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Abstract

We propose a novel approach to the classical view update problem. The view update problem problem
arises from the fact that modifications to a database view may not correspond uniquely to modifications
on the underlying database; we need a means of determining an “update policy” that guides how view
updates are reflected in the database. Our approach is to define a bi-directional query language, in
which every expression can be read both (from left to right) as a view definition and (from right to left)
as an update policy. The primitives of this language are based on standard relational operators. Its
type system, which includes record-level predicates and functional dependencies, plays a crucial role in
guaranteeing that update policies are well-behaved, in a precise sense, and that they are total—i.e., able
to handle arbitrary changes to the view.



1 Introduction

Our interest in the view update problem arose in the context of our work on a “universal data synchro-
nizer” called Harmony [7, 4, 5] Harmony is a generic framework for reconciling disconnected updates to
heterogeneous, replicated XML data. It can be used, for instance, to synchronize the bookmark files of
several different web browsers, allowing bookmarks and bookmark folders to be added, deleted, edited, and
reorganized by different users running different browser applications on disconnected machines.

A central theme of the Harmony project has been bringing ideas from programming languages to bear
on a set of problems more commonly regarded as belonging to databases or distributed systems. In partic-
ular, a major component of our work on Harmony has been on developing the foundations of bi-directional
programming languages [5], in which every program denotes a pair of functions—one for extracting a view of
some complex data structure, and another for putting back an updated view into the original structure; we
call these programs lenses. Lenses play a crucial role in the way the system deals with heterogeneous struc-
tures, mapping between diverse concrete application data formats and common abstract formats suitable
for synchronization, and then translating the updates resulting from synchronization back to the original
concrete data sources.

As it stands, Harmony deals only with tree-structured data. However, as we have begun applying it
to a broader range of applications, we have encountered many situations where we would like to use it to
synchronize information in traditional relational formats. Of course, relational data can be encoded as trees
easily enough. But we have found that Harmony’s tree-oriented programming language is not appropriate for
the sorts of transformations commonly performed on relational data. In particular, its type system, which
is based on regular tree automata, is good at capturing common XML schemas, but cannot encode familiar
concepts from relational schemas, such as functional dependencies. This, in turn, means that the typing
rules for familiar relational primitives such as joins are overly rigid, disallowing many useful cases.

Our aim in the present work has been to design a new bi-directional language, based on the abstract
framework of lenses but specifically targeted at relational data. We plan to use this language in a new
version of the Harmony system that will deal natively with synchronizing relational data, but the language
also stands on its own as a novel approach to the classical view update problem in relational databases.

The view update problem can be described as follows. Consider the following relation T , which is the
result of joining relations R and S:

{

R A B
a b

S B C
b c

}

./
−→

{

T A B C
a b c

}

If we update T—say, by deleting its single row—we may want to reflect this update in the original relations—
i.e., to change R and/or S so that R ./ S is the empty table. Here, the desired effect can be achieved by
deleting the single row in either or both of R and S; each of these options is a concrete example of an update
policy. The view update problem is the problem of associating “reasonable” update policies with views.

Our approach to the view update problem is to design a new query language based on the relational
algebra where every expression denotes both a view definition and a view update policy. Each primitive is
annotated with enough parameters to express a range of reasonable update policies, and the update policy
for a compound expression is calculated by composing together the update policies of its constituents.

The example in Figure 1 illustrates the essential features of our approach. The three ovals together
represent the following composite lens expression:

join dl Tracks, Albums as Tracks1;
drop Date determined by (Track, Unknown)

from Tracks1 as Tracks2;
select from Tracks2 where Quantity > 2 as Tracks3

The first line joins the Tracks and Albums tables from the original database state, yielding a new state with
a single table Tracks1 . (The suffix dl indicates that the update policy for this lens is to delete rows from
its left-hand argument, as we shall see shortly.) The second line drops the Date attribute from the table
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Figure 1: A Composite Lens
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Tracks1 , yielding a new state with table Tracks2 . (The drop operation is a variant of project; again, the
annotations (Track ,Unknown) determine the update policy for this step). Finally, the third line selects the
rows in Tracks2 satisfying the predicate Quantity > 2, yielding a final state with a table Tracks3 .

