A logical interpretation of Java-style

exceptions

Jeff Vaughan

Department of Computer Science
Harvard University

CL&C, August 22, 2010

EEd

1/21

Ignore divergence and mutable state. What is the logical
content of the following program?

D m(C arg) throws EF { ... }

221

Ignore divergence and mutable state. What is the logical
content of the following program?

D m(C arg) throws EF { ... }

Answer: CoDVvEvVF

221

There are many logic-based readings of exceptions.

u [Nakano ’92, '94] Introduced exceptions in an
extension of system LJ’.

u [Sato ’97] A natural-deduction style logic with
exceptions.

u [Kameyama '97] Exceptions in Godel’s T.

u [De Groote '95] Exceptions are named by
lexically-scoped variables, with classical typing rules.

u [Ong & Steward '97] Exceptions names are
covariables in uPFC.

£

3/21

Beautiful models, but far from practical languages.

m For example, Nakano '92:

m Exception names are represented by lexically-scoped tags.
m Many administrative tag abstractions and instantiations.
m Latent effects must be manually suspended as part of

function definitions.

m Type-and-effect analyses address these problems, but
have received little attention from a logic perpsective.

.| [Lucassen & Gifford '88, Talpin & Jouvelot '92]

£

4/21

This talk: Finding the logical-content of exceptions, from
the perspective of type-and-effect analysis.

System EC: An exception calculus
Embedding of EC in classical logic

Future directions

521 &

System EC: An exception calculus

6/21

EC models Java-style exceptions.

m Exceptions are first class values, and are identified by type
name.

m Checked exception methodology requires that functions be
annotated with a set of throwable exceptions.

m Subtyping lets one exception handler catch multiple related
exceptions.
m Call-by-value semantics enable precise reasoning.

Focusing on exceptions: no classes, divergence, or state.

721

EC’s expression language extends lambda calculus.

Definition (Expression Syntax)

e

X|ee|Ax:t. €
top

Ee

raise e

e; handle E x = es

Lambda calculus
Top/unit value
Exception expression
Throw exception
Exception handler

8/21

EC’s expression language extends lambda calculus.

Definition (Expression Syntax)

e = x|ej e |Ax:t.e Lambda calculus
| top Top/unit value
| Ee Exception expression
| raisee Throw exception
|

er handle E x = e> Exception handler

Example (Evaluation)

(Ax: top. raise Fail "ohno!") 1 handle Any x = 2

*
—

2

8/21 \§§

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

9/21

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

Type of
normal
termination

9/21

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

Type of List of
normal possible
termination exceptions

9/21

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

Ab: bool. e: ret : (bool — (ret: int, exn Fail: string))

9/21

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

Ab: bool. e: ret : (bool — (ret: int, exn Fail: string))

Values
always
return

9/21

Type-and-effects—style analysis tracks exceptions.

e=if b then 3 else (raise Fail "oops")

e: ret:int, exn Fail: string

Ab: bool. e: ret : (bool — (ret: int, exn Fail: string))

Values , .
Function body exceptions
always
return are captured as latent effects

9/21

Exception typing uses signatures and result contexts.

Form of typing judgment

e: X TA

Y = - Empty Signature

| YT,E~7 Exception declaration

| L Ei< B Subtype declaration
A == -|Ajret:7|A,exn:t Result Context
T = A|T Base types and top

| 7oA Arrow

| ExnE Exception type

10/21 G

App & abs rules are specialized for latent effects

e:xIhx:tA

T-ABS
Ax:t.e:X:lret: 17— A

e L;l—ret: o — (ret: 7,A), A
e:x;lret: 70, A
eie:X;l+—ret:7,A

T-APP

* Computational effects are suspended at abstractions and
restored at applications.

11/21 &

Subtyping is a useful programming language feature.

Y = Disk <:10,Sound <: 10,10 <: Any, ...

e: X;-+ret: int, exn Disk: string, exn Sound : T

Example (Polymorphic exception handling)

ehandle IO x = €

catches all Disk, Sound, and IO exceptions.

Example (Subtyping allows conservative typings)

e:X;-+ret: int,exn Any: T

12/21 G

Embedding of EC in classical logic

13/21

EC typing derivations give rise to LK proofs trees.

m Each EC type corresponds to an LK proposition.

m Mostly standard interpretation
\j [Curry, Feys & Craig ’58, Howard ’80]

m Latent effects are represented by disjunction.

m EC subtyping translates to logical entailment.

m EC typing derivations translate to LK derivations.

14/21 G

LK is the canonical classical sequent calculus.

Definition (LK Propositions)

P,Q = Ax|T|LIPAQ|PvQ|PDQ|—P

Judgment form
P1Pn|—'Q1Qm

“means” the conjunction of the Ps implies the disjunction of the
Qs.

u [Gentzen ’35]

15/21 G

EC types translate to LK propositions.

Definition ([J-]]")

[ATlyp
[Tllye
[Exn Ely,
7 — Allye

r,—: T]]Env
A, e

@P17P27"'7PI7

= ALK

-
[llye Where E~teX

[elltye = @lAlGix

(M Denv: [y
[ATGex: [lye

PivPov---v P,

16/21

Main result: typing and subtyping have logical content.

Lemma (Subtyping)

Suppose 2 a subtyping derivation in EC.
mIf9 Y+ Ai<:As then @[[A1]]§tx — [[AZ]]EtX
W DY o<1 then [ty - [[%2]lp-

m If7 ¥ 1 o then [11]yy, > [w2llyyp, where Ei <: B,
E1 ~T1,E2~Tg€z.

Theorem (Shallow embedding of EC in LK)
Suppose e: ;T A. Then [T 5w P [A] 5

17/21

Future directions

18/21

Cam we move from an embedding to an isomorphism?

m EC is (likely) constructive, but LK is classical—(likely) no
way to translate LK proofs to EC typing derivations.

m LJ’ may be a good translation target.

m LJ’ is an intuitionistic variant of LK.
m LJ’ has multiple conclusions—these seem essential.
m LJ restricts the LK implication and negation rules:

PoH0,Q P,o>Q
— K- —— LJ-IMPR
cb»—»@,P:OLK VPR o P> Q J

m Implication restriction looks like a good fit with EC’s
handling of latent effects.

| [Takeuti '75]

19/21 G

Can we logically interpret other effects systems?

m Possible nontermination = Local absence of logical
content?
u Termination casts [Stump, Sjéberg, and Weirich "10]

m World effects = An alternative means to model context?

u Contextual modal type theory [Nanevski, Pfenning,
and Pientka "08]

20/21 9

Conclusions

m This talk: EC typing derivations give rise to LK proofs.

m Generally: Effects systems can have a logical
interpretation.

m Many interesting problems remain!

21/21

Conclusions

m This talk: EC typing derivations give rise to LK proofs.

m Generally: Effects systems can have a logical
interpretation.

m Many interesting problems remain!

Thank you!

21/21

	Introduction
	System EC: An exception calculus
	Embedding of EC in classical logic
	Future directions
	Conclusions

