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Abstract. This paper presents a novel, type-based exception analysis
for EC (an Exception Calculus)—a higher-order, typed programming
language with first-class, Java-style exceptions. EC exceptions are pre-
declared and subject to a nominal subtyping relation. Every exception
has its own type, and generic exception handling is performed by han-
dling a supertype of all applicable exceptions.

Typing is based on result contexts, which are are analogous to the multiple-
conclusion succedents in Gentzen’s LK. This paper proves the syntactic
soundness of EC, and presents a shallow embedding of EC types and
judgments in LK. The embedding gives rise to a pleasant interpretation
of subtyping as logical consequence.

1 Introduction

Most programming languages allow expressions to produce side effects, such as
mutating the heap or raising exceptions. Such effects make programs hard for
programmers to reason about and compilers to optimize. This problem may be
mitigated by type-based static analysis. Well known examples include IO monads
as in Haskell, type and effect systems [18], and checked exceptions as in Java.

Haskell-style monadic reasoning is inspired by category theory, but many
other effects analyses are ad-hoc. One notable exception is a line of work started
by Nakano [13, 14] that performs exception tracking using intuitionistic variants
of Gentzen’s [4] system LK. Additionally, languages such as λµ and the dual cal-
culus provide precise characterizations of some control effects in exotic reduction
systems.

This paper presents a novel, type-based exception analysis for EC (an Ex-
ception Calculus)—a higher-order, typed programming language with Java-style
exceptions. As in Java, EC exceptions are predeclared and subject to a nomi-
nal subtyping relation. Every exception has its own type, and generic exception
handling is performed by handling a supertype of all applicable exceptions. Ex-
ceptions are first class and raised after being passed to a function.

This region of the design space differs from ML, which also features first
class exceptions. ML exceptions can be created generatively at runtime [12], and
ML programmers implement generic exception handlers using wildcard pattern
matching, not subtyping. Also, all ML exceptions inhabit the single type exn.

EC’s exception analysis synthesizes ideas from Nakano [14] and from type-
and-effects languages [18]. An expression is associated with both a return type



and the set of exceptions that it might raise. These are presented uniformly in
a result context. Consider

e ≡ if b then 3 else (raise Fail ''oops'').

The typing judgment (modulo subtyping) assigns e the following result context.

e : (ret : int, exn Fail : string)

Here we see that e has two result channels. It may return an int, or it may raise
a string-carrying Fail exception. Abstracting over e internalizes the entire result
context, not just the return channel.

λb : bool. e : (ret : bool→ (ret : int, exn Fail : string))

This type captures e’s exceptions as latent effects [7]. Intuitively, latent effects
are suspended exceptions which may be raised during a function call; here they
correspond to the throws component of a Java method signature. Section 2 details
EC’s semantics and theory.

Because EC’s type system assigns multiple-channel result contexts to expres-
sions, it resembles sequent systems with multiple conclusions. Gentzen’s LK [4]
is the prototypical example. LK judgments have the form Φ ` Θ where Φ and Θ
are lists of propositions. The judgment is intended to hold when the conjunction
of the Φs implies the disjunction of the Θs.

The relation between EC and LK extends beyond syntactic similarity. EC
typing derivations have form e : Σ;Γ ` ∆ where Γ assigns types to variables,
and ∆ is a result context. (Σ defines the exception hierarchy.) Intuitively, such
a derivation may be translated into an LK derivation ending with [[Γ ]] ` [[∆]].
Furthermore, EC subtyping derivations ending in Σ ` τ1<: τ2 correspond to LK
derivations ending in [[τ1]] ` [[τ2]]. Section 3 provides an explicit account of the
translation and its properties.

EC’s design embraces a tension between type and effect reasoning—which is
precise but specialized to call-by-value reduction—and an approach based on a
more literal formulation of logical realizers for LK. We intend for EC to represent
a practical compromise between these models. By contrast, other logic-based
effects systems stay closer to LK. For example, Nakano [13] can only type λx.e
when e has no unhandled exceptions. (The programmer must use source-level
“tag abstraction” to express e’s exception channels as part of its return type.)
Another approach [14] types the entire abstraction using the same, unsuspended,
effects as e. Such techniques appear to yield general analyses that are sound for
full reduction, but lack EC’s simplicity and precision for call-by-value evaluation.

