
Inference of expressive declassification policies

Jeffrey A. Vaughan
University of California, Los Angeles

jeff@cs.ucla.edu

Stephen Chong
Harvard School of Engineering and Applied Sciences

chong@seas.harvard.edu

Abstract—We explore the inference of expressive human-
readable declassification policies as a step towards providing
practical tools and techniques for strong language-based infor-
mation security.

Security-type systems can enforce expressive information-
security policies, but can require enormous programmer effort
before any security benefit is realized. To reduce the burden
on the programmer, we focus on inference of expressive yet
intuitive information-security policies from programs with few
programmer annotations.

We define a novel security policy language that can express
what information a program may release, under what condi-
tions (or, when) such release may occur, and which procedures
are involved with the release (or, where in the code the release
occur). We describe a dataflow analysis for precisely inferring
these policies, and build a tool that instantiates this analysis
for the Java programming language. We validate the policies,
analysis, and our implementation by applying the tool to a
collection of simple Java programs.

Keywords-declassification policies, information flow, language
based security, inference of security policies.

I. INTRODUCTION

Many computer systems manipulate sensitive informa-
tion, and it is important to reason about the information
security of these systems. Recent work on language-based
information-flow security provides both expressive informa-
tion security policies, and techniques for enforcing these
policies (e.g., [1, 2, 3, 4, 5, 6]). However, it can be difficult
for programmers to obtain the security guarantees offered
by these expressive policies, for at least two reasons. First,
the security policies are sometimes unintuitive, requiring
a sophisticated understanding of program semantics and
noninterference-based semantic security conditions. Second,
the most common enforcement technique, security-type sys-
tems [7], often requires enormous programmer effort before
any security guarantees are achieved. For example, Askarov
and Sabelfeld [8] report 150 person-hours to develop a
security-typed implementation of a cryptographic protocol,
compared to 60 person-hours for a non-security-typed im-
plementation.

In this work, we move towards practical language-based
information-flow security by:

1) Defining an expressive yet intuitive information secu-
rity policy language.

2) Describing a dataflow analysis for precisely inferring
these policies.

3) Building a tool that instantiates this analysis for the
Java programming language.

We validate the policies, analysis, and our implementation
by applying the tool to a collection of simple Java programs.

Inference of security policies. We focus on the inference
of security policies for a program, as contrasted with the a
priori specification of policies by a programmer via pro-
gram annotations. During development programmers may
not yet clearly understand program structure, and may have
difficulty providing security-type annotations for program
variables and function declarations.

Inference of security policies during the development
process allows a programmer to understand the important
information flows in a program, and to then decide if
these flows are consistent with the security requirements
of the program. If the inferred security policies describe
information flows that the programmer or a security audit
determine are suitable for the application, no further action
needs to be taken. Otherwise, either the program contains
insecure information flows, or the analysis is insufficiently
precise; regardless, the programmer needs to invest more
time and effort into the program’s security, by modifying the
program, or providing additional information to the analysis.
Thus, by inferring security policies, the programmer can
receive weak security guarantees with relatively little effort,
and if those guarantees are too weak, can invest additional
effort improving the program’s security guarantees.

An additional benefit is that inference of security policies
does not prevent program compilation or execution, and
thus does not prevent functional testing or deployment of
an application.

We aim to infer security policies for Java programs
with few programmer annotations. More precisely, once the
programmer has specified at least some of the program
points where sensitive information enters the system, and
information leaves the system, our tool can infer security
policies that describe what sensitive information may be
revealed to an observer of the system.

Expressive declassification policies. Our security poli-
cies give a concise and informative summary of the infor-
mation flows in a program. Policies describe what sensitive
information may be revealed to an observer of the system,
when such information may be released, which methods
in the code base were involved with release of sensitive

information (a form of where declassification, according
to the categorization by Sabelfeld and Sands [9]). The
policy language is intended to be well-known and intuitive,
balancing expressivity with ease of inference. (Of course,
the same policy language could also be used for a priori
specification.)

For example, consider the following Java-like program
with annotations indicated by at signs (“@”).

1 public static void main(String args []) {
2 ...
3 int creditCardNum = @input ‘‘cc’’ readCC();
4 String message = ‘‘No receipt.’’ ;
5 ...
6 if (@input ‘‘requestReceipt’’ requestReceipt()) {
7 message = lastFourDigits(creditCardNum);
8 }
9 System.out.println(@output ‘‘stdout’’ message);

10 }
11
12 static int lastFourDigits (int n) @track {
13 return n % 10000;
14 }

The @input annotations (lines 3 and 6) indicate where
information enters the system, and provide names to refer to
these inputs (“cc” and “requestReceipt” respectively). The
@output annotation (line 9) indicates where information
leaves the system, and provides a name to refer to the output.

The information that may be revealed at the output (i.e.,
by printing the contents of variable message) satisfies the
security policy

if requestReceipt[0] then
Reveal(cc[0] mod 10000),

which intuitively means that if the most recent input named
requestReceipt is true, then the last four digits of the most
recent input named cc may be revealed; the value of the most
recent input named requestReceipt may also be revealed,
but no other information will be. Thus, the policy de-
scribes what information may be released (cc[0] mod 10000),
and the conditions under which the release may occur
(requestReceipt[0] evaluates to true). Specifically, this policy
implies that if requestReceipt[0] is false, then an observer
does not learn anything about cc[0].

This policy expresses extensional information security
about the program, that is, security in terms of the input/out-
put behavior of the program. Our policies can also represent
certain kinds of intensional information security (i.e., se-
curity in terms of the implementation of the program), by
describing which methods must be involved in the release
of information. In the code above, the @track annotation
(line 12) indicates that the programmer is interested in how
the method lastFourDigits participates in information flows
in the program. The output of the program also satisfies the

Policies
p, q ::= Reveal(e1, . . . , en) Revelation policy

| if d then p1 else p2 Conditional policy
| if-executed r then p Track policy
| p1 and p2 Conjunctive policy

Input expressions
e ::= ν[i] | ν[i+] | n | e1 + e2 | e1 = e2 | . . .
ν ∈ ChannelName

Indices
i ::= 0 | 1 | 2 | . . .

Precise input expressions
d ::= ν[i] | n | d1 + d2 | d1 = d2 | . . .

Track expressions
r ::= k | r1∧∧∧ r2 | r1∨∨∨ r2
k ∈ Mark

Figure 1. Grammar for security policies

more restrictive policy

if requestReceipt[0] then
if-executed lastFourDigits (int) then

Reveal(cc[0] mod 10000)

which indicates that if requestReceipt[0] evaluates to true
and the method lastFourDigits (int) was executed, then
cc[0] mod 10000 may be revealed. This is indeed the policy
that our inference algorithm infers for this program.

The rest of the paper is structured as follows. In Section II
we describe the security policies in more detail, and use a
simple imperative language to provide a formal semantics
for the policies. In Section III we describe a dataflow
analysis that can precisely infer security policies, and in
Section IV we discuss our implementation of the analysis
for the Java programming language. We have used this
implementation to infer security policies for several Java
programs, and we discuss our experience in Section V. Sec-
tion VI summarizes related work, and we discuss possible
extensions and conclude in Section VII.

II. POLICIES AND SECURITY

Our security policies are intended to be expressive yet
intuitive, and amenable to precise inference. In this section,
we describe our policies intuitively, then present a formal
semantics for the policies in terms of a simple imperative
language.

A. Policies

Policies describe what an observer of a program may learn
about inputs to the program. The syntax of our security
policies is described by the grammar in Fig. 1.

An input expression ν[i] indicates the ith most recent input
on the channel named ν. For example, H[0] indicates the

2

most recent input on channel H , and H[1] indicates the next-
to-last input on channel H . A lifted index i+ indicates all
inputs prior to and including i. For instance L[0+] indicates
all input on channel L and L[1+] indicates all inputs except
for the most recent. A precise input expression is any input
expression that contains no lifted indices. Thus, H[0] is a
precise input expression whereas H[1+] is not.

A revelation policy Reveal(e1, . . . , en) says that an ob-
server may learn the value of any and all of the input
expressions e1 to en. For example, policy Reveal(H[0])
states that an observer of the program may learn everything
about the most recent input on channel H . This policy is an
accurate description of the information flow of the following
program, for an observer of the output of channel L.

input x from H; output x to L

Policy Reveal(H[0] mod 10000, H[1]) is an accurate de-
scription of the following program for an L observer, who
may learn both the last four digits of the most recent input,
and everything about the next-to-last input.

input x from H;
input y from H;
z := (“Answers are ” . (y mod 10000) . “ and ” . x);
output z to L

A conditional policy if d then p1 else p2 indicates that an
observer may learn the evaluation of precise input expression
d. Moreover, in an execution in which d evaluates to true, p1
describes additional information the observer may learn, and
in an execution in which d evaluates to false, p2 describes
additional information that may be learned.