The top left box in the figure is the original state of the database. The solid arrows going down the
left-hand side represent the (standard) step-by-step computation of the view state, yielding the original view
state at the bottom left. We then perform an update on the view state, yielding the updated view state on
the bottom right. To propagate the updates back to the original database, we apply the putback functions of
each of the lenses in turn, represented by the dashed arrows moving up the right-hand side of the figure. The
putback of the drop lens, for example, uses the information in both original and updated states to restore
the values in the Date column that were projected away by the get; also, the date “1989” is inferred for the
new row containing “Lovesong,” using the functional dependency. The final result is the updated database
state on the top right.

The technical contributions of our work are twofold. First, our language incorporates a fairly rich notion
of schemas for databases and views, including the functional dependencies shown in the example as well
as record-level predicates. Each of our primitive lenses comes equipped with a typing rule specifying the
domain (database schema) and range (view schema) on which its behavior is total—i.e., for which arbitrary
schema-preserving updates to views are guaranteed to have reasonable translations. Second, our primitive
lenses constitute a detailed analysis of the view update behavior of a number of fundamental relational
operations in the presence of predicates and functional dependencies. Some—in particular, join [12]—have
been studied previously. But the others turn out to be surprisingly interesting. For example, the way
select’s behavior interacts with functional dependencies turns out to be quite subtle.

The rest of the paper is organized as follows. Section 2 reviews some common definitions and notational
conventions. Section 3 introduces the abstract framework of lenses. Section 4 develops some fundamental
operations involving relations and functional dependencies; these are used in Section 5 to define bi-directional
versions of several fundamental relational operators. Sections 6 and 7 discuss related and future work.

2 Background

We begin with a set of attributes, ranged over by A,B,C, and a homogeneous set of values, ranged over by
a, b, c. (We do not assign specific domains or types to the attributes and do not have a distinguished null
value.) We let U, V and X,Y,Z range over sets of attribute. A record is a partial function from attributes
to values. Records are ranged over by m,n, l. We write records as {A = a1, B = b1}—or sometimes just
(a1, b1), when the attributes are clear from context. We write dom(m) for the domain of the record m and
write m : U to mean that dom(m) = U . If A ∈ dom(m), then m(A) is the value associated with A in m. We
write m[A 7→ a] for the record with domain dom(m) ∪ {A} that maps A to a and agrees with m elsewhere.
We write m[X] for the record with domain X∩dom(m) that agrees with m where it is definedIf A ∈ dom(m),
then we define m[B/A] = m[U −A][B 7→ m(A)].

We use M,N,L to range over relations—sets of records with the same domain. We say that M has
domain U , or M is a relation over U , written M : U , if m : U for all m ∈ M . Note that if such a U exists,
it is unique, except in the case that M is the empty set. The usual set-theoretic operations are defined
on relations when both arguments have the same domain. We lift the operations of field update, attribute
renaming, and domain restriction to sets of records (the last being equivalent to the usual notion of relational
projection):

M [B/A] = {m[B/A] | m ∈M}

M [A 7→ a] = {m[A 7→ a] | m ∈M}

M [X] = {m[X] | m ∈M}

Given M : U and N : V , their natural join is defined by

M ./ N = {l | l : UV with l[U ] ∈M and l[V ] ∈ N}.
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We pause to record a couple of facts about joins that will come in handy later.

2.1 Fact: If M1 ⊆ N1 and M2 ⊆ N2, then M1 ./ M2 ⊆ N1 ./ N2.

2.2 Fact: If L ⊆M ./ N and X ⊆ dom(M), then L[X] ⊆M [X].

P,Q range over predicates. In examples, we use familiar logical syntax for predicates; formally, however,
we treat predicates simply as sets (generally infinite ones) of records having the same domain. We write >U

for the set of all records over the domain U—i.e., the always-true predicate over U . To lighten notation,
we often just write >, when U can be inferred from the context. Negation of predicates is set complement:
we write ¬UM (or just ¬M) for >U \ M . Since predicates and relations are the same sorts of objects,
mathematical intersection (P ∩M) suffices for expressing relational selection. Furthermore, we assume that
all notation and definitions on relations is equally applicable to predicates.

We will be interested in cases where predicates are insensitive to certain fields. We write “P ignores X”
to mean that the truth of m ∈ P can be determined without considering any of the values that m assigns to
attributes in X—i.e.,, for all m,n ∈ P , if m[dom(m)−X] = n[dom(n)−X] then m ∈ P ⇐⇒ n ∈ P .

Functional dependencies play a crucial role in our development. A functional dependency is a pair of
attribute sets, written X → Y . We say that X → Y is a functional dependency over the domain U , written
write X → Y : U , to mean than X ⊆ U and Y ⊆ U . If X → Y is a functional dependency over U and
M is a relation over U , we say that M satisfies X → Y , written M |= X → Y , if m1[X] = m2[X] implies
m1[Y ] = m2[Y ], for all m1,m2 ∈M .

Generally, we work with sets of functional dependencies. We say that F is a set of functional dependencies
over U (written F : U) if X → Y : U for all X → Y ∈ F . If F is a set of functional dependencies over U and
M is a relation over U , then M |= F means that M |= X → Y for all X → Y ∈ F .

We will often find it useful to check whether a relation satisfies a set of functional dependencies by
considering all of the records in the relation pairwise.

2.3 Fact: M |= F iff {m1,m2} |= F for all m1,m2 ∈M .

Suppose F and F ′ are sets of functional dependencies over U . We say that F implies F ′, written F |=U F ′,
if, for all M over U , M |= F implies M |= F ′. When U is clear from the context, we simply write F |= F ′.
We write F ≡U F ′ (or just F ≡ F ′) to mean that F |=U F ′ and F ′ |=U F .

We use R,S to range over relation names; the function sort assigns a tuple (U,P, F ) to each name,
where U is a domain of attributes, P is a predicate over U , and F is a set of functional dependencies over
U . If sort(R) = (U,P, F ), then we define dom(R) = U , pred(R) = P , and fd(R) = F . We say M satisfies
(U,P, F ) when then M : U , M ⊆ P , and M |= F .

We use I, J to range over database instances (or just databases). A database I is a finite map from
relation names to relations such that, if I(R) = M then M satisfies sort(R). A database schema (ranged
over by Σ,∆) is a set of relation names. A database I conforms to a schema Σ, written I |= Σ, if dom(I) = Σ.

3 Lenses

The starting point for this work is the class of bi-directional transformations known as lenses, which have
previously been applied in the domain of semistructured data [6]. Lenses are bi-directional mappings between
a concrete domain, thought of as a set of database states, and an abstract domain, thought of as a set of
view states. (The abstract domain is “abstract” in the sense that, in general, abstract states contain less
information than concrete ones—i.e., a view is usually smaller than the original database.) In the relational
setting, both of these domains are database schemas.

3.1 Definition [Lenses]: Given schemas Σ and ∆, a lens v from Σ to ∆ (written v ∈ Σ↔ ∆) is a pair of
total functions v↗∈ Σ→ ∆ (pronounced “v get”) and v↘∈ ∆× Σ→ Σ (pronounced “v putback”).
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The get component of a lens corresponds exactly to a view definition. In order to support a compositional
approach, we take the perspective that a view state is an entire database (rather than just a single relation,
as in many treatments of views). The get and putback functions are intended to be be “inverses,” in a sense
that we will shortly make precise by imposing additional restrictions on their behavior. Since the view may
discard information from the concrete domain, there is generally more than one way of inverting the get
function. Hence, the putback function may be seen as a class of inverse functions from ∆ to Σ that is indexed
by an element of the concrete domain Σ. If the get function preserves all information in the underlying data,
then a unique inverse function exists and the Σ argument to the putback is not necessary for choosing among
potential inverses; in this case, the lens is called oblivious. The requirement that the components of a lens
be total has some interesting pragmatic ramifications, which we discuss below.

Most approaches to the view-update problem are formulated in terms of update translators, which map
update functions on the abstract domain (∆ → ∆) to update functions on the concrete domain (Σ → Σ).
The lens model replaces update translators with putback functions. But this difference is actually superficial.
The type of the putback function, (∆×Σ→ Σ), is isomorphic to ∆→ (Σ→ Σ)—that is, a putback function
that maps states in the abstract domain (the results of updates) to functions on the concrete domain. It can
be shown [15] that the class of lenses is a subset of the class of consistent views defined by Gottlob, Paolini,
and Zicari [8]; indeed, modulo some technicalities the sets are isomorphic. This and other connections to
previous treatments of view update are discussed further in the related work section.

As a specific example, let us define a lens v./—a naive (and, as we shall see shortly, not quite satisfactory)
first attempt at a bi-directional version of a natural join. The get and putback components of v./ are defined
as follows:

v./↗ (I) = I\R,S [T 7→ I(R) ./ I(S)]

v./↘ (J, I) = J\T [R 7→ J(T )[dom(R)]][S 7→ J(T )[dom(S)]]

In the get direction, this lens forms the natural join of the tables R and S, calling the result T and removing
R and S from the database. In the putback direction, the lens computes the projections of T on the fields of
R and S to reconstruct those tables. Thus, v./ ∈ {R,S} ↔ {T}. (In fact, v./ ∈ Σ ∪ {R,S} ↔ Σ ∪ {T} for
any schema Σ with R,S, T 6∈ Σ.)

This lens is oblivious since the putback function does not use the argument I. However, one may rightly
wonder whether the v./↘ is an appropriate inverse for v./↗. We use two laws to ensure the get and putback
functions of a lens are suitable inverses of one another.

3.2 Definition [Well-behaved lenses]: Given schemas Σ and ∆ along with a lens v ∈ Σ ↔ ∆, we say
that v is a well-behaved lens from Σ to ∆ (written v ∈ Σ⇔ ∆) if it satisfies the laws GetPut and PutGet:

v↘ (v↗ (I), I) = I for all I ∈ Σ (GetPut)
v↗ (v↘ (J, I)) = J for all (J, I) ∈ ∆× Σ (PutGet)

These properties provide a concrete basis for demonstrating the shortcomings of the v./ lens. The
following example demonstrates that v./ does not satisfy GetPut:







R A B
a1 b1

a1 b2

S B C
b1 c1

b1 c2







v./↗
//







T A B C
a1 b1 c1

a1 b1 c2







↑6= ↓=






R A B
a1 b1

S B C
b1 c1

b1 c2







oo
v./↘







T A B C
a1 b1 c1

a1 b1 c2







Intuitively, the failure here is related to the fact that the view does not maintain all information present in
the underlying data, but the lens is oblivious. A different problem is illustrated by the fact that the lens
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also fails to satisfy PutGet:















T A B C
a1 b1 c1

a1 b1 c2

a2 b1 c1















v./↘
//







R A B
a1 b1

a2 b1

S B C
b1 c1

b1 c2







↑6= ↓=






















T A B C
a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c2























oo
v./↗







R A B
a1 b1

a2 b1

S B C
b1 c1

b1 c2







In this case, the initial state of table T could not have been the result of applying v./↗ to any database
with the schema {R,S}, which directly implies that PutGet will fail.

In section 5 we introduce an assortment of primitive lenses which can be combined to create complex
views and update policies. We must prove that these lenses are total and well-behaved at some type Σ⇔ ∆;
we do so by establishing, for each lens v, the following four properties:

• Get Total: If I |= Σ then v↗ (I) |= ∆.

• Put Total: If I |= Σ and J |= ∆ then v↗ (J, I) |= Σ.

• GetPut: If I |= Σ then v↘ (v↗ (I), I) = I.

• PutGet: If I |= Σ and J |= ∆ then v↗ (v↘ (J, I)) = J .

Generally, the combination of well-behavedness and totality implies that get and putback functions must
always be surjective. It is often very difficult to describe a pair of non-trivial domains over which surjectivity
holds in both directions for a lens. Thus, totality imposes a stringent constraint on our lens design. On
the other hand, totality of a lens provides the benefit that the success or failure of an update program on
a view can be determined offline—without examining the state of the concrete database (we return to this
point in more detail in Section 6). The principle contribution of this research is showing how to use schemas
with functional dependencies to describe useful domains for total, well-behaved lenses based upon traditional
relational primitives.

4 Record Revision

The technical keystone of our approach is an operation that “revises” a record from the original database
state so that it agrees with a set of new records from an updated view, with respect to a given set of functional
dependencies. This operation will be used to define several of the fundamental lens primitives in Section 5.

4.1 Functions on Functional Dependencies

Before we come to record revision itself, we need a few more definitions involving functional dependencies.
We write left(F ) for the set of all attributes appearing on the left-hand side in a set of functional

dependencies F . Similarly, right(F ) is the the set of attributes appearing on the right-hand side in F .

left(F ) =
⋃

X→Y ∈F X right(F ) =
⋃

X→Y ∈F Y

We also define names(F ) as left(F ) ∪ right(F )
The functions left(F ) and right(F ) will be useful in some later definitions; however, they tell us very

little about which attributes play an essential role in witnessing a statement M 6|= F for some M : U . To
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this end, we define a function that returns the set of all attributes that appear on the left-hand side of a
functional dependency “in an essential way”:

inputs(F ) = {A ∈ U | ∃M,a. M |= F and M [A 7→ a] 6|= F}

A field A is in inputs(F ) if we can pick a relation satisfying F and make it inconsistent by filling column
A with a constant. For example, A ∈ inputs(A→ B) because, while the relation {{A = a1, B = b1}, {A =
a2, B = b2}} models A → B, the relation {{A = a0, B = b1}, {A = a0, B = b2}} does not. Similarly, we
define a function that returns the set of all attributes that appear on the right-hand side of a functional
dependency in an essential way:

outputs(F ) = {A ∈ U | ∃X ⊆ U. A 6∈ X and F |= X → A}

That is, the outputs are the fields that non-trivially determined by some other fields in the relation. It is
easy to check that, if F ≡ F ′, then inputs(F ) = inputs(F ′) and outputs(F ) = outputs(F ′).

4.2 Tree Form

We will sometimes need to work with sets of functional dependencies with a special shape that we call tree
form. We say F is in tree form if there exists a collection of pairwise disjoint sets of attributes X1, . . . ,Xn

such that, if X → Y ∈ F , then X,Y ∈ {X1, . . . ,Xn} and the graph G over the nodes {1, . . . , n} with the
edges {(i, j) | Xi → Xj ∈ F} is a directed acyclic graph with all nodes having in-degree at most one (i.e., a
forest in the sense of graph theory).

If F is in tree form and we consider two functional dependencies X1 → Y1 and X2 → Y2 in F , we may
draw some useful conclusions about their relationship. We know that, either X1 = X2, or else X1 ∩X2 = ∅
and Y1 ∩ Y2 = ∅. We also know that, either Y1 = Y2 and X1 = X2, or else Y1 ∩ Y2 = ∅. Additionally, we can
show that, if F ] {X → Y } is in tree form, then Y ∩ right(F ) = ∅.

If F is in tree form, then we define leaves(F ) and roots(F ) as follows (note that these are sets of attribute
sets):

leaves(F ) = {Y | ∃X. X → Y ∈ F and Y ∩ left(F ) = ∅}

roots(F ) = {X | ∃Y. X → Y ∈ F and X ∩ right(F ) = ∅}

It is possible for two distinct sets of functional dependencies, both in tree form, to be equivalent—consider,
for example, {A→ BC} and {A→ B,A→ C}. However, every F in tree form has a unique representation
F ′ where |X| = 1 for all X ∈ leaves(F ′). We call this the canonical tree form of F .

Some examples of functional dependencies that are not in tree form are {A→ B,B → A}, {A→ C,B →
C}, and {A→ B,BC → D}.

When working with functional dependencies, it is sometimes useful to be able to manipulate them syn-
tactically. To this end, we define the relation F `U X → Y , pronounced “F syntactically satisfies X → Y ,”
with the following inference rules:

X → Y : U X → Y ∈ F

F `U X → Y
(FD-Expl)

Y ⊆ X ⊆ U

F `U X → Y
(FD-Refl)

F `U X → Y

F `U XZ → Y Z
(FD-Aug)

F `U X → Y F `U Y → Z

F `U X → Z
(FD-Trans)

The relation defined by these rules coincides with the usual (more semantic) definition of when a functional
dependency is satisfied by a relation:
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4.2.1 Proposition: F `U X → Y iff F |=U X → Y .

Proof: This is a standard result in the theory of functional dependencies. �

4.2.2 Lemma: If F ` X1 → Y1 and A ∈ Y1, then either A ∈ X1 or else there exists X2 → Y2 ∈ F such that
A ∈ Y2.

Proof: By induction on the derivation of F ` X1 → Y1:

• Case FD-Expl: We may choose X2 = X1 and Y2 = Y1 since we have X1 → Y1 ∈ F .

• Case FD-Refl: We have A ∈ X1 since Y1 ⊆ X1.

• Case FD-Aug: We have X1 = XZ and Y1 = Y Z. If A ∈ Z, then A ∈ X1. If A 6∈ Z, then we have
Z ∈ Y and we apply the induction hypothesis.

• Case FD-Trans: We have some Z such that F ` X1 → Z and F ` Z → Y1. By the induction
hypothesis for the second premise, we have either A ∈ Z or else there exists some X2 → Y2 ∈ F such
that A ∈ Y2. The latter case immediately gives us our desired conclusion, so let’s consider the former
case where A ∈ Z. Then we may use the induction hypothesis for the first premise, which gives us,
either A ∈ X1 or else there exists some X2 → Y2 ∈ F such that A ∈ Y2, which is exactly what we
need. �

4.2.3 Lemma: outputs(F ) ⊆ right(F )

Proof: Let A ∈ outputs(F ). Then there exists X such that F |= X → A and A 6∈ X. By Lemma 4.2.5,
since A 6∈ X, there must exist X2 → Y2 ∈ F such that A ∈ Y2. Hence, A ∈ right(F ). �

4.2.4 Lemma: If F is a set of functional dependencies in tree form, then outputs(F ) = right(F ).

Proof: Let U be the domain of F . By Lemma 4.2.6, outputs(F ) ⊆ right(F ) for any set of functional
dependencies F , we need only show that right(F ) ⊆ outputs(F ). Pick A ∈ right(F ). Then then there must
be X,Y ⊆ U such that X → AY ∈ F . We may assume that A 6∈ Y , and, as F is in tree form, we know
A /∈ X. Then we may construct a derivation showing F `U X → A as follows:

X → AY ∈ F
F `U X → AY

FD-Expl
A ⊆ AY ⊆ U

F `U AY → A
FD-Refl

F `U X → A
FD-Trans

So, by Lemma 4.2.4, we may conclude that F |= X → A, which shows that A ∈ outputs(F ). �

4.3 Single-Dependency Record Revision

The most basic operation using functional dependencies is one that updates some fields of a record so that
it conforms to the other records in a relation.

We write m ←+ n for the left-biased combination of records m and n—i.e., the record with domain
dom(m) ∪ dom(n) that agrees with n on dom(n) and agrees with m on dom(m) − dom(n). Alternatively,
m←+ {A1 = a1; . . . ;Ak = ak} = m[A1 7→ a1] . . .[Ak 7→ ak].

We first define a single-dependency record revision operation that takes a record m, a single functional
dependency X → Y , and a relation N satisfying X → Y , and returns a revised record m′ such that
{m′} ∪N satisfies X → Y . Formally, this operation is defined by giving a mathematical relation over tuples
(X → Y,N,m,m′) and then showing that we can treat this relation as a function by observing that we there
is always a unique such m′ whenever X → Y , N , and m share a domain U and N |= X → Y . The following
two inference rules define the relation:
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m : U N : U X → Y : U
N |= X → Y n ∈ N

m[X] = n[X] m′ = m←+ n[Y ]

m
X→Y

N
// m′

(C-Match)

m : U N : U X → Y : U
N |= X → Y m[X] 6∈ N [X]

m
X→Y

N
// m

(C-NoMatch)

By C-Match, if there exists n ∈ N such that m[X] = n[X], then m′ is the result of overwriting the Y
fields of m with those of n. Every such n will coincide on the values in the Y fields since N |= X → Y . It
should be clear that such an n exists exactly when m[X] ∈ N [X]. On the other hand, if m[X] 6∈ N [X], then
we may apply C-NoMatch to show that m is unchanged. The uniqueness of the result of record revision
follows immediately.

4.3.1 Lemma: Suppose m
X→Y

N
// m′, where U = dom(m). Then N : U and X → Y : U . Furthermore,

N |= X → Y .

Proof: By inspection of the inference rules. �

4.3.2 Lemma: Suppose m : U , N : U , X → Y : U , where N |= X → Y . Then there exists m′ such that

m
X→Y

N
// m′.

Proof: Assume, first, that m[X] ∈ N [X]. Then there exists n ∈ N such that m[X] = n[X]. So we may
apply C-Match. On the other hand, if m[X] 6∈ N [X], we may apply C-NoMatch. �

4.3.3 Lemma: If m
X→Y

N
// m′ and m

X→Y

N
// m′′, then m′ = m′′.

Proof: As noted, at most one of the rules C-Match and C-NoMatch may apply. If the rule C-NoMatch

applied, then m′ = m and m′′ = m; so m′ = m′′. If the rule C-Match applied, then it could be possibly
be instantiated with different values n′ and n′′. However, since N |= X → Y and m[X] = n[X], we may
conclude that n′[Y ] = n′′[Y ]. Hence, m′ = m′′. �

The unique result of revising a record m : U with the functional dependency X → Y and the relation N
has the same domain as m.

4.3.4 Lemma: If m
X→Y

N
// m′, then dom(m) = dom(m′).

Proof: The case of C-NoMatch is immediate since m = m′. In the case of C-Match, we must show
that dom(m[n[Y ] 7→ )] = dom(m). The follows from the fact that Y ⊆ dom(m), which is true since
X → Y : dom(m) by Lemma 4.3.1. �

Values that were not originally in a record field must come from the relation that is involved in the
revision.

4.3.5 Lemma: If m
X→Y

N
// m′, then for all A ∈ dom(m), either m′(A) = m(A) or m′[A] ⊆ N [A].

Proof: In the case of C-Match where A ∈ Y , then m′(A) = n(A), so m[A] ∈ N [A]. If A 6∈ Y , then
m′(A) = m(A). In the case of C-NoMatch, m′(A) = m(A) since m′ = m. �
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The revision operation leaves some fields of the record unchanged and may potentially update others.
The fields that are guaranteed to remain unchanged are exactly X ∪ (U − Y ).

4.3.6 Lemma: If m
X→Y

N
// m′, then m[X ∩ Y ] = m′[X ∩ Y ].

Proof: If m[X] 6∈ N [X], then the result is immediate because the rule C-NoMatch requires that m = m′.
Otherwise, by inversion of the C-Match rules, we have an n ∈ N such that n[X] = m[X]. Since n : U and
Y ⊆ U , it is easy to check that (m←+ n[Y ])[Y ] = n[Y ]. Hence:

m′[X ∩ Y ] = (m←+ n[Y ])[X ∩ Y ]

= (m←+ n[Y ])[Y ][X]

= n[Y ][X]

= n[X][Y ]

= m[X][Y ]

= m[X ∩ Y ] �

4.3.7 Lemma: If m
X→Y

N
// m′, then m[U − Y ] = m′[U − Y ].

Proof: If m[X] 6∈ N [X], then the result is immediate because the rule C-NoMatch requires that m = m′.
Otherwise, by inversion of the C-Match rules, we have an n ∈ N such that n[X] = m[X]. Then we have:

m′[U − Y ] = (m←+ n[Y ])[U − Y ]

= m[U − Y ]←+ n[Y ][U − Y ]

= m[U − Y ]←+ n[∅]

= m[U − Y ]←+ {}

= m[U − Y ] �

4.3.8 Lemma: If m
X→Y

N
// m′, then m[X] = m′[X].

Proof: By Lemmas 4.3.6 and 4.3.7. �

We also observe that if two records m and l agree on the fields in X, the records that result from revising
m and l with the functional dependency X → Y and the relation N will agree on the fields in Y , assuming
m and l also agree, on the fields in X, with some record in N .

4.3.9 Lemma: Suppose that m1
X→Y

N
// m′1 and m2

X→Y

N
// m′2. If there exists an n ∈ N such that

m1[X] = m2[X] = n[X], then m′1[Y ] = m′2[Y ].

Proof: As above, given that n : U and Y ⊂ U , we can easily check that m←+ n[Y ][Y ] = n[Y ], for any m.
Therefore, we have

m′1[Y ] = m′1←+ n[Y ][Y ] = n[Y ]

and
m′2[Y ] = m′2←+ n[Y ][Y ] = n[Y ].

Hence, m′1[Y ] = m′2[Y ]. �

4.3.10 Lemma: Suppose m1
X→Y

N
// m′1 and m2

X→Y

N
// m′2. If m1[XY ] = m2[XY ], then m′1[XY ] =

m′2[XY ].
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Proof: Straightforward. �

As we might expect, revising a record twice with the same functional dependency and relation does
nothing more than revising it just once.

4.3.11 Lemma: If m
X→Y

N
// m′ and m′

X→Y

N
// m′′, then m′ = m′′.

Proof: If m[X] 6∈ N [X], then the result follows from Lemma 4.3.3 and the fact that m = m′. So we will

assume that C-Match was used to derive m
X→Y

N
// m′, and by inversion, we have an n ∈ N such that

n[X] = m[X]. We may then use Lemma 4.3.8 to show m[X] = m′[X] = n[X]. Therefore, by Lemma 4.3.9,
m′[Y ] = m′′[Y ]. Lemma 4.3.4 ensures us that m:U , so we may use Lemma 4.3.7 to establish that m′[U − Y ] =
m′′[U − Y ]. Then we put these together to obtain m′[U ] = m′′[U ]. By Lemma 4.3.4, m′′ : U , so we may
conclude that m′ = m′′. �

4.3.12 Lemma: Let m ∈M , M |= X → Y , and N ⊆M . If m
X→Y

N
// m′, then m = m′.

Proof: If m[X] 6∈ N [X], then the result follows immediately since FC-NoMatch was used. On the other
hand, if we have n ∈ N such that n[X] = m[X], then we must have n[Y ] = m[Y ] since {m,n} |= X → Y .
Thus, m′ = m←+ n[Y ] = m. �

4.3.13 Lemma: If M,m |= X → Y then m
F

M
// m.

Proof: Trivial. �

4.4 General Record Revision

Now, the last step is to define a record revision operation that can use a set of functional dependencies to
make a record conform to a relation. However, we need to be careful: there is no clear way to do this for
some sets of functional dependencies. Consider the relation N = {(a1, b2), (a2, b1)} over the attributes A,B,
and assume that we want to revise the record (a1, b1) to conform to N using the functional dependencies
{A→ B,B → A}. Since we have no precedence among our functional dependencies, we do not know whether
it would be better to revise it to (a1, b2) or (a2, b1). It would be unreasonable to revise it to (a3, b3) because
we want the net change to the record to be minimal, but we don’t know which part of the record to hold
constant. Fortunately, if the functional dependencies are tree-like, then the effect of a revision operation is
clear: we should propagate updates down from the roots to the leaves.

Formally, the general revision operation is the least relation closed under the following inference rules:

m : U L : U

m
∅

L
+3 m

(FC-Empty)

L |= F,X → Y X → Y /∈ F F in tree form X ∈ roots(F,X → Y )

m
X→Y

L
// m′ m′

F

L
+3 n

m
F,X→Y

L
+3 n

(FC-Step)

Under the empty set of functional dependencies, a record revises to itself by FC-Empty. For a non-empty
set of functional dependencies, we first apply a single-dependency record revision using one of the functional
dependencies from the roots of the tree. Then we proceed recursively according to FC-Step.

4.4.1 Lemma: Suppose m
F

L
+3 n. Then L : U and F : U , where U = dom(m). Furthermore, F is in tree

form and L |= F .
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Proof: Straightforward induction, using Lemma 4.3.1 in the FC-Step case. �

We intend the notation m
F

L
+3 m′ to mean that m′ is a version of m that has been minimally revised to

conform to the relation L under the functional dependencies F . The following lemmas justify this intuition.

4.4.2 Lemma: If m
F

L
+3 n, then dom(m) = dom(n).

Proof: Simple induction using Lemma 4.3.4. �

4.4.3 Lemma: If m
F

L
+3 m′, then for all A ∈ dom(m), either m′(A) = m(A) or m′[A] ∈ L[A].

Proof: Simple induction using Lemma 4.3.5. �

4.4.4 Lemma: Suppose m : U , L : U and F : U , where F is in tree form and L |= F . Then there exists n

such that m
F

L
+3 n.

Proof: Proof by induction on the size of F :

• |F | = 0 : Trivial since we may apply FC-Step. In this case n = m.

• |F | > 0 : As F is in tree form and not empty, we can pick X → Y ∈ F such that X ∈ roots(F ).

Let F ′ = F \ {X → Y } and let m′ be the unique record such that m
X→Y

L
// m′. (We know such a

record exists by Lemmas 4.3.2 and 4.3.3.) Since L |= F ′ and F ′ is in tree form, we may appeal to the

induction hypothesis to show that there exists n such that m′
F ′

L
+3 n. Hence, we may instantiate the

rule FC-Step to show that m
F ′

L
+3 n. �

The record revision operation does not change more fields than necessary:

4.4.5 Lemma: If m
F

L
+3 n and Z ∩ outputs(F ) = ∅, then m[Z] = n[Z].

Proof: Simple induction on the derivation of m
F

L
+3 n making use of Lemma 4.3.7. �

4.4.6 Lemma: If m
F

L
+3 n and X → Y ∈ F , then n

X→Y

L
// n.

Proof: We proceed by induction on the derivation of m
F

L
+3 n:

• Case FC-Empty: Vacuously true since F is empty.

• Case FC-Step:
F = F ′,X ′ → Y ′where X ′ → Y ′ 6∈ F
F is in tree form
X ∈ roots(F )

m
X′→Y ′

L
// m′

m′
F ′

L
+3 n

We will consider two cases:
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– X → Y ∈ F ′: Then the result is immediate from the induction hypothesis.

– X → Y 6∈ F ′: Then X → Y = X ′ → