
Normalization in the Dual Calculus with Sigma Reductions

Jeffrey A. Vaughan Stephanie Weirich Steve Zdancewic
University of Pennsylvania

vaughan2@seas.upenn.edu {sweirch, stevez}@cis.upenn.edu

Introduction
Dual calculus (Wadler 2003, 2005) is a programming typed lan-
guage whose expression syntax consists of three sorts: terms,
coterms, and statements. Terms—which include constructors and
variables—intuitively correspond to data; coterms—which include
elimination forms and covariables—correspond to evaluation con-
texts. Terms have normal-forms called values and coterms have
normal forms called covalues. Statements represent computations.
They are composed of a term m and a coterm k, and written m • k.

Special expressions allow variable and covariable abstraction
over statements. The latter, (m • k).α, is a term corresponding to
the familiar let/cc operator. The former, x.(m • k), is precisely dual
and is called (inspired by Lovas and Crary (2006)) let/ct—“let-
with-current-term.” Let/cc abstractions are not values, nor are let/ct
abstractions covalues.

Statements can reduce in two ways. β reductions may occur in
a statement when the term’s top-level constructor fits the coterm’s
elimination form. For instance, the rule

〈m,n〉 • fst[k]→β∧ m • k

states that a projection (coterm) containing sub-coterm k in jux-
taposition with a pair (term) made up of m and n steps to a new
statement: m •k. Statements may also step using ς rules. These lift
non-normal components of terms (dually coterms) closer to a state-
ment’s top level. For example, using ς (and reducing a resulting
administrative β-redex) gives the following:

〈m,n〉 • k →∗ m • x.(〈x, n〉 • k)

Intuitively this reduction sequence is starting to evaluate the 〈m,n〉
pair by building a stack frame ready to accept the result of comput-
ingm. Earlier work has also considered η-expansion, but we do not
do so here.

Some statements may reduce by both ς and β rules. Wadler
(2003) demonstrates that particular dual calculus evaluation strate-
gies correspond to call-by-value or call-by-name evaluation in
lambda calculus. Consider statement m • k; these strategies can
be summarized as follows.

call-by-value: If m is a value or let/cc, reduce by β. Otherwise,
simplify m using ς-reductions.

call-by-name: If k is a covalue or let/ct, reduce by β. Otherwise,
simplify k using ς-reductions.

In call-by-value dual calculus, normal-form statements always have
form v • k, where v is a value. Dually, call-by-name normal-form
statements have fromm•p where p is a co-value. These properties
are desirable when dual calculus is used to model lambda calcu-
lus reduction (Wadler 2003) or lambda-mu calculus equivalences
(Wadler 2005).

Wadler conjectured that dual calculus with only β rules is
strongly normalizing. Dougherty et al. (2005) proved strong nor-
malization for β-reduction with additional structural rules. Lovas

and Crary (2006) formalized a proof proof of weak normalization
for a similar system in the TWELF logical framework. Tzevelekos
(2006) gives a reducibility candidates argument for strong normal-
ization of dual calculus with β, η and ς reductions.

This work presents a logical relations proof of strong normaliza-
tion for for call-by-value (and dually call-by-name) dual calculus
with β and ς reductions. We also examine a mixed-reduction strat-
egy in which each statement carries a flag indicating whether to
evaluate it in a call-by-name or call-by-value fashion. We show the
existence of non-terminating statements under mixed-reduction.

Dual calculus expressions may be interpreted as proofs in LK,
a classical sequent calculus. (This is reminiscent of the Curry-
Howard correspondence relating lambda calculus terms and nat-
ural deduction proofs.) Type assignment for terms corresponds to
sequent calculus right rules, coterms correspond to left rules, and
statements correspond to the cut rule.

It is trivial to show choice of reduction strategy does not effect
which sequents are provable. This leads to the surprising observa-
tion that infinite-reduction sequences are not “logically harmful”—
that is, do not cause logical inconsistencies—in dual calculus. This
result joins others (e.g. Urban (2000)) showing that the relation
between terms, types, and normalization for classical sequent sys-
tems is more subtle than for natural deduction systems studied with
lambda calculus.