Above all, the design of EC is motivated by a desire to make make rigorous
the sort of effects analysis performed in a language like Java, and to show that
this analysis has a clear, proofs-as-programs interpretation. Toward this end, we
keep EC’s feature-set minimal and ignore interesting but extraneous issues such
as modules, separate compilation, and effects polymorphism.

This paper’s main contributions follow.



– We define system EC, a language with a sequent-style effects system. It
treats latent effects properly for call-by-value evaluation.

– We prove syntactic soundness of EC.
– We present a shallow embedding of EC types and judgments in LK. This both

refines Nakano’s treatment of effects and provides a pleasing interpretation
of subtyping as logical consequence.

2 System EC

In this section we define system EC. EC is a call-by-value lambda calculus ex-
tended with exceptions. Its syntax is defined in Figure 1. The syntax of types
is non-standard. In particular, arrows have form τ → ∆, where ∆ is an entire
result context (see Section 2.1).

Exceptions are declared in signatures, Σ. A signature entry E ∼ τ introduces
a new exception named E carrying data of type τ . (Signature names are drawn
from a distinguished set of identifiers.) Additionally, signatures may introduce
subtyping constraints of form E1<:E2. During evaluation, exception handlers
for E2 also handle E1 exceptions. Type preservation requires that exception sub-
typing be consistent: E1’s data must be a subtype of E2’s data. This constraint
is enforced by the well-formed signature judgment, Σ ` �.

Exceptions are first class, and exception values are created using application
syntax: E e. Expressions of the form raise e raise an exception, and dynamically
propagating exceptions are also represented using raise. The final exception-
specific construct is e1 handle E x⇒ e2. This expression evaluates e1. If e1 raises
exception E1 where E1<:E, then e2 is evaluated with E1’s data substituted for
x. Otherwise the handle expression evaluates to the result of e1.

The formalization of EC’s dynamic semantics (Figure 2) is straightforward.
Reduction is based on shallow evaluation contexts called frames. In addition to
call-by-value lambda calculus reductions, EC has evaluation rules for exceptions.
Rules E-Handle and E-Prop handle and propagate exceptions as discussed
above. Choosing which rule to apply depends on dynamic knowledge of the
subtyping hierarchy, and the evaluation relation is parameterized by a signature.
The signature is also used by judgment Σ ` E ·yF , pronounced “E hops F.”
This holds when frame F does not handle exception E. Note that for the special
case of exception subtyping, a simple graph traversal suffices to decide Σ `
Exn E1<:Exn E2—there is no reason to invoke the typechecker at runtime.

2.1 Static Semantics

The full static semantics for EC are given by Figures 3 and 4. There we use
x ] ∆ to denote that a variable x is fresh with respect to ∆.

The typing relation is written e : Σ;Γ ` ∆. The judgment’s unusual shape
foreshadows the embedding we define in Section 3.1. Result context ∆ may have
multiple components, for instance ret : τ1, exn E2 : τ2, exn E3 : τ3. This can be
read in two ways. The programmer’s reading is, “e is a program that either



Result channels
ε ::= ret Return channel
| exn E Exception channel

Types
τ ::= A Type variable
| τ → ∆ Arrow
| > Top
| Exn E Exception type

Result contexts
∆ ::= · | ∆, ε : τ

Variable contexts
Γ ::= · | Γ, x : τ

Signatures
Σ ::= · Empty signature
| Σ,E ∼ τ Exception declaration
| Σ,E1<:E2 Subtype declaration

Expressions
e ::= x | e1 e2 | λx : τ. e Lambda calulus
| top Top/unit value
| E e Exception expression
| raise e Throw exception
| e1 handle E x⇒ e2 Exception handler

Values
v ::= λx : τ. e | E v | top

Frames
F ::= [ ] e | v [ ] CVB application
| raise [ ] | E [ ] Exception construction
| [ ] handle E x⇒ e Exception handler

Fig. 1. The syntax of EC.

returns a τ1 or raises one of exception E2 or E3.” In contrast, the logician reads,
“e is a proof that demonstrates the validity of τ1, or τ2, or τ3.” As we will see
in Section 3.2, both are right!