In the following program, input from the user on channel
L determines whether a sensitive input from channel H is
revealed.

input secret from H;
input password from H;
input guess from L;
if (guess = password) then x := secret; else x := 42;
output x to L

An observer of channel L may learn information described
by the policy

ifH[0] = L[0] then
Reveal(H[1])

else
Reveal(42).

There are several things to note about this policy. First, in
addition to possibly learning the value of secret, the observer
may learn whether guess is equal to password (H[0] =
L[0]). Second, the revelation policy Reveal(42) indicates that
nothing is revealed about inputs from channel H , and is
equivalent to the policy Reveal(). The semantics of policies
is discussed further in Section II-C. We write if d then p as
syntactic sugar for the policy if d then p else Reveal().

A track policy if-executed r then p indicates that if an
execution matches track expression r then p describes in-
formation an observer may learn. Track expressions are
conjunctions and disjunctions of marks, which are events
that may occur during execution, for example, a particular
procedure being called. For expository purposes, we assume
that event mark k occurs when a command mark k is
executed.

Thus, an execution trace matches mark k if the command
mark k was encountered during execution. An execution
trace matches track expression r1∧∧∧ r2 if it matches both r1
and r2, and matches r1∨∨∨ r2 if it matches either r1 or r2.
For example, in the following program, the information that
may be learned by an observer is described by the policy
if-executedCorrectGuess thenReveal(H[0]).

input secret from H;
input guess from L;
if (guess > 100) then

mark CorrectGuess;
x := secret;

else
x := 0;

output x to L

That is, for a given execution of the program, the observer
may learn the value of secret only if the mark CorrectGuess
occurred. If the mark did not occur, then the observer cannot
learn the value of the most recent input from channel H .
Thus, the following program does not satisfy the policy
if-executedCorrectGuess thenReveal(H[0]).

input secret from H; output secret to L

Track policies provide assurance that information release
is contingent on a particular event, such as the execution
of a particular section of code that is trusted to release
information.

Finally, a conjunctive policy p1 and p2 describes that an
observer may learn information according to policy p1 and
information according to policy p2.

B. A simple language

We present a simple imperative language in order to give
a formal semantics for our security policies. The syntax is
given in Fig. 2. We define a trace-based semantics for this
language. Traces are finite sequences of events. An event is
either an input event input ν n, indicating that the value
n was input from channel ν, an output event output ν n,
indicating that value n was output on channel ν, or a mark
event mark k indicating that mark k occurred. We write ·
for the empty trace.

Fig. 3 presents the semantics of the language as a large-
step operational semantics. Channel input is modeled as a
nondeterministic choice of an input value. A memory σ is a
finite map from variables Var to integers. Notation σ(a) = n
indicates that expression a evaluated to n using memory σ

3

Arithmetic expressions
a ::= n | x | a0 + a1 | a0 − a1 | . . .

Boolean expressions
b ::= true | false | a0 = a1 | a0 > a1
| ¬b | b0 ∧ b1 | . . .

Variables
x ∈ Var

Commands
c ::= x := a | c0; c1 | while b do c
| if b then c0 else c1 | skip
|mark k
| input x from ν
| output a to ν

Figure 2. Language syntax

to look up the values of any variable in a. We define the
complete trace semantics of command c as the set of all
traces that c may generate,

[[c]] , {t | ∃σ, σ′. (c, σ) ⇓ 〈t | σ′〉}.

For example, [[while true do skip]] = ∅ and [[skip]] = {·}
and

[[input x from H; output x to L]] =

{(input H n, output L n) | n ∈ Z}.

C. Semantics of policies

We define the semantics of a security policy as an
equivalence relation over traces. The equivalence relation
corresponding to a policy prescribes which execution traces
an observer should be unable to distinguish.

In order to define the semantics of security policies,
we first need to define semantics for input expressions
and track expressions. We regard imprecise expressions as
representing an (infinite) set of precise expressions. Intu-
itively, input expression ν[i+] represents the set of precise
expressions {ν[i], ν[i + 1], ν[i + 2], . . . }. Other imprecise
input expressions are defined homomorphically. We write
preciseExprs(e) for the set of precise expressions repre-
sented by input expression e. The definition is given in
Fig. 4.

Given trace t, the evaluation of a precise input expression
d, written t(d), is a value in the set {⊥, true, false} ∪ Z.
Intuitively, input expression ν[i] evaluates to the ith most
recent input on channel ν. The evaluation of other precise
input expressions is defined homomorphically. Fig. 4 gives
a formal definition. Given trace t, the evaluation of a track
expression r, written t(r), is a value in the set {true, false},
indicating whether the marks indicated occurred in the trace.
Fig. 4 gives the semantics.

We can now define the semantics of policies. Given
security policy p, we write [[p]] for the equivalence relation

preciseExprs(n) = {n}
preciseExprs(ν[i]) = {ν[i]}

preciseExprs(ν[i+]) = {ν[i], ν[i+ 1], ν[i+ 2], . . .}
preciseExprs(e1op e2) = {d1op d2 | d1 ∈ preciseExprs(e1)

and d2 ∈ preciseExprs(e2)}

t(n) = n

·(ν[i]) = ⊥
(t, input ν n)(ν[0]) = n

(t, input ν n)(ν[i]) = t(ν[i− 1])

(t,)(ν[i]) = t(ν[i])

t(d1 op d2) =

{
n n = t(d1) [[op]] t(d2)

⊥ otherwise

where [[op]] is the usual interpretation of arithmetic or boolean operators.

t(k) = true if mark k ∈ t
t(k) = false if mark k /∈ t

t(r1∧∧∧ r2) = t(r1) ∧ t(r2)

t(r1∨∨∨ r2) = t(r1) ∨ t(r2)

Figure 4. Semantics of input expressions and track expressions

over traces that represents p. We define this equivalence
relation in Fig. 5. Intuitively, a security policy limits the
information that an observer is allowed to learn about a
program’s execution. If two traces t1 and t2 are related
by security policy p (i.e., (t1, t2) ∈ [[p]]), then according to
policy p, an observer should not be allowed to distinguish t1
from t2. If (t1, t2) 6∈ [[p]], then policy p permits an observer
to distinguish the two traces.

For example, revelation policy Reveal(e1, . . . , en) intu-
itively permits an observer to learn the values of input
expressions e1, . . . , en, and so t1 and t2 are related by the
revelation policy if and only if the two traces agree on the
evaluation of each input expression ei for i ∈ 1..n—that is,
if t1(d) = t2(d) whenever d ∈ preciseExprs(ei).

Traces are related by conditional policy if d then p else q if
they agree on the evaluation of expression d, and are related
by p or q, as appropriate, based on the evaluation of d. Sim-
ilarly, traces are related by track policy if-executed r then p
if they agree on the evaluation of track expression r, and,
when r evaluates to true, they are related by p.

Finally, traces are related by conjunction policy p and q if
they are related by both p and q.

D. Policy ordering and normalization

The semantics of policies induces a partial order on secu-
rity policies. We say policy p reveals no more information
than policy q, written p v q, if [[p]] ⊇ [[q]]. Intuitively, if p

4

σ(a) = n

(x := a, σ) ⇓ 〈· | σ[x 7→ n]〉 (skip, σ) ⇓ 〈· | σ〉
(c1, σ) ⇓ 〈t1 | σ1〉 (c2, σ1) ⇓ 〈t2 | σ2〉

(c1; c2, σ) ⇓ 〈t1, t2 | σ2〉
σ(b) = false

(while b do c, σ) ⇓ 〈· | σ〉

σ(b) = true (c, σ) ⇓ 〈t1 | σ1〉
(while b do c, σ1) ⇓ 〈t2 | σ2〉

(while b do c, σ) ⇓ 〈t1, t2 | σ2〉
σ(b) = true (c1, σ) ⇓ 〈t1 | σ1〉

(if b then c1 else c2, σ) ⇓ 〈t1 | σ1〉
σ(b) = false (c2, σ) ⇓ 〈t2 | σ2〉
(if b then c1 else c2, σ) ⇓ 〈t2 | σ2〉

(mark k, σ) ⇓ 〈mark k | σ〉 (input x from ν, σ) ⇓ 〈input ν n | σ[x 7→ n]〉
σ(a) = n