Dual Calculus is Strongly Normalizing
This section will sketch a logical-relations proof of strong normal-
ization for dual calculus. Defining the logical relation and proving
the main lemma will require several auxiliary definitions: language
syntax, static and dynamic semantics, the logical relation itself, and
a auxiliary notion of logical substitution.

The following grammar defines the syntax of dual calculus.

Types A,B ::= X | A ∧A | A ∨A | ¬A
Terms m,n ::= x | 〈m,n〉 | [k]not | 〈m〉inl | 〈n〉inr | (S).α
Coterms k, l ::= α | fst[k] | snd[l] | not〈m〉 | [k, l] | x.(S)
Statements S ::= m • k

Some terms are also values. Intuitively values are terms in
which all let/ct subterms are “suspended” by an enclosing not. For-
mally the set of call-by-value values is generated by the following
grammar.

Values v, w ::= x | 〈v, w〉 | [k]not | 〈v〉inl | 〈w〉inr

The dynamic semantics for call-by-value dual calculus uses
term evaluation contexts, written E. Term evaluation contexts are
defined by

E ::= 〈{}, n〉 | 〈v, {}〉 | 〈{}〉inl | 〈{}〉inr

where n is not be a value. The symbol {} represents a hole which
may be filled by a term. E{m} denotes the term created by replac-
ing E’s hole with m.

The call-by-value dynamic semantics are as follows.

〈v, w〉 • fst[k]→β v • k 〈v, w〉 • snd[l]→β w • l

〈v〉inl • [k, l]→β v • k 〈w〉inr • [k, l]→β w • l

[k]not • not〈m〉 →β m • k

v • x.(S)→β {v/x}S (S).α • k →β {k/α}S

E{m} • k →ς (m • x.(E{x} • β)).β • k

We use a logical-relations argument to show that call-by-value
dual calculus is strongly normalizing. The following four indexed
sets represent unary relations on dual calculus expressions. The
main lemma will demonstrate that all well-typed expressions are
logical—that is, are members of a relation. Strong normalization
follows as a corollary.

S ∈ S[[#]] iff S →∗ S′ 6→

x ∈ V [[A]] (always)
〈v, w〉 ∈ V [[A ∧B]] iff v ∈ V [[A]] and w ∈ V [[B]]

〈v〉inl ∈ V [[A ∨B]] iff v ∈ V [[A]]

〈w〉inr ∈ V [[A ∨B]] iff w ∈ V [[B]]

[k]not ∈ V [[¬A]] iff k ∈ K[[A]]

k ∈ K[[A]] iff for all v ∈ V [[A]], v • k ∈ S[[#]]

m ∈M [[A]] iff for all k ∈ K[[A]],m • k ∈ S[[#]]

We can make several observations about this family of rela-
tions. First, they are defined on open terms, without closing sub-
stitutions. This approach is useful because dual calculus, like LK,
has no closed well-typed terms. Second, V [[A]] and K[[A]] are de-
fined by mutual recursion on their type parameters, however the
“recursive call” in K[[A]] does not mention a structurally smaller
type. Instead, the definition of V [[A]] must be unfolded to verify
that the recursion is well-founded. Third, it is while type indexed,
the relation family is otherwise oblivious to types; it does not men-
tion a context, and contains expressions which cannot be typed in
any context. This is useful as the main lemma does not depend on
subject reduction (a property dual calculus enjoys, but for which we
know no published proof). Fourth, M [[·]] is defined by universally
quantifying over K[[·]], and K[[·]] by universally quantifying over
V [[·]]. This strikingly similar to Pitts’s (2005) TT-closure method
for reasoning about program equivalence.

Before stating the main lemma, we need two more definitions.
Space constraints prevent us from giving the static semantics for

dual calculus. We follow the presentation of Wadler (2005), which
simplifies the original system (Wadler 2003) by liberalizing the cut
and identity rules and by removing the now superfluous structural
rules. Dual calculus is typed using three mutually inductive rela-
tions. Each includes an antecedent context Γ and a succedent con-
text Θ. Antecedent contexts map variables to types, and succedent
contexts map covariables to types. For call-by-value we can read
the typing judgments as follows.

• Right Sequent, Γ ` m : A; Θ. Term m has type A in contexts
Γ and Θ. Intuitively, evaluating m might yield a return value at
type A or it might throw to a continuation described by Θ.

• Left Sequent, Γ; k : A ` Θ. Coterm k is a continuation which
can accept a value of type A.

• Center Sequent, S : (Γ ` Θ). Statement S is a computation
which takes one value per binding in Γ as input. S yields only
a single output, whose type is included in Θ.

Substitutions are partial maps that take variables to terms and
covariables to coterms. Some substitutions have the special prop-
erty of replacing (co)variables with logical (co)terms. We say sub-
stitution σ is Γ,Θ-logical when

(i) for all x ∈ dom(σ), σ(x) ∈ V [[Γ(x)]], and

(ii) for all α ∈ dom(σ), σ(α) ∈ K[[Θ(α)]].

Lemma (Main Lemma). Suppose D is a typing derivation, then

• if D :: S : (Γ ` Θ) then for all Γ, Θ-logical σ, σ(S) ∈ S[[#]],
• if D :: Γ ` v : A; Θ then for all Γ, Θ-logical σ, σ(v) ∈ V [[A]],
• ifD :: Γ ` m:A; Θ then for all Γ, Θ-logical σ, σ(m) ∈M [[A]],
• if D :: Γ; k : A ` Θ then for all Γ, Θ-logical σ, σ(k) ∈ K[[A]].

Proof Sketch. By induction on the structure on the D. Note the
lemma deeply nests the quantification on σ. This is required to get
a strong induction hypothesis for the D :: Γ ` (S).α : A; Θ case.
Many cases use the following fact: if S → S′ and S′ ∈ S[[#]] then
S ∈ S[[#]]. The full proof also requires one-off lemmas showing
that various sigma reductions involving elements ofM [[·]], V [[·]] and
K[[·]] produce elements of K[[·]].

Corollary (Strong normalization). Every well-typed dual calculus
statement is strongly normalizing.

Proof. Suppose S : (Γ ` Θ), then S ∈ S[[#]] by the main lemma.
Hence S →∗ S′ 6→.

Mixed Reduction is Not Strongly Normalizing
Mixed reduction is a natural variant of dual calculus. In mixed re-
duction every statement carries a tag indicating whether its top-
level redex should reduce using call-by-name or call-by-value
rules. For instance m •← k →mixed S when m • k →β S in
call-by-value. (And similarly m •→ k reduces when there a suitable
call-by-name reduction.) The ς-reductions include

E{m} •← k → (m •← x.(E{x} •← β)).β •← k

and its dual.
While call-by-value (dually call-by-name) dual calculus is

both strongly normalizing and deterministic, mixed reduction is
not strongly normalizing. For a counterexample, the statement
z •→ [α, x.(〈y, x〉 •← β)] reduces to itself in six steps.

References
Daniel J. Dougherty, Silvia Ghilezan, Pierre Lescanne, and Silvia Likavec.

Strong normalization of the dual classical sequent calculus. In LPAR,
pages 169–183, 2005.

William Lovas and Karl Crary. Structural normaliza-
tion for classical natural deduction. Available from
http://www.cs.cmu.edu/~wlovas/papers/clnorm.pdf, 2006.

A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7, pages 245–289.
The MIT Press, 2005. ISBN 0-262-16228-8.

Nikos Tzevelekos. Investigations on the dual calculus. Theor. Comput. Sci.,
360(1):289–326, 2006. ISSN 0304-3975.

Christian Urban. Classical Logic and Computation. PhD thesis, University
of Cambridge, October 2000.

Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03, Uppsala,
Sweden, 2003.

Philip Wadler. Call-by-value is dual to call-by-name, reloaded. In Rewriting
Techniques and Applications ’05, Nara, 2005.