The Typing Relation We will explain EC’s typing rules from the programmer’s
perspective. Σ declares exceptions as discussed above, and Γ maps variables to
their types. ∆ is a list of result channels, each corresponding to either the result
of evaluating e or a potentially uncaught exception. Note that ∆ is not allowed
to contain multiple occurrences of the same channel. (This is enforced by the
well-formedness judgments).

T-Var and T-Top simply translate standard typing rules into our setting.
Because such expressions always return, each only has a ret channel.

Rule T-Exn types expressions of form E e, which introduce first-class ex-
ception values of type Exn E. As e may raise exceptions during evaluation, its
exception channels must also appear in E e’s result context.

Rule T-Raise takes an exception of type Exn E and throws it. There is no
way for raise e to simply return a value; T-Raise reflects this, as its conclusion
does not contain a ret channel. The typing rule’s premise assumes that e may
throw E—this is a not a problem because subtyping will allow us to add such
an exception channel when one is not otherwise present.

As usual, T-Abs types λx : τ. e by augmenting the environment with x : τ
and recursively checking e. However the function is assigned type τ → ∆. Thus
the arrow type constructor internalizes the entire result context. The logician
may find this unexpected; perhaps he was anticipating something more like LK-



Σ ` E ·yF

E-F-App1

Σ ` E ·y [ ] e

E-F-App2

Σ ` E ·y v [ ]

E-F-Exn

Σ ` E1 ·yE2 [ ]

E-F-Raise

Σ ` E ·y raise [ ]

E-F-Handle
Σ 0 Exn E1<:Exn E2

Σ ` E1 ·y [ ] handle E2 ⇒ e

Σ ` e→ e′

E-Beta

Σ ` (λx : τ. e) v → e{v/x}

E-Handle
Σ ` Exn E1<:Exn E2

Σ ` (raise E1 v) handle E2 x⇒ e→ e{v/x}

E-Propagate
Σ ` E ·yF

Σ ` F [raise E v]→ raise E v

E-EndHandler

Σ ` v handle E ⇒ e→ v

E-Frame
Σ ` e→ e′

Σ ` F [e]→ F [e′]

Fig. 2. Evaluation relation for EC.

ImpR from Figure 5. The programmer may be less surprised. The exception
channels on the right of an arrow are latent effects, which are delayed until the
corresponding function is applied [7].

Application behaves mostly as expected. T-App’s premises mention three
result contexts which must contain identical exception channels. As with T-
Raise, subtyping can coerce premises that would not otherwise match.

Rule T-Handle checks e1 handle E x⇒ e2 as follows. Expression e1’s result
context is partitioned into ∆1, ∆2 where ∆1 is made of exceptions beneath E
in the subtype relation. That is, ∆1 is a set of caught exceptions. Checking e2
(in a suitably augmented environment) must then yield ∆2. As both e1 and e2
produce ∆2s, the two expressions must agree on ret channels (if any). Exception
channels beneath E may be split between ∆1 and ∆2; this is useful if e2 re-raises
exceptions.

The final typing rule, T-Sub casts expressions to supertypes. As we have
seen, the availability of subtyping simplifies other rules, such as T-App.

Subtyping and Well-formedness EC contains three subtyping relations. These
relate pairs of types, pairs of result channels, and pairs of result contexts.

The relation on types contains several standard rules familiar from system
F<: : S-Refl, S-Trans, and S-Top. The arrow rule is contravariant on argu-
ments and covariant on results. But this is not completely standard as the results
are contexts, not basic types.

Exception subtyping is nominal and is governed by signature declarations.
Signature well-formedness ensures that all declared subtypes respect covariance.



EC does not require that there be a top exception—a supertype of all other
exceptions like Java’s throwable. Of course, such an exception may be defined.

Result context subtyping is more interesting. Intuitively, Σ ` ∆1<:∆2 when
program contexts that handle all channels in ∆2 also handle all channels in ∆1.
Each of ∆1’s exception channels must be a subtype of an exception channel in
∆2, and ∆1’s return channel must be a subtype of ∆2’s. For example, consider
the following well-formed signature.

Σ = Disk ∼ string,Sound ∼ >, IO ∼ >,
Disk<: IO,Sound<: IO.

Then the following judgments hold.