(output a to ν, σ) ⇓ 〈output ν n | σ〉

Figure 3. Language semantics

(t1, t2) ∈ [[Reveal(e1, . . . , en)]] if ∀d ∈
⋃
i=1..n preciseExprs(ei). t1(d) = t2(d)

(t1, t2) ∈ [[if d then p else q]] if (t1(d) = t2(d) = true and (t1, t2) ∈ [[p]])
or (t1(d) = t2(d) = false and (t1, t2) ∈ [[q]])

(t1, t2) ∈ [[if-executed r then p]] if (t1(r) = t2(r) = true and (t1, t2) ∈ [[p]])
or (t1(r) = t2(r) = false)

(t1, t2) ∈ [[p and q]] if (t1, t2) ∈ [[p]] ∩ [[q]]

Figure 5. Semantics of policies

(·, ·) ∈ [[M]]obs
(t1, t2) ∈ [[M]]obs if (t2, t1) ∈ [[M]]obs
(t1, t3) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs and (t2, t3) ∈ [[M]]obs

(t1, (t2,mark k)) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs

(t1, (t2, input ν n)) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs and ν /∈ obs
(t1, (t2, output ν n)) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs and ν /∈ obs

((t1, input ν n), (t2, input ν n)) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs
((t1, output ν n1), (t2, output ν n2)) ∈ [[M]]obs if (t1, t2) ∈ [[M]]obs and M(ν) = p, and

(t1, t2) ∈ [[p]] implies n1 = n2

Figure 6. Semantics of policy maps

reveals no more information than q, then any information
that policy p permits an observer to learn, is also permitted
by policy q: if p allows an observer to distinguish traces t1
and t2, then (t1, t2) 6∈ [[p]], and so (t1, t2) 6∈ [[q]], meaning
that q also allows an observer to distinguish the two traces.

Given this ordering, the least upper bound of p and q is
p and q, and the bottom element of this partial order allows
no information at all to be revealed: Reveal().

Many of the security policies are equivalent under this
ordering. For example, the policies Reveal(), Reveal(42),
and if true thenReveal() else Reveal(1) are all equivalent, as
are the policies Reveal(H[0]) and Reveal(H[0] + 7).

Fig. 7 presents some policy equivalences, expressed as
inference rules. Read from left to right, these equivalences
provide rewrite rules to simplify policies while preserving
semantic meaning. We refer to the process of applying
rewrite rules as normalization: when a policy can no longer
have any rewrite rules applied to it, it is in normal form.
Normalization is critical during inference as it reduces the

number of policies that occur during the analysis, and
ensures termination of the analysis.

E. Security

We assume there is an observer who can see the inputs
and outputs occurring on some set of channels obs ⊆
ChannelName. Given trace t we define the projection of
t on channels obs , written btcobs , to be the subsequence of
t consisting of all and only events on channels in obs .

b·cobs = ·
bt, input ν ncobs = btcobs , input ν n if ν ∈ obs

bt, input ν ncobs = btcobs if ν 6∈ obs

bt, output ν ncobs = btcobs , output ν n if ν ∈ obs

bt, output ν ncobs = btcobs if ν 6∈ obs

bt,mark kcobs = btcobs

We say that traces t1 and t2 are observationally equivalent
to an observer obs if and only if bt1cobs = bt2cobs .

5

i ≤ j
Reveal(H[j], H[i+]) = Reveal(H[i+])

j = i+ 1

Reveal(H[j], H[i+]) = Reveal(H[j+])

p = p′ q = q′

if d then p else q = if d then p′ else q′

if d then p else p = Reveal(d) and p p and p = p if-executed r then if-executed r′ then p = if-executed (r∧∧∧ r′) then p

(if d then p1 else q1) and (if d then p2 else q2) = if d then (p1 and p2) else (q1 and q2)

Figure 7. Selection of policy equivalences

In order to specify what it means for a program to be
secure with respect to security policies, we need some way
of specifying what information an observer of the system
should be allowed to learn. A policy map M is a map from
channel names to security policies. Intuitively, M(ν) is a
security policy that describes the information that may be
released over channel ν.

A program is secure for observer obs with respect to
policy map M if the observer can learn at most information
according to policies M(ν), for ν ∈ obs . We define [[M]]obs
to be the equivalence relation representing the information
an observer obs should be allowed to learn. Intuitively, traces
t1 and t2 are equivalent according to [[M]]obs when the
following conditions hold.
(i) t1 and t2 agree on the order of input and output events

for all channels in obs .
(ii) t1 and t2 agree on the input values for pairs of

corresponding input events on channels in obs .
(iii) All information output to channel ν is described by

M(ν). That is, for each pair of corresponding ν-output
events in traces t1 and t2, the output values agree
whenever the traces immediately prior to the output
event are related by [[M(ν)]].

The formal definition of [[M]]obs is given in Fig. 6.
A program is secure if observational equivalence is no

more precise than the equivalence relation [[M]]obs .

Definition 1 (Security). Program c is secure with respect to
policy map M if for all obs ⊆ ChannelName, and t1, t2 ∈
[[c]], (t1, t2) ∈ [[M]]obs implies bt1cobs = bt2cobs .

Intuitively, the definition requires that for an observer of
channels obs , if the policy map M says that the observer
should not be able to distinguish two executions of the
program ((t1, t2) ∈ [[M]]obs), then it is indeed the case that
the observer cannot distinguish them (bt1cobs = bt2cobs).
This definition is a standard noninterference-based [10]
definition, and as such, cannot be expressed as a predicate
over just a single execution trace [11].

III. INFERENCE

Security policies describe what information may be
learned by an observer of a program execution. However,
specification of policies can be onerous (e.g., [8]), since

it requires the programmer to explicitly state the security
policies the program is intended to satisfy. Instead, using
techniques inspired by security-type systems [7], we focus
on the inference of security policies from programs with
few annotations. Policy inference frees the programmer
from needing a priori knowledge of the security policies
a program should satisfy.

In this section we describe how our security policies can
be precisely inferred with few security annotations from
the programmer. We present examples using the imperative
language of Section II-B, but describe how these techniques
extend to more general languages. In Section IV we describe
how we apply these techniques to Java programs.

The challenge is to soundly infer precise security policies
with few programmer annotations. The expressiveness of our
security policies presents opportunities for greater precision
in the inferred policies than can be obtained by generalizing
standard information-flow type-systems. We use a dataflow
analysis to infer security policies for a program. We first
define the dataflow information our analysis propagates,
including how this information is merged, then describe
transfer functions for the commands in the simple imper-
ative language. We also describe how a policy map can
be extracted from the dataflow information, thus inferring
security policies for the program, and discuss the soundness
of our analysis.

A. Contexts

The dataflow information our analysis associates with
every program point is a context 〈Γ, pc〉, where Γ is a
variable context that maps every program variable to a
security policy, and pc is a program counter map. A variable
context is a function from program variables to security
policies that records for each variable an upper bound on
the information that may be stored in that variable at that
program point. A program counter map (or pc-map for
brevity) is used to track what information may be learned by
knowing that execution has reached this program point. It is
similar to the program counter policies used in security-type
systems [7], but contains additional structure to facilitate
precise inference of our security policies.

Program counter maps. The domain of a program
counter map is a subset of the branch points in the program’s

6

input x from H;
input y from H;
z := ...; // some complicated computation involving y
if (x > 42) then w := 0
else

if (z = 0) then { P: w := 1 } else { w := 2 }

Figure 8. Program counter map example

control flow graph. Given a pc-map pc for some program
point, a branch point b is in the domain of pc if and only if
the program point is control dependent on b. In the simple
imperative language of Section II-B, the only branch points
are the guards of if and while commands. A program point
is control dependent on the guard of an if command only
if the program point is within one of the two branches of
the command. Since we are concerned with termination-
insensitive security, a program point is control dependent on
the guard of a while loop only if the program point is within
the body of the loop. (If we were concerned with termination
sensitive security, program points after a possibly diverging
while loop would also be control dependent on the loop
guard.)

A branch point b in pc-map pc maps either to a security
policy, or a precise input expression. If b maps to security
policy p, then p is an upper bound of the information used to
decide which control flow path to take at b: it is the policy
associated with the guard of the if or while statement. If,
however, we know (through some external analysis) that the
control flow decision at b is determined by the evaluation
of some precise boolean input expression d, then b maps to
either d or ¬d, depending on which branch was taken.

Consider the example program in Fig. 8. Let P be the
program point just prior to assignment w := 1. At P control
flow is dependent on the branch points x > 42 and z = 0,
and thus both of these branch points are in the domain of
the pc-map at program point P . The control flow path taken
at branch point x > 42 is determined by the precise input
expression H[1] > 42, and moreover, at program point P ,
we know that H[1] > 42 is false. The control flow path taken
at branch point z = 0 depends on information bounded above
by the policy Reveal(H[0]). However, (by assumption) we
do not know whether path taken at this branch is determined
by any precise security expression. The pc-map for P is thus

{x > 42 7→ ¬(H[1] > 42), z = 0 7→ Reveal(H[0])}.

Merging contexts. At program points where control flow
paths merge (such as the program point following an if
command, or the head of a loop), contexts must be soundly
merged. The merge of two contexts 〈Γ1, pc1〉 and 〈Γ2, pc2〉
is 〈Γ1 t Γ2, pc1 t pc2〉, where Γ1 t Γ2 denotes the merge
of the variable contexts, and pc1 tpc2 denotes the merge of
the pc-maps.

Variable contexts are merged pointwise. That is, given
two variables contexts Γ1 and Γ2, for each variable x, Γ1 t
Γ2 maps x to the policy p1 and p2, where Γ1(x) = p1 and
Γ2(x) = p2.

The merge of two pc-maps, pc1tpc2, is defined in Fig. 9.
The merge is pointwise, with the exception of when one
of pc1 and pc2 maps branch point b to a precise security
expression, and the other maps b to something else, either
a different precise security expression, or a security policy.
In that case, we no longer have precise information about
control flow, and the merged pc-map pc1 t pc2 maps b to a
sound but less precise security policy.

Both variable context and program counter merges may
yield policies with unnecessarily large representations. We
normalize the policies, as described in Section II, to ensure
policies are represented concisely. Normalization both im-
proves policy readability and is needed to ensure termination
of the analysis.

Improving precision of pc-maps. At control flow points
that are immediate post dominators of branch points, we can
improve the precision of program counter maps, by restoring
the program counter map that was in place at the branch
point. Intuitively, once the post dominator of branch point
b has been reached, control flow is not dependent on b.
From a (termination insensitive) information-flow perspec-
tive, knowing that execution has reached the post dominator
of b reveals exactly as much information as knowing that
execution reached branch point b.

Given a control flow graph of a program, we insert
additional nodes to distinguish immediate post dominators
of branch points. The transfer functions for these additional
nodes improve the precision of the pc-map by restoring it
to the pc-map of the post-dominated program point.

In the example program of Fig. 8, the final program point
is the immediate post dominator of both branches x > 42
and z = 0. We restore the pc-map for the program point
immediately before the branch x > 42.

In the following subsections, we describe the transfer
functions for the remaining commands in our simple im-
perative language.

B. Transfer function for assignment

Intuitively, the transfer function for assignment x := a
must update the variable context to record the information
that may be learned by examining the contents of variable x
after the assignment. In addition to learning the evaluation of
expression a, one also learns that the assignment occurred.
This is known as an implicit information flow [12], where
information flows through the control structure of a program.
Our analysis precisely tracks implicit information flows
using the program counter maps.

Consider an assignment x := a occurring in con-
text 〈Γ, pc〉. Let pa = Γ(x1) and . . . andΓ(xn), where

7

pc1 t pc2(b) =

pc1(b) if b ∈ dom (pc1) ∧ b 6∈ dom (pc2)

pc2(b) if b 6∈ dom (pc1) ∧ b ∈ dom (pc2)

pc1(b) if pc1(b) = pc2(b)

p1 and p2 if pc1(b) = p1 and pc2(b) = p2 for some security policies p1 and p2
Reveal(d, d′) if {pc1(b), pc2(b)} = {d, d′} for distinct precise input expressions d, d′

Reveal(d) and p if {pc1(b), pc2(b)} = {d, p} for some precise input expression d and policy p

Figure 9. Merge of program counter maps

x1, . . . , xn are the variables that occur in expression a.
Policy pa is an upper bound of the information that may
be learned from the evaluation of a. Let the range of
pc be d1, . . . , dn, p1, . . . , pm for precise input expressions
d1, . . . , dn and security policies p1, . . . , pm. That is, any
branch point in the domain of pc maps to one of these precise
input expressions or security policies.

The transfer function for assignment maps variable x to
the policy

if d1 ∧ · · · ∧ dn then pa and p1 and . . . and pm.

(If there are no precise input expressions in the range
of pc, i.e., n = 0, then x is mapped to the policy
pa and p1 and . . . and pm.)

This rule records that the variable x contains information
bounded above by the policy pa and p1 and . . . and pm only
if the input expressions d1, . . . , dn are all true. Intuitively,
the security policy now associated with x describes what
information may be learned by examining the contents
of x: one learns information only if input expressions
d1, . . . , dn are all true, and if so, one learns both the eval-
uation of a (pa), and the fact that the assignment occurred
(p1 and . . . and pm, and implicitly, d1 ∧ · · · ∧ dn).

As an example, consider again the program in Fig. 8.
At the program point immediately following the com-
mand w := 1, the context maps variable w to the policy
if ¬(H[1] > 42) thenReveal(H[0]).

Improving precision at merge points. Consider the
following program.

input x from H; input y from H; input z from H;
if (z = 7) then w := x else w := y

At the program point immediately following the assign-
ment w := x, the context maps program variable w to the
policy ifH[0] = 7 thenReveal(H[2]). At the program point
after assignment w := y, the context maps w to the pol-
icy if ¬(H[0] = 7) thenReveal(H[1]). Immediately follow-
ing the if command, the contexts from the two branches are
merged, resulting in w mapping to policy

ifH[0] = 7 thenReveal(H[2]) else Reveal(H[1]),

a precise summary of what information may be learned by
observing the contents of w at that program point. Namely,
the value of expression H[0] = 7 may be learned, and if that
expression is true, then the 3rd most recent input on channel
H may be learned (Reveal(H[2])), otherwise the 2nd most
recent input on channel H may be learned (Reveal(H[1])).

The following program is semantically equivalent to the
program above.

input x from H; input y from H; input z from H;
w := y;
if (z = 7) then w := x else skip

However, using the transfer functions and merging de-
scribed so far, at the end of the command, w would have
the policy

Reveal(H[1]) and ifH[0] = 7 thenReveal(H[2]),

which is sound, but not as precise as the previous policy.
To improve precision, when control flow paths merge, if

variable x may have been updated on one path but not the
other, we insert a self-assignment x := x at the end of the
path on which x was not updated. Thus, we analyze the
example above as if it were the following.

input x from H; input y from H; input z from H;
w := y;
if (z = 7) then w := x else w := w

This additional analysis is sound (since the self-assignment
is semantically a no-op), and provides additional precision.
The resulting policy for w is precisely inferred to be
ifH[0] = 7 thenReveal(H[2]) else Reveal(H[1]).

C. Mark commands

A mark command mark k is semantically a no-op. The
transfer function for mark commands is just the identity
function, and so a mark command does not directly update
the context.

However, we use mark commands to produce track poli-
cies if-executed r then p. We use a dominance algorithm to
identify assignments that are dominated by mark command
mark k (that is, in any execution of the program the mark
command must execute before the assignment). For any such
assignment x := a, we insert an additional node into the
control flow graph immediately following the assignment

8

that indicates this. If the context on entry to one of these
inserted nodes is 〈Γ, pc〉, the transfer function for the node
updates the policy of variable x to if-executed k then p,
where Γ(x) = p. This records that the information that
may be learned by examining the contents of variable x at
this program point is conditional on the execution of mark
command mark k.

D. Transfer function for input commands

An input command input x from ν reads an input and
assigns it to variable x. Thus, following the command, vari-
able x contains the most recent input. The transfer function
for an input command thus treats it like an assignment
to the variable x of an expression with a security policy
Reveal(ν[0]). The actual policy associated with x following
the input depends on the program counter map, as described
in Section III-B.

In addition, the transfer function for an input command
increments the index of inputs on channel ν in all policies
in the context and program counter policy.

For example, if program variable y is mapped to policy

if ν[1] = 42 thenReveal(ν[0])

before command input x from ν, then after the command
the analysis will associate y with policy

if ν[2] = 42 thenReveal(ν[1]).

Bounded precision for inputs. In order to ensure that
the analysis terminates, we cannot track the history of
inputs with unbounded precision. For each input channel
ν, we assume an upper bound bν on the indices that we
track precisely, and summarize all indices greater than or
equal to bν with an imprecise input expression ν[bν+].
For example, if bν = 2 and program variable z maps to
Reveal(ν[1] mod 5) before command input x from ν, then
after the command the analysis will associate z with policy
Reveal(ν[2+] mod 5).

A conditional policy, say if d then p1 else p2, is required to
have a precise expression its guard. If a guard becomes im-
precise, we must change the policy to a conjunction. Specif-
ically, if d is a precise expression, and e is the imprecise
expression obtained by incrementing the indices for inputs
on some channel, then conditional policy if d then p1 else p2
becomes Reveal(e) and p′1 and p

′
2, where p′1 and p′2 are the

result of incrementing the indices of inputs on policies p1
and p2 respectively.

For example, if program variable y maps to policy

if ν[1] = 42 thenReveal(ν[0])

before command input x from ν, and bν = 2, then after the
command the analysis will associate y with policy

Reveal(ν[2+] = 42) andReveal(ν[1]).

E. Output commands and policy maps

The command output a to ν evaluates a and outputs it
on channel ν. The transfer function for this rule does not
modify the context. Instead the static analysis uses output
commands to build a policy map explaining the information
flows in a program.

Intuitively, observation of the result of output command
output a to ν may reveal both the evaluation of expression
a, and also the fact that the output occurred. This is similar
to the information flow that occurs through assignment, and
by a similar argument, a suitable policy for the output is

if d1 ∧ · · · ∧ dn then pa and p1 and . . . and pm
where d1, . . . , dn, p1, . . . , pm is the range of the pc-map at
the output command, and pa describes the information that
may be learned from the evaluation of a.

The ultimate goal of the inference is to generate a policy
map M that soundly describes what information may be
learned by observing the output channels of the program
when it executes. We define this policy map M as follows.

Suppose that the dataflow algorithm has terminated, and
found appropriate contexts for every program point. Further
suppose that the program contains exactly n output com-
mands to channel ν. Let p1, . . . , pn be the security policies
describing the information that may be learned by examining
the result of each of these n output commands. Then policy
map M maps channel ν to the conjunction of these policies:

M(ν) = p1 and . . . and pn

F. Soundness and termination

The inference algorithm is sound if the program c is
secure with respect to the policy map M produced at the end
of the dataflow, where security is as defined in Definition 1.

We argue that our inference algorithm is sound. The
intuition behind the algorithm is that at each program point,
the context conservatively describes the information that
may be learned by knowing that control flow has reached
that program point, and the information that may be learned
by examining the contents of each variable at that program
point. The transfer functions and merge operation generalize
information-flow typing rules for security type systems such
as Jif [13], and we thus believe them to be sound. Standard
results for the soundness of dataflow analyses then entail
soundness of our analysis.

We also argue that our dataflow analysis always termi-
nates. There are only finitely many contexts that may occur
during dataflow analysis. This is due to the following facts.

1) Only finitely many precise input expressions are used
during the dataflow analysis, since a precise input
expression is used in the dataflow only if it was part of
the output of a previous analysis (see Section III-A).

2) Only finitely many input expressions are used during
the dataflow analysis, since indices of inputs ν[i] are

9

bounded, and only expressions occurring within the
program are used in policies.

3) Only finitely many marks are used during the dataflow
analysis, since there are only finitely many mark
commands in a program.

4) Only finitely many policies are used during the
dataflow analysis, since policies are normalized (Sec-
tion II) before they are stored in the context, and
given finitely many precise input expressions, input
expressions and marks, there are only finitely many
normalized policies.

We define a partial order ≤ over contexts, where
〈Γ1, pc1〉 ≤ 〈Γ2, pc2〉 if and only if both Γ1 v Γ2 and
pc1 v pc2, where we extend the security policy partial
order v pointwise to variable environments and pc-maps.1

The transfer functions used in the dataflow analysis are
monotonic with respect to the partial order ≤, and the
context merge operation is an upper-bound operation for
this partial order. Thus, a standard work-queue algorithm
for the dataflow analysis will always find a fixed-point and
terminate.

IV. IMPLEMENTATION

We have implemented the dataflow analysis for precise
inference of security policies, described in Section III, as
an interprocedural object-sensitive dataflow analysis for the
Java programming language.

The implementation is a 35,100 non-comment non-blank
line extension for the Polyglot compiler framework [14],
a source-to-source compiler for the Java 1.4 programming
language. This extension is factored into 3 parts: 10,400
lines implement an object-sensitive pointer analysis [15] and
an interprocedural dataflow framework using this pointer
analysis; 11,400 lines implement a generic information-flow
dataflow analysis that can be specialized for different secu-
rity policies; and 13,300 lines specialize this information-
flow dataflow analysis for our security policies.

In this section, we discuss the extensions to the analysis
of Section III required to build a practical security policy
inference analysis for Java.

A. Programmer annotations

We aim to infer expressive security policies with few
annotations from the programmer. However, our security
policies rely on identifying sources of sensitive informa-
tion (inputs) and observable sinks of information (outputs).
While our tool could attempt to infer these inputs and
outputs (for example, by determining which InputStreams
and OutputStreams may be connected to the network), we
have not done so. Instead, we rely on the programmer to
provide annotations indicating these sources and sinks. We

1The co-domain of pc-maps is both security policies and precise input
expressions; we extend the partial order over security policies by treating
precise input expression d as if it were the security policy Reveal(d).

emphasize that the programmer does not need to provide
annotations on fields, classes, or method headers before
being able to use our tool.

The programmer indicates inputs and outputs using the
annotations @input ν e and @output ν e respectively, where
ν is a literal string indicating the name of the input or
output, and e is an arbitrary Java expression. Input and
output annotations may occur in a program anywhere a Java
expression can occur. Input and output names are intended to
be unique within a program. A programmer can optionally
indicate the precision with which to track a particular input.
By default, we use precision 1, meaning that for input
channel ν, we track only input expressions ν[0] and ν[1+].

As shown in the Introduction’s example code, program-
mers can use the @track annotation in a method header.
This indicates that a method is security relevant and that
its name should be used to build if-executed policies.
Intuitively, this is similar to starting a method body with
a mark method-name command.

Improving the inference results. If the results of
the inference are in accordance with the programmer’s
expectations about the security requirements of the program,
the programmer has received sufficient security assurance.
However, if the results of the analysis do not meet the
programmer’s expectations, it could be due either to an
actual security issue in the program, or to imprecision in the
inference result. To address the later possibility, we provide
additional mechanisms for the programmer to improve the
precision of the analysis.

Implicit information flows can be a significant source of
imprecision, and, as King et al. [16] demonstrate, partic-
ularly implicit information flows arising from conservative
handling of unchecked exceptions. To mitigate this source
of imprecision, we allow programmers to indicate that an
expression or statement e cannot throw an exception of
class E (or subclass thereof) by using the @suppress E e

annotation. This improves the precision of the control flow
graph, and also improves the precision of the inference
analysis, since it reduces the spurious information flows
that the inference conservatively assumes may occur due
to exceptional control flow. If the programmer is incorrect
in her assertion that an expression cannot throw a certain
exception, then the analysis results may be unsound.

B. Precise input expressions

The analysis can track implicit flows precisely when a
branching decision is determined by a precise input expres-
sion. Our analysis of Section III assumes that this infor-
mation is available through some other analysis, and does
not itself compute this information. We therefore implement
an additional interprocedural analysis to determine which
program expressions are equal to precise input expressions.
This is another information flow analysis, albeit one that

10

tracks only explicit information flows, and ignores implicit
flows; it is similar to a constant propagation analysis.

C. Non-structured control flow

Unlike the simple imperative language of Section II-B,
Java has unstructured control flow, due to exceptions and
break, continue, and return commands. This complicates
the dataflow analysis in a few ways.

First, control flow may be unstructured, and more work is
required to determine the control flow graph for the program.
Since our security policy inference analysis tracks implicit
information flows, improving the precision of the control
flow graph improves the precision of the inferred security
policies. The key sources of imprecision in constructing the
control flow graph are dynamic dispatch (where the method
body to execute on method invocation depends on the
runtime class of the receiver object), and exceptions (where
control flow depends on the runtime class of the thrown
exception). The pointer analysis provides information about
the possible runtime classes of both receiver objects and
thrown exceptions. In addition, we perform an interproce-
dural dataflow analysis to remove spurious exceptions. For
example, if we can prove that the receiver of a field access
or method invocation can never be null, then that operation
can never throw a NullPointerException. Similarly, given an
unsafe cast operation (C)e, if the points-to set of expression
e indicates that e always points to a subclass of class C, then
the cast can never throw a ClassCastException.

Second, the immediate post dominators of branch points
can no longer be determined by examining just the syntax
of the program. We instead implement an intraprocedural
post-dominance algorithm [17] to determine the immediate
post dominators of branch points. We use the output of
this algorithm to restore the program counter map at the
post dominator of a branch point to its value at the branch
point, as described in Section III-A. An interprocedural
post-dominance algorithm [18] would provide more precise
results, allowing us to potentially restore more program
counter maps. However, inter-procedural post-dominator
analysis would improve precision only in specific instances,
with fairly complicated control flow. In our experience, such
patterns of control flow occur rarely in actual code, and
we have found that the intraprocedural analysis provides
sufficiently precise results.

Finally, we treat returns and throws like assignments, in
that we taint the value returned with the program counter
map in use at the program point where the return or
throw occurs. This is because the program point at which a
return or throw occurs may reveal sensitive information, as
demonstrated in the following code snippet, where the value
of variable x depends on the sensitive input H[0].

int foo(boolean sensitiveInfo) {
if (sensitiveInfo) return 0;
return 1;

}
...
int x = foo(@input ‘‘H’’ ...);

D. Interprocedural object-sensitive analysis

We have implemented the object-sensitive pointer analysis
of Milanova et al. [15]. We perform an object-sensitive
interprocedural dataflow analysis, using the results of this
pointer analysis to determine the different contexts in which
to analyze code. The sensitivity of the pointer analysis can
be adjusted, affecting the number of different contexts for
code analysis: increased sensitivity in the pointer analysis
leads to more contexts for code analysis (and thus more
precision).

Object-sensitive pointer analysis allows our interproce-
dural dataflow analysis to maintain greater precision (over
context-sensitive pointer analysis) for many common object-
oriented coding patterns, such as collections, and field ac-
cess.

However, using just object-sensitivity can lead to im-
precision in our analysis for some common patterns, such
as getter-methods and methods that compute a function
of its arguments (such as math library methods like
Math.max(int, int)). For example, consider the following
code.

1 class C {
2 int f ;
3 int getF() { return this . f ; }
4 }
5 ...
6 C obj = new C();
7 if (@input ‘‘H’’ ...) {
8 int x = obj.getF();
9 }

10 int y = obj.getF();

Using object-sensitive interprocedural analysis, both calls to
the method C.getF() on the object obj use the same analysis
result, since they have the same receiver object. Thus, the
method is analyzed using a pc-map that merges the pc-maps
of both call sites. Since the pc-map of the first call site
(line 8) contains sensitive information, and returns taint the
returned value with the pc-map, we incorrectly assume that
the value returned at the second call site (line 10) may reveal
sensitive information.

To maintain precision with in these cases, we analyze
methods at the leaves of the call graph based on both object-
context and call site. That is, any method that does not
invoke other code is analyzed separately for each call site
and object context. This avoids the problem with imprecise
pc-maps for many common cases, such as getter-methods
and math library functions, without unreasonable additional
computation.

11

Program L
in

es
of

C
od

e

A
nn

ot
at

io
ns

In
fe

re
nc

e
tim

e
(s

ec
)

Pr
ec

is
e

in
pu

t
ex

pr
.

an
al

ys
is

tim
e

(s
ec

)

Ji
f

L
oC

Ji
f

ty
pe

an
no

ta
tio

ns

Chat 79 2 <1 <1
Password Manager 184 3 <1 <1
Access control 270 8 <1 <1
Battleship 326 6 9 14 337 ∼195
Go Fish 385 18 14 5
Mental Poker 1369 6 470 15 3253 ∼1175

Table I
CASE STUDIES

E. Library classes

We provide signatures for standard Java library classes.
We must provide signatures for all analyses our tool per-
forms, including pointer analysis, the analysis to remove
of spurious exceptions (discussed in Section IV-C), and the
information flow analyses—a single signature suffices for
both the inference of security policies, and the analysis to
determine what program expressions are equal to precise
input expressions (discussed in Section IV-B).

The use of signatures improves the performance of the
tool, since we do not need to analyze the standard Java
library code. It also avoids difficulties analyzing the numer-
ous native methods in the standard Java library. However,
the signatures are a potential source of both unsoundness
and imprecision, as there is no guarantee that the signatures
accurately reflect the behavior of the library code.

V. CASE STUDIES

We have used the Java tool for inference of security poli-
cies on several Java programs. All the programs are of mod-
est size, the largest having 1,400 non-comment non-blank
lines of code. However, all have interesting information-
security requirements. Two of the programs have equivalent
versions written in the Jif programming language [19, 13],
an extension of Java with information-security types.

In this section we report on our experiences using the
tool, including useful idioms for annotating code, and the
security policies the tool was able to infer.

Table I summarizes the programs we used, and the
time taken to perform the analysis. Four are programs we
wrote ourselves. We first wrote pure Java code, debugged
our implementations, and then added annotations, which
occasionally required minor refactoring of the code. The
Battleship program is a Jif program bundled with the Jif
distribution. We removed the Jif type annotations to obtain
a Java program. The Mental Poker program was written by
Askarov and Sabelfeld [8], who implemented two versions,

one in Java (for which we inferred policies), and subse-
quently one in Jif. For the programs with Jif versions, we
include the number of lines of code for the Jif version, and
the approximate number of Jif type annotations.

The fourth and fifth columns of the table describe the
time taken to perform, respectively, the inference analysis,
and the precise input expression analysis (used to determine
when program expressions are equivalent to a precise input
expression). Times are averaged over five executions, all
performed on a Mac Pro dual 2.26 GHz quad-core Intel
Xeon with 8 GB of RAM. All analyses used a 2-full-
object-sensitive pointer analysis with a heap context depth
of 1 [15, 20] except for Battleship (3-object sensitivity) and
Mental Poker (context insensitive). All pointer analyses took
less than 1 second to complete.

A. Go Fish

This program is a card game in which a human player
competes with a computer player. Each player is dealt cards
from the deck, holds a secret hand of cards, and requests
cards from the other player. Once we annotated the program,
the inferred security policies show that the implementation
of the computer player does not cheat: the computer player’s
decision of which cards to request does not depend on the
human’s cards, or the undealt part of the deck.

This program required the most annotations of all case
study programs. A key use of annotations indicates when
information is declassified and “relabels” the declassified
data. For example, the code below shows the relabeling of
a card drawn from the deck.

computerPlayer.receiveCard(
@input ‘‘Computer drawn card’’ deck.drawOne());

The expression deck.drawOne() has a security policy that
indicates it contains information about the undrawn portion
of the deck. Relabeling loses this information, and is thus
a potentially dangerous annotation, possibly resulting in
misleading (but semantically correct) security policies. The
benefit of relabeling is that is allows intentionally declassi-
fied information be described and tracked separately from
the high-security information from which it is derived.

We arrived at the conclusion that relabeling is useful, but
dangerous. Outputting the relabeled information mitigates
some of the danger, as it means analysis will indicate what
information is being relabeled. For example, the following
code outputs deck.drawOne() before relabeling it.

computerPlayer.receiveCard(
@input ‘‘Computer drawn card’’

@output ‘‘Computer drawn card’’ deck.drawOne());

We provide syntactic sugar for this common pattern; and the
previous expression can be rewritten as follows.

computerPlayer.receiveCard(
@relabel ‘‘Computer drawn card’’ deck.drawOne());

12

The corresponding inferred policy states,

Computer’s Choices 7→
. . . Reveal(Computers drawn cards[0+] . . .)

Computer drawn cards 7→
. . . Reveal(The Deck[0+] . . .),

indicating that the computer’s moves depend on undealt part
of the deck only via the cards drawn. (For concise exposition
we elided other permissible flows.)

Design Pattern Output and relabel declassified
information. After intentionally declassifying data,
use input annotations to identify the newly de-
classified information. Output the declassified data
first to show flows into the new label.

In Go Fish, both the human and computer player are
implemented as subclasses of the same class and share
common code. Object sensitivity allows the analysis to
distinguish data belonging to these two distinct objects.

B. Password Manager

The Password Manager program implements a simple
password wallet that stores passwords protected by a master
password. The user interacts with the password manager in
a read-eval-print loop; he may issue commands to store and
retrieve passwords, and to reset the master password. Pass-
words are stored encrypted with the master password, and
retrieval requires decryption. We use symbolic encryption
for debugging purposes in this program.

We added three annotations in total to the Password
Manager. All output to the screen occurs through a single
method that calls System.out.println. We added a single
output annotation to that method, as shown below.

public void writeLine(String s) {
System.out.println(@output ‘‘stdout’’ s); }

We add an input annotation for the user’s password input
only after we have validated that the input is non-null.

String p = env. util .readLine();
if (p == null) throw new CommandFailed();
p = @input ‘‘password’’ p;

Intuitively, if readLine() returns null then no password was
read and the system contains no new sensitive data. Input
annotations of this form constitute a useful design pattern.

Design Pattern Apply annotations to valid infor-
mation, not to buffers or invalid information.

This design pattern leads to clearer policy maps and more
precise inference.

The third annotation is on the result of the method
canDecrypt(c, master), which returns true only if ciphertext
c can be decrypted with the master password entered by
the user. We add an additional @suppress annotation to
indicate that if canDecrypt returns true, then doDecrypt
cannot throw any exceptions.

public static String decrypt(String s,
String masterpwd) {

if (@relabel ‘‘decrypt ok’’ canDecrypt(s,masterpwd)){
return @suppress Exception

doDecrypt(s, masterpwd);
}
return null ;

}

The decrypt ok annotation is useful as it both gives a name
to the implicit information flow stemming from decryption
success or failure, and also allows for inference of a precise
conditional policy.

Design Pattern Annotate the decision to release
information so that policies describe flows infor-
matively.

With these annotations our tool infers the informative, yet
concise policy,

output stdout 7→ if (decryption ok[0]) then
Reveal(password[0+])

This indicates that the passwords are revealed to the user
only if the passwords can be successfully decrypted using
the master password entered by the user.

C. Chatbot

The Chatbot converses with the user, sometimes repeating
user input in the style of the Eliza2 program. The inferred
security policy indicates that user input is always prop-
erly sanitized before being printed as output. The sanitize
method is annotated with a @track annotation.

static String sanitize (String tainted) @track {
// Strip dangerous characters from tainted
// return the result .
return ...; }

The Chatbot satisfies this policy,

output 7→ if -executed (ChatBot.sanitize(String)) then
Reveal(input[0+])

and is an example of the following design pattern.
Design Pattern Use @track annotations on data
sanitizers, redaction methods, and trusted declas-
sifiers, to ensure that these methods are involved
with all release of sensitive data.

D. Access control

In this example, we built an access-controlled key-value
store. Both users and stored values are associated with secu-
rity levels, and a reference monitor ensures that read requests
do not violate security-level constraints. Annotations for this
program are broadly similar to those used in the Password
Manager, and the analysis infers the following policy map.

out 7→ if (authorizationCheckOk[0]) then
Reveal(secret[0+], authorizationCheckOk[1+])

2http://en.wikipedia.org/wiki/ELIZA

13

This policy map indicates that the release of secret data
requires a successful access-control check, ensuring that the
reference monitor completely mediates data access.

E. Battleship

Battleship is a two player game, where each player places
tokens, representing ships, on his own secret board. The
players then take turns guessing where ships are located
on their opponent’s board. The first player to locate all his
opponent’s ships wins.

The Jif implementation of Battleship is broadly similar
to Go Fish. As with Go Fish, both players have private
information—their boards—but unlike Go Fish, there is no
card deck causing these secrets to be correlated. We used
annotations similar to the Go Fish annotations to show that
a computer player did not cheat; its guesses are based on
information available according to the rules of Battleship.

More precisely we annotate the guesses of Player 2 (the
computer) with @output ‘‘p2Query’’ and the secret board of
Player 1 (the human) with @input ‘‘p1Board’’. Other names
(p2QueryOk, p2Hit?, p1HitP2?) are relabelings of legitimate
transfers of information from Player 1 to Player 2. Given
these annotations, our tool infers the policy

output p2Query 7→if (p2QueryOk[0]) then
Reveal(p2QueryOk[1+], p2Hit?[0+],

p1HitP2?[0+]) } .

Critically, Player 2’s queries are independent of Player 1’s
board, p1Board, meaning that the computer is not using
information about the other player’s board to determine
where to guess.

F. Mental Poker

Askarov and Sabelfeld [8] implemented two versions of
a mental poker protocol, first in Java, and then in Jif. These
programs allow two principals to play a fair game of poker
without relying on a trusted third party to manage a deck
of cards. All randomness and adherence to the game rules
is enforced via cryptographic protocols. We annotated and
analyzed their Java version.

Both players generate key pairs to digitally sign messages.
We verify that the private key is only used to sign messages
and is not disclosed. In the implementation, players commu-
nicate via a shared object called the chain. We annotated any
modification to this shared object with an output annotation.
We annotate the public and private keys of each player:

KeyPair pair = keyGenerator.generateKeyPair();
this .keyPair = new KeyPair(

@input ‘‘pubKey’’ pair.getPublic (),
@input ‘‘privKey’’ pair .getPrivate ());

We also re-label the use of private key for signatures,
indicating that it is a permitted use of the private key:

dsa. initSign (@relabel ‘‘privKeyForSigning’’ privKey);

The inferred policy for the program indicates that the
only sensitive information being communicated to the other
player is the use of the private key for signature creation;
the private key does not otherwise get revealed.

output chain 7→Reveal(privKeyForSigning[0+])

We provided signatures for the cryptographic classes
that are used in the program (e.g., java. security .KeyPair,
java. security .Signature). Our signatures indicated that there
was no information flow from, for example, a signing key to
the message digest. This lack of information flow is correct
under symbolic models of cryptography (and corresponds to
only negligible information flows in computational models).
However, in an implementation, the ciphertext is clearly
computed from the plaintext, and so our analysis conserva-
tively concludes that the ciphertext reveals (non-negligible)
information about the plaintext. Thus, our analysis would not
be able to infer the signatures of the cryptographic library
from the library implementation.

G. Comparison with Jif policies

Two of the case studies, Battleship and Mental Poker,
have equivalent Jif versions, with security annotations from
the decentralized label model (DLM) [21]. The security
guarantees offered by DLM policies differ significantly from
the guarantees offered by our security policies. Our security
policies focus on what information can be revealed by
program execution, whereas DLM policies focus on who
may learn and release information. For example, in the Jif
Battleship program, Player 1’s board is annotated as readable
only by Player 1, and so releasing information to Player 2
requires an explicit declassification annotation in a code
context with Player 1’s authority. The Jif annotations do not
directly describe what information is declassified.

VI. RELATED WORK

In this work, we use static analysis to infer declassification
policies that a program satisfies. Our declassification policies
specify strong information-flow security, yet are simple
and intuitive. Sabelfeld and Myers [7] survey language-
based techniques for static reasoning about information-flow
security. We focus on two areas of related work: specification
of declassification policies and inference of security policies.

Declassification policies. Declassification, or informa-
tion release, occurs when sensitive information is made
more public. Declassification violates the semantic security
condition of noninterference [10], yet commonly occurs in
systems that handle sensitive information. Sabelfeld and
Sands [9] survey semantic security conditions for declas-
sification, and categorize them based on: what information
may be revealed, when the information may be revealed, who
controls the release, and where in the system or program
the release occurs. Our policies specify what information

14

may be released, characterized as expressions whose eval-
uation an observer may learn. Through conditional poli-
cies (if d then p1 else p2) we can express certain conditions
under which release may or may not occur (to wit, con-
ditions determined by program inputs), a form of when-
declassification. Our policies can also express what code
must be executed in order for the release to occur: a limited
form of where-declassification.

The most closely related security condition is localized
delimited release [22, 23] which uses escape hatch expres-
sions to specify what secret information may be released,
and requires release to occur only at declassify commands.
The security condition requires that when an output occurs,
the observer can only learn the valuation of escape hatch
expressions for which an appropriate declassify command
has been executed. This is similar to satisfying the se-
curity policy if-executed release-e thenReveal(e), where
release-e is a mark command that occurs immediately
before any declassification of e.

Rocha et al. [24] use graphs to describe how output values
are allowed to depend on inputs. Like us, they seek to
ease the annotation burden on the programmer; whereas we
focus on policy inference, they focus on allowing the user
to specify the graph policy separately from the code, and
then to verify whether unannotated code satisfies the policy.

Sabelfeld and Sands [9] present prudent principles for
declassification security conditions. We satisfy semantic
consistency, conservativity, and non-occlusion; the principle
of monotonicity of release is not applicable, as our programs
have no declassification annotations.

Inference of security policies. Backes et al. [25] present
an analysis that automatically discovers an equivalence
relation characterizing the secret information a program
may reveal. They quantify a program’s information flow by
computing sizes of the equivalence classes. While potentially
very precise, such quantitative policies may be difficult to
interpret; in contrast our policies are qualitative and we have
emphasized readability and intuition in their design.

Banerjee et al. [26] suggest model checking to determine
if programs satisfy declassification policies expressed as
abstraction functions; counter-examples produced by the
model checker allow the declassification policy to be refined,
and the process repeated, to determine of the least amount
of information that a program declassifies. As with Backes
et al., we believe the key difference is that our declassifica-
tion policies represent a better trade-off between precision,
intuitiveness, and ease of inference.

King et al. [16] statically infer information flows to inves-
tigate the precision of security-type checking with respect to
implicit information flows. Although they perform a context-
sensitive analysis, they infer flow-insensitive types: within
a given context, a variable is assumed to always contain
information at the same security level. By contrast, we

infer finer-grained policies, similar to flow-sensitive security
types [27].

Pottier and Conchon [28] describe how to extend existing
type systems with information security, enabling standard
type inference algorithms to infer security types. However,
such algorithms are unable to take full advantage of our
precise security policies. For example, conditional polices
incorporate path-sensitive information that is unavailable in
standard typing disciplines.

Liu and Milanova [29, 30] and Livshits et al. [31] present
static analyses to infer explicit information flows. Although
the analyses are efficient and practical, they do not track
implicit flows, and so it is unclear what security guarantees
they provide. For example, an analysis of the password
checking program from the Introduction that ignores implicit
flows may conclude that the attacker learns nothing about
the secret password.

Smith and Thober [32] perform type-inference for a highly
polymorphic object-oriented security-type system. Top-level
security policies are specified independently of code, and
inferred types are used to determine whether the program
is secure, given the policy. Like us, they seek to reduce the
programmer burden. Although they simplify policy enforce-
ment, the programmer must explicitly state security policies.
By contrast, we aim to infer policies, which further reduces
programmer burden.

King et al. [33] present a model for information-flow
blame that aids identification of code that violates security.
Information-flow blame helps the programmer understand
information flows in a program. However, it requires that
program types are annotated with security policies, and it
cannot infer policies or provide security guarantees if the
program fails to type check.

Tschantz and Wing [34] develop a tool that analyzes
C-language programs and infers incident-insensitive non-
interference policies, which allow the existence of high-
security data, but not the data itself, to be revealed. Their
tool discovers a set of program traces that violate incident-
insensitive noninterference, and works over a subset of C.

VII. CONCLUSION AND FUTURE WORK

This work demonstrates that is possible to infer precise
and expressive information-flow policies for Java programs.
Key contributions include defining an expressive policy
language that is suited for precise inference, defining an
dataflow inference algorithm, and implementing the analysis
for Java.

Several avenues for further research remain open.
It can be difficult to understand how security annotations

affect inferred policies and and how non-local control flow
(e.g., exceptions) lead to implicit flows. One possible way
to mitigate these difficulties would be to be build more
sophisticated user interfaces for the analysis tools.

15

Policy inference as described in this paper relies on
expensive program analyses. Scalability may be improved by
moving to a flow insensitive analysis. Fortunately, artifacts
developed in this work provide a promising testbed for
evaluating scalable techniques.

ACKNOWLEDGMENTS

We thank Aslan Askarov and Andrei Sabelfeld for sharing
the mental poker source code. We thank our reviewers and
shepherd for useful feedback. This research is sponsored
by the Air Force Research Laboratory. This research is
supported by the National Science Foundation under Grant
No. 1054172.

REFERENCES

[1] A. Askarov and A. Sabelfeld, “Localized delimited release: com-
bining the what and where dimensions of information release,” in
Proc. 2007 Workshop on Programming Languages and Analysis for
Security. New York, NY, USA: ACM Press, 2007.

[2] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow
security for interactive programs,” in CSFW ’06. IEEE, 2006.

[3] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification,” in Proc. Computer Security Foundations Workshop,
2004.

[4] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: param-
eterizing non-interference by abstract interpretation,” in POPL ’04.
New York, NY, USA: ACM, 2004.

[5] D. Clark, S. Hunt, and P. Malacaria, “Quantified interference for a
while language,” Electronic Notes in Theoretical Computer Science,
vol. 112, Jan. 2005.

[6] S. Chong and A. C. Myers, “End-to-end enforcement of erasure and
declassification,” in CSF ’08. IEEE, 2008.

[7] A. Sabelfeld and A. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, Jan. 2003.

[8] A. Askarov and A. Sabelfeld, “Security-typed languages for imple-
mentation of cryptographic protocols: A case study,” in ESORICS
’05, 2005.

[9] A. Sabelfeld and D. Sands, “Dimensions and principles of declassi-
fication,” in CSFW ’05. IEEE, 2005.

[10] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in Proc. IEEE Symposium on Security and Privacy. IEEE
Computer Society, Apr. 1982.

[11] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in Proc. 21st
IEEE Computer Security Foundations Symposium. IEEE Computer
Society, Jul. 2008.

[12] D. E. Denning and P. J. Denning, “Certification of programs for
secure information flow,” Communications of the ACM, vol. 20, no. 7,
Jul. 1977.

[13] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom,
“Jif: Java information flow,” 2001–2009, software release. Located
at http://www.cs.cornell.edu/jif.

[14] N. Nystrom, M. Clarkson, and A. C. Myers, “Polyglot: An exten-
sible compiler framework for Java,” in Compiler Construction, 12th
International Conference, CC 2003, ser. Lecture Notes in Computer
Science, G. Hedin, Ed., no. 2622. Warsaw, Poland: Springer-Verlag,
Apr. 2003.

[15] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for Java,” ACM Transactions on
Software Engineering and Methodology, vol. 14, no. 1, 2005.

[16] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows:
Can’t live with ’em, can’t live without ’em,” in Proc. International
Conference on Information Systems Security (ICISS), ser. LNCS, vol.
5352, Dec. 2008.

[17] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast
dominance algorithm,” Software Practice & Experience, vol. 4, 2001.

[18] B. De Sutter, L. Van Put, and K. De Bosschere, “A practical interpro-
cedural dominance algorithm,” ACM Transactions on Programming
Languages and Systems, vol. 29, no. 4, 2007.

[19] A. C. Myers, “JFlow: Practical mostly-static information flow con-
trol,” in POPL ’99. New York, NY, USA: ACM Press, 1999.

[20] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your con-
texts well: understanding object-sensitivity,” in Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: ACM, 2011, pp.
17–30.

[21] A. C. Myers and B. Liskov, “Complete, safe information flow with
decentralized labels,” in Proc. IEEE Symposium on Security and
Privacy. IEEE Computer Society, May 1998.

[22] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declas-
sification, encryption and key release policies,” in Proc. IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2007.

[23] ——, “Tight enforcement of information-release policies for dy-
namic languages,” in Proc. 22nd IEEE Computer Security Founda-
tions Workshop, 2009.

[24] B. P. S. Rocha, S. Bandhakavi, J. d. Hartog, W. H. Winsborough, and
S. Etalle, “Towards static flow-based declassification for legacy and
untrusted programs,” in Proceedings of the 2010 IEEE Symposium
on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2010.

[25] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery
and quantification of information leaks,” in Proc. 2009 30th IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2009.

[26] A. Banerjee, R. Giacobazzi, and I. Mastroeni, “What you lose is what
you leak: Information leakage in declassification policies,” Electronic
Notes in Theoretical Computer Science, vol. 173, 2007.

[27] S. Hunt and D. Sands, “On flow-sensitive security types,” in Con-
ference Record of the Thirty-Third Annual ACM Symposium on
Principles of Programming Languages. New York, NY, USA: ACM
Press, Jan. 2006.

[28] F. Pottier and S. Conchon, “Information flow inference for free,” in
Proc. 5th ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA: ACM Press, 2000.

[29] Y. Liu and A. Milanova, “Static analysis for inference of explicit
information flow,” in Proc. 8th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering. New
York, NY, USA: ACM, 2008.

[30] ——, “Practical static analysis for inference of security-related
program properties,” in Proc. IEEE 17th International Conference
on Program Comprehension, May 2009.

[31] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
Specification inference for explicit information flow problems,” in
PLDI ’09, 2009.

[32] S. F. Smith and M. Thober, “Improving usability of information
flow security in Java,” in Proc. 2007 Workshop on Programming
Languages and Analysis for Security. New York, NY, USA: ACM
Press, 2007.

[33] D. King, T. Jaeger, S. Jha, and S. A. Seshia, “Effective blame for
information-flow violations,” in Proc. 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2008.

[34] M. C. Tschantz and J. M. Wing, “Extracting conditional confiden-
tiality policies,” in SEFM ’08: Proc. 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods. Wash-
ington, DC, USA: IEEE Computer Society, 2008.

16

