based DLM [Chothia+ ’03], [Askarov+ ’06]

Declarative policy enforcement by automatic encryption
SImp [Oakland ’06]

None of these are good fits with AURA.

20/39

AURAconf represents confidentiality monadically: return.

return Alice 42: int for Alice

E (Alice, 42, 0x32A3)
and some metadata

21/39

AURAconf represents confidentiality monadically: return.

return Alice 42: int for Alice

E (Alice, 42, 0x32A3)
and some metadata

21/39

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
run e e′ where e′ blames p.

22/39

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
run e e′ where e′ blames p.

22/39

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
run e e′ where e′ blames p.

22/39

AURAconf represents confidentiality monadically: return.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

23/39

AURAconf represents confidentiality monadically: return.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

23/39

AURAconf represents confidentiality monadically: return.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

23/39

The tension in AURAconf’s design.

Expression e contains secrets. Clients analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

24/39

The tension in AURAconf’s design.

Expression e contains secrets. Clients analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

24/39

The tension in AURAconf’s design.

Expression e contains secrets. Clients analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

24/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Challenge 1: Typing is relative.

25/39

Metadata guides typing of ciphertexts.

E (a, e, n): bits, always.

cast E (a, e, n) to (int for Alice) : int for Alice
A true cast
Possible if typechecker can statically decrypt E (a,e,n).
Also possible if the typechecker has a prerecorded fact,
attesting to the form of E (a,e,n).

cast E (a, e, n) to (int for Alice) blaming p: int for Alice
A justified cast
Valid when p: c says (E (a,e,n) isa (int for Alice)).

26/39

Metadata guides typing of ciphertexts.

E (a, e, n): bits, always.

cast E (a, e, n) to (int for Alice) : int for Alice
A true cast
Possible if typechecker can statically decrypt E (a,e,n).
Also possible if the typechecker has a prerecorded fact,
attesting to the form of E (a,e,n).

cast E (a, e, n) to (int for Alice) blaming p: int for Alice
A justified cast
Valid when p: c says (E (a,e,n) isa (int for Alice)).

26/39

Metadata guides typing of ciphertexts.

E (a, e, n): bits, always.

cast E (a, e, n) to (int for Alice) : int for Alice
A true cast
Possible if typechecker can statically decrypt E (a,e,n).
Also possible if the typechecker has a prerecorded fact,
attesting to the form of E (a,e,n).

cast E (a, e, n) to (int for Alice) blaming p: int for Alice
A justified cast
Valid when p: c says (E (a,e,n) isa (int for Alice)).

26/39

Challenge 2: Keys effect static & dynamic semantics.

Dynamic semantics
Keys are required at runtime to implement run and say.
Type-and-effect analysis tracks these keys.

FX [Lucassen+ ’88], foundations [Talpin+ ’92]

Static semantics
True casts need keys at compile time for typechecking.
Tracked using ideas from modal type systems.

Modal Proofs as Distributed Programs [Jia+ 04],
ML5 [Murphy ’08]

Combining these analyses is interesting!

27/39

Challenge 3: Typing exhibits hysteresis.

1000101

Consider Bob preparing a confidential message for Alice

return Alice 3 cast E (−) to int for Alice

Naively: Bob lacks Alice’s private key—he can’t typecheck
this.

Evaluation creates new facts to guide the typechecker.

Ensures preservation holds.

28/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.

Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.

Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.

Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.

Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

29/39

Sample typing judgments and non-judgments.

Example (Statically available keys)

Σ; ·;Bob; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;⊥; ·;Bob;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob
Σ; ·;Bob; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Example (Facts)

Suppose E (Bob,7,−) : int for Bob ∈F ,

Σ;F ;⊥; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ;F ;⊥; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

30/39

Sample typing judgments and non-judgments.

Example (Statically available keys)

Σ; ·;Bob; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;⊥; ·;Bob;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;Bob; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Example (Facts)

Suppose E (Bob,7,−) : int for Bob ∈F ,

Σ;F ;⊥; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ;F ;⊥; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

30/39

Sample typing judgments and non-judgments.

Example (Statically available keys)

Σ; ·;Bob; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;⊥; ·;Bob;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob
Σ; ·;Bob; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Example (Facts)

Suppose E (Bob,7,−) : int for Bob ∈F ,

Σ;F ;⊥; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ;F ;⊥; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

30/39

Sample typing judgments and non-judgments.

Example (Statically available keys)

Σ; ·;Bob; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;⊥; ·;Bob;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob
Σ; ·;Bob; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Example (Facts)

Suppose E (Bob,7,−) : int for Bob ∈F ,

Σ;F ;⊥; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ;F ;⊥; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

30/39

Sample typing judgments and non-judgments.

Example (Statically available keys)

Σ; ·;Bob; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ; ·;⊥; ·;Bob;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob
Σ; ·;Bob; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

Example (Facts)

Suppose E (Bob,7,−) : int for Bob ∈F ,

Σ;F ;⊥; ·;Bob;⊥ ` cast E (Bob,7,−) to int for Bob : int for Bob

Σ;F ;⊥; ·;⊥;⊥ 6` cast E (Bob,7,−) to int for Bob : int for Bob

30/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.

Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.

Key W is available for signing and decrypting.
“The program is running with W ’s authority.”

Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”

Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.

New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

31/39

Fact contexts require special care.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

32/39

Fact contexts require special care.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

32/39

Fact contexts require special care.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

32/39

Noninterference: Secrets don’t effect public outputs.

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

15

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

15

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Noninterference: Secrets don’t effect public outputs.

15

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

33/39

Decryption failures may be audited with justified casts.

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

34/39

Conclusion

35/39

Proposed and completed work.

Goals Status

Define AURAconf X

Syntactic soundness X

Dolev-Yao security Noninterference

Submit a paper ESOP ’10 deadline Wednesday—
almost ready to submit!

36/39

Summary

The AURA language family. . .
unifies access control, computation, and confidentiality.
supports arbitrary domain-specific authorization policies.
mixes weak dependency, effects, and authorization logic in
a compelling way.

37/39

Possible future directions

For AURA:
Build up surface syntax, tool support, communication

model

Reach out refine FFI, build interoperable C# & Java libraries,
write RFC for proof language

Look within type inference, simplify language spec., use
type-and-effect analysis for termination, module
abstraction via access control predicates

For Jeff:

→ →

38/39

Possible future directions

For AURA:
Build up surface syntax, tool support, communication

model

Reach out refine FFI, build interoperable C# & Java libraries,
write RFC for proof language

Look within type inference, simplify language spec., use
type-and-effect analysis for termination, module
abstraction via access control predicates

For Jeff:

→ →

38/39

Acknowledgments

Thank you to all my collaborators on this work!
Limin Jia
Karl Mazurak
Joseph Schorr
Luke Zarko
Steve Zdancewic
Jianzhou Zhao

39/39

	Introduction
	Review of Core Aura
	A Confidentiality Extension for Aura
	Conclusion