Σ ` exn Disk : string, exn Sound : ><: exn IO : >

Σ ` exn Sound : ><: exn Sound : >, exn Disk : string

But these cannot be derived.

Σ 0 exn Disk : string, exn Sound : ><: exn Disk : string

Σ 0 ret : string<: exn IO : >

The programmer recognizes that result context subtyping lets him “over-
annotate” an expression’s effects—a familiar operation in type and effect sys-
tems [19]. The logician views this as a form of hypothetical reasoning: ∆1<:∆2

when the disjunction of ∆1’s formulas implies the disjunction of ∆2’s. The logi-
cian’s view is made rigorous by Theorem 1.

Result channel subtyping (Σ ` ε1 : τ1<: ε2 : τ2) is simple: return channels
admit subtyping, but exception channels do not. It appears the latter restriction
could be relaxed, but doing so does not provide an obvious advantage. Further-
more, the restriction helps maintain a useful invariant: each exception channel
is annotated by the exception’s declared type (and not a subtype).

EC also includes several well-formedness judgments. These are needed to
maintain three invariants. First, signatures, environments, and result contexts
do not bind the same element twice. Second, exception references (e.g., in types)
only name previously defined exceptions. Third, as mentioned above, subtype
declarations are consistent with structural subtyping.

2.2 Metatheory

This section provides a brief overview of the main properties of EC.
The type system is set up such that the well-formedness of signatures and

environments is checked at the leaves of typing derivations. Consequently EC
enjoys a variety of regularity lemmas like the following.

Lemma 1. Suppose D :: Σ ` τ1<: τ2. Then a subderivation of D shows Σ ` �.



e : Σ;Γ ` ∆

T-Sub
e : Σ;Γ ` ∆0 Σ ` ∆0<:∆

e : Σ;Γ ` ∆

T-Var
(x : τ) ∈ Γ Σ ` Γ
x : Σ;Γ ` ret : τ

T-Top
Σ ` Γ

top : Σ;Γ ` ret : >

T-Abs
e : Σ;Γ, x : τ ` ∆

λx : τ. e : Σ;Γ ` ret : τ → ∆

T-App
e1 : Σ;Γ ` ret : τ2 → (ret : τ,∆),∆ e2 : Σ;Γ ` ret : τ2,∆

e1 e2 : Σ;Γ ` ret : τ,∆

T-Exn
e : Σ;Γ ` ret : τ,∆ E ∼ τ ∈ Σ

E e : Σ;Γ ` ret : Exn E,∆

T-Raise
e : Σ;Γ ` ret : Exn E,∆, exn E : τ

raise e : Σ;Γ ` ∆, exn E : τ

T-Handle
Σ ` ∆1<: ·, exn E : τ e1 : Σ;Γ ` ∆1,∆2 e2 : Σ;Γ, x : τ ` ∆2

e1 handle E x⇒ e2 : Σ;Γ ` ∆2

Σ ` τ1<: τ2

S-Refl
Σ ` τ

Σ ` τ <: τ

S-Trans
Σ ` τ1<: τ2 Σ ` τ2<: τ3

Σ ` τ1<: τ3

S-Top
Σ ` τ

Σ ` τ <:>

S-ExnT
Σ ` � E1<:E2 ∈ Σ
Σ ` Exn E1<:Exn E2

S-Arr
Σ ` τ2<: τ1 Σ ` ∆1<:∆2

Σ ` τ1 → ∆1<: τ2 → ∆2

Σ ` ∆1<:∆2

S-Nil
Σ ` ∆

Σ ` ·<:∆

S-Cons
Σ ` ∆1<:∆2 ε2 : τ2 ∈ ∆2 Σ ` ε1 : τ1<: ε2 : τ2

Σ ` ∆1, ε1 : τ1<:∆2

Σ ` ε1 : τ1<: ε2 : τ2

S-Ret
Σ ` τ1<: τ2

Σ ` ret : τ1<: ret : τ2

S-ExnC
Σ ` Exn E1<:Exn E2 Σ ` exn E1 : τ1 Σ ` exn E2 : τ2

Σ ` exn E1 : τ1<: exn E2 : τ2

Fig. 3. Static Semantics for EC. (1/2)



Σ ` �

Wf-S-Nil

· ` �

Wf-S-Decl
Σ ` τ

Σ,E ∼ τ ` �
where E ] Σ

Wf-S-Sub
E1 ∼ τ1 ∈ Σ E2 ∼ τ2 ∈ Σ Σ ` τ1<: τ2

Σ,E1<:E2 ` �

Σ ` τ

Wf-T-Var
Σ ` �
Σ ` A

Wf-T-Top
Σ ` �
Σ ` >

Wf-T-Arr
Σ ` τ Σ ` ∆
Σ ` τ → ∆

Wf-T-Exn
Σ ` � E ∼ τ ∈ Σ

Σ ` Exn E

Σ ` ∆

Wf-C-Nil
Σ ` �
Σ ` ·

Wf-C-Cons
Σ ` ∆ Σ ` ε : τ

Σ ` ∆, ε : τ
where ε ] ∆

Σ ` ε : τ

Wf-B-Ret
Σ ` τ

Σ ` ret : τ

Wf-B-Exn
Σ ` � E ∼ τ ∈ Σ

Σ ` exn E : τ

Σ ` Γ

Wf-E-Nil
Σ ` �
Σ ` ·

Wf-E-Cons
Σ ` Γ Σ ` τ
Σ ` Γ, x : τ

where x ] Γ

Fig. 4. Static Semantics for EC. (2/2)

Proof (Proof Sketch). Proof is by simultaneous induction with the following
proposition: D :: Σ ` τ implies that a subderivation of D shows Σ ` �.

Lemma 1 mentions subderivations to facilitate proofs by structural-induction.
Because EC includes subtyping, inverting typing judgments provides little

traction for reasoning. We must prove a variety of canonical forms and inversion
properties. One such lemma follows.

Lemma 2 (Cannonical Form—Abs). Assume

v : Σ;Γ ` ret : τ2 → (ret : τ1, ∆1), ∆

then v = λx : τ3. e where Σ ` τ2<: τ3.



Proof. By induction on the typing derivation with an inner induction for T-sub.

The proof of progress is straightforward, but preservation requires several
auxiliary lemmas. Lemma 5 is particularly interesting. It states that values can
always be typed in a result context containing only a ret channel. Intuitively
this holds because values do not reduce and therefore cannot raise exceptions.
Lemma 6 establishes a useful invariant of exception and frame typing.

Lemma 3 (Progress). Assume e : Σ; · ` ∆. Then either e is value, e has form
raise E v (i.e., is an uncaught exception), or Σ ` e→ e′.

Proof. Proof by induction on the typing derivation. Case T-App uses Lemma 2.

Lemma 4 (Substitution). Suppose e : Σ;Γ, x : τ, Γ ′ ` ∆ and v : Σ;Γ, Γ ′ `
ret : τ , then e{v/x} : Σ;Γ, Γ ′ ` ∆.

Lemma 5 (Value Strengthening). Suppose v : Σ;Γ ` ret : τ,∆, then v : Σ;Γ `
ret : τ

Proof. Lemmas 4 and 5 follow from straightforward induction.

Lemma 6 (Unhandled Exception Frame Typing). Suppose Σ ` E ·yF
and F [raise E v] : Σ;Γ ` ∆. Then there exist E′ and τ ′ such that exn E′ : τ ′ ∈ ∆
where E<:E′ ∈ Σ.

Proof. Direct using elided inversion principles.

Lemma 7 (Preservation). Assume Σ ` e→ e′. For all ∆ such that e : Σ; · `
∆, it follows that e′ : Σ; · ` ∆.

Proof. By induction on the reduction relation.

3 The logical content of EC programs

Thus far we have discussed EC from the perspective of a programmer, as a
language with a sound, type-based exception analysis. This section shows that
EC has a logical reading, namely typing derivations in EC can be translated to
proof trees in Gentzen’s system LK [4].

To begin, we review LK. LK is a logic which operates on propositions drawn
from the following grammar.

LK Propositions
P,Q ::= ALK | > | ⊥ | P ∧Q | P ∨Q | P ⊃ Q | ¬P

Atomic propositions, ALK are subscripted to avoid confusion with EC types. LK
judgments have the form Φ ` Θ, where Φ—the antecedent—and Θ—the succe-
dent—are lists of propositions. Intuitively, Φ ` Θ holds when the conjunction of
the Φs implies the disjunction of the Θs. The rules of deduction for propositional
LK are given by Figure 5.



Φ ` Θ

LK-Id

P ` P

LK-ThinL
Φ ` Θ
P,Φ ` Θ

LK-ThinR
Φ ` Θ
Φ ` Θ,P

LK-ContractL
P, P, Φ ` Θ
P,Φ ` Θ

LK-ContractR
Φ ` Θ,P
Φ ` Θ,P, P

LK-InterL
Φ1, Q, P, Φ2 ` Θ
Φ1, P,Q, Φ2 ` Θ

LK-InterR
Φ ` Θ1, Q, P,Θ2

Φ ` Θ1, P,Q,Θ2

LK-Cut
Φ1 ` Θ1, P P, Φ2 ` Θ2

Φ1, Φ2 ` Θ1, Θ2

LK-AndL1
P,Φ ` Θ

P ∧Q,Φ ` Θ

LK-AndL2
Q,Φ ` Θ

P ∧Q,Φ ` Θ

LK-AndR
Φ ` Θ,P Φ ` Θ,Q

Φ ` Θ,P ∧Q

LK-OrL
P,Φ ` Θ Q,Φ ` Θ

P ∨Q,Φ ` Θ

LK-OrR1
Φ ` Θ,P

Φ ` Θ,P ∨Q

LK-OrR2
Φ ` Θ,Q

Φ ` Θ,P ∨Q

LK-ImpL
Φ1 ` Θ1, P Q,Φ2 ` Θ2

P ⊃ Q,Φ1, Φ2 ` Θ1, Θ2

LK-ImpR
P,Φ ` Θ,Q
Φ ` Θ,P ⊃ Q

LK-NotL
Φ ` Θ,P
¬P,Φ ` Θ

LK-NotR
P,Φ ` Θ
Φ ` Θ,¬P

LK-FalseL

⊥ `

LK-TrueR

` >

Fig. 5. Validity judgement for LK.

3.1 An embedding of EC types in LK

We show that every EC typing judgment can be translated into a valid LK
judgment. The translation is defined by four functions. [[τ ]]Σtyp maps types to

propositions, [[∆]]Σctx maps EC result contexts into LK succedents, and [[Γ ]]Σenv
maps EC environments into LK antecedents. Lastly ∨©Θ, pronounced “lift Θ,”
internalizes Θ’s commas as disjunctions.

The type-to-proposition translation is defined as follows.

[[A]]Σtyp = ALK

[[τ → ∆]]Σtyp = [[τ ]]Σtyp ⊃ ∨©[[∆]]Σctx

[[>]]Σtyp = >
[[Exn E]]Σtyp = [[τ ]]Σtyp where E ∼ τ ∈ Σ

We assume that there is an atomic LK proposition for each EC type variable.
The interesting cases are for arrows and exceptions. The translation of τ → ∆
can’t simply return [[τ ]]Σtyp ⊃ [[∆]]Σctx—it’s not well-formed. Instead we take the



disjunction of all elements in [[∆]]Σctx. This follows the intuition that succedents
correspond to lists of disjunctions. The translation of an exception is the trans-
lation of the type it carries.

The environment and result context translations are simple.

[[·]]Σenv = ·
[[Γ, x : τ ]]Σenv = [[Γ ]]Σenv, [[τ ]]Σtyp

[[·]]Σctx = ·
[[∆, ε : τ ]]Σctx = [[∆]]Σctx, [[τ ]]Σtyp

When lifting LK antecedents we do a little extra work to avoid unnecessary
occurrences of ⊥; this leads to an aesthetically cleaner translation.

∨©· = ⊥
∨©·, P = P

∨©Θ,P = ∨©Θ ∨ P where Θ 6= ·

The ∨© function internalizes result context commas as ∨s. While this is a
syntactically well defined operation, it’s not a priori clear that it preserves logical
validity. The following lemma shows that it does.

Lemma 8. Φ ` Θ iff Φ ` ∨©Θ.

Proof. Proof by induction on the length of Θ.

3.2 Main Results

This section presents our main results. Lemma 9 shows that EC’s subtyping
relations corresponds to logical consequence in LK. And Theorem 1 shows this
for EC typing judgments.

Lemma 9 (Subtyping Lemma). Suppose D a subtyping derivation in EC.

– If D :: Σ ` ∆1<:∆2 then ∨©[[∆1]]Σctx ` [[∆2]]Σctx.
– If D :: Σ ` τ1<: τ2 then [[τ1]]Σtyp ` [[τ2]]Σtyp.

– If D :: Σ ` � then [[τ1]]Σtyp ` [[τ2]]Σtyp where E1<:E2, E1 ∼ τ1, E2 ∼ τ2 ∈ Σ.

Proof. Proof is by structural induction on D. We will show only the most inter-
esting cases. Begin by examining the cases for Σ ` τ1<: τ2.

– Case S-Trans: Immediate from the induction hypothesis and LK-Cut.
– Case S-Arr: The subtyping derivation ends in

Σ ` τ2<: τ1 Σ ` ∆1<:∆2

Σ ` τ1 → ∆1<: τ2 → ∆2



We want to show(
[[τ1]]Σtyp ⊃ ∨©[[∆1]]Σctx

)
`
(
[[τ2]]Σtyp ⊃ ∨©[[∆2]]Σctx

)
.

The induction hypothesis gives [[τ2]]Σtyp ` [[τ1]]Σtyp and ∨©[[∆1]]Σctx ` [[∆2]]Σctx.

Lemma 8 transforms the latter to ∨©[[∆1]]Σctx ` ∨©[[∆2]]Σctx. Conclude with an
easy LK derivation.

Cases for Σ ` �.

– Case Wf-S-Sub: Suppose Σ ends with E3<:E4. Conclude with the induc-
tion hypothesis, using Lemma 1 if E1 6= E3 or E2 6= E4.

Cases for Σ ` ∆1<:∆2

– Case S-Cons. The subcontext derivation ends in

Σ ` ∆1<:∆2 ε2 : τ2 ∈ ∆2 Σ ` ε1 : τ1<: ε2 : τ2

Σ ` ∆1, ε1 : τ1<:∆2

First establish [[τ1]]Σtyp ` [[τ2]]Σtyp and ∨©[[∆1]]Σctx ` [[∆2]]Σctx via inversion and
appeal to the induction hypotheses. Next build this LK derivation:

∨©[[∆1]]Σctx ` [[∆2]]Σctx

[[τ1]]Σtyp ` [[τ2]]Σtyp

several uses of LK-ThinR and LK-InterR

[[τ1]]Σtyp ` [[∆2]]Σtyp

∨©[[∆1]]Σctx ∨ [[τ1]]Σtyp ` [[∆2]]Σctx

When ∆1 is non-empty, we’re done. Otherwise, we conclude with a simple
LK derivation.

Theorem 1 (Main Theorem). Suppose e : Σ;Γ ` ∆. Then [[Γ ]]Σenv ` [[∆]]Σctx.

Proof. Proof is by induction on the typing derivation. Cases T-Sub and T-
Handle use Lemmas 8 and 9.

4 Discussion

On call-by-value evaluation Because EC evaluation follows a call-by-value eval-
uation strategy the arrow typing rules describe latent effects as suspended. This
is advantageous from a programming perspective—it enables precise reasoning
about the sequencing of effects. However, this evaluation strategy cannot corre-
spond to cut elimination in LK; functions may contain suspended applications
that translate to LK cuts. In systems studied by Nakano [13], Parigot [16], and
others, reduction does correspond to cut elimination, but these languages lack
EC’s natural and precise reasoning for call-by-value exceptions.



EC’s call-by-value reduction makes type-and-effect-inspired analysis far more
appealing than a monadic effect system. Consider the following program.

(λx : >. top) (raise Fail ''disaster!'')

EC types this with ret : >, exn Fail : string. This is safe and (reasonably) precise
for a strict language; evaluation will raise the reported exception.

Call-by-name throws away the raise expression and no exception is thrown.
Haskell’s monadic effect discipline accounts for this in a precise way. The raise
expression can be assigned type Mb, where M is the exception monad, and the
function gets type forall a, a→ >. (We have to squint a bit because EC lacks
polymorphism and Haskell lacks subtyping.) The entire expression has type >—
a sound result given call-by-name evaluation.

However, type > is unsound for call-by-value evaluation. What goes wrong
is that unused function parameters are relevant to evaluation, but not to the
monadic effects system. It appears possible to cook the monadic analysis so that
it’s sound for call-by-value. One way to do this is by imposing side conditions on
the abstraction or application typing rules. However such an invasive change is
unsatisfying. It negates one of the key advantages of monad-based effect analysis
in Haskell: independence of effect monads from the rest of the type system.

Open questions There are several more questions we can ask about EC itself
and its relation to LK: What is the right way to add polymorphism to EC? Is
EC strongly normalizing? How can EC extensions deal with world effects like
memory access?

What is the logical content of EC proofs? EC is weaker than classical log-
ical, perhaps even strictly weaker. It appears obvious that EC is as powerful
as intuitionistic logic. Can the shallow embedding in this paper be extended to
an isomorphism? Should such an isomorphism be with full LK, an intuitionistic
restriction of LK [4, 9, 17], or something else?

5 Related Work

Logics with control Griffin [5] first established that proofs-as-program corre-
spondence between lambda calculus and intuitionistic logic could be extended
to control effects and classical logic. Subsequently, several authors have investi-
gated the relation between control effects, classical logic, and sequent calculi.

Nakano [14] observed a correlation between exception analysis and LK, a
classical logic. His system Lc/t uses lexically scoped variables, or “tags,” as iden-
tifiers for exception tracking. However the tags-as-variables style requires many
administrative tag abstractions and instantiations to avoid problems stemming
from variable confusion. Additionally, Nakano’s static semantics fails to directly
account for latent effects. His notion of “compatible contexts” hints at subtyping,
but does explore it substantially.

Ong and Stewart [15] extend Parigot’s λµ calculus in their µPCF system and
propose an encoding of ML-like exceptions similar to EC’s. Unlike EC, µPCF
identifies exception names with covariables and lacks exception subtyping.



De Groote [2] examines an exception analysis based on classical natural de-
duction. Exceptions that carry type τ have type τ → ⊥, and classical reasoning
principles may be encoded in his system. The system uses lexically scoped vari-
ables as exception names and requires a nonstandard reduction scheme to pre-
vent these names from escaping their scope. The analysis only types programs
that do not raise uncaught exceptions and does not account for latent effects.

Several authors have encoded exceptions and exception analysis with control
operators. As illustrated by Lillibridge [11], the exact relation between these
features is highly sensitive to the surrounding language. We choose to define
exceptions directly as definition by elaboration fails to provide programmers
with an intuitive language specification.

Intuitionistic sequent calculi This paper embeds EC into classical LK, making
extensive use of multiple-conclusion succedents. However, as mentioned in Sec-
tion 4, intuitionistic variants might give a tight isomorphism with EC.

There are several well-studied multiple-conclusion intuitionistic logics which
might serve as translation targets. For example, Kleene [9] cuts-down LK by
placing cardinality restrictions on the succedents in LK-NotR and LK-ThinR,
and system LJ’ [17] does so for LK-NotR and LK-ImpR. More recently de Paiva
and Pereira [3] show how to avoid cardinality constraints by labeling conclusions
with unique indices describing relevant hypotheses.

The type-and-effect discipline for exceptions Type-and-effects systems track side
effects in (usually) call-by-value languages [18, 7] Typically this uses a judgment
of the form Γ ` e : τ ! `. Label ` describes the set of effects which may be triggered
when evaluating e. Additionally, arrow types are annotated with latent effects.

Leroy and Pessaux [10] use an effects system to detect uncaught exceptions
in ML programs. (Research by Guzmán and Suárez [6] foreshadows this work.)
This analysis differs from ours as it considers ML-style exceptions with no sub-
typing, and attempts to track values carried by exceptions. Blume et al. [1] use
a refinement of Leroy’s techniques to analyze exceptions in a language with ex-
tensible cases, showing similarity between the exception and case mechanisms.
Kennedy [8], working with a CPS-style intermediate language, and shows type
assignment for the exception continuation corresponds to an effect analysis.

6 Conclusion

The paper introduces EC, a language with a sound, typed-based analysis for
Java-style exceptions. We show that EC’s types and static judgments can be
embedded in Gentzen’s LK. This clarifies the relation between effects analysis,
an important enabling technology for compilation and verification, and classical
sequent calculi, an interesting and well-understand family of logics.
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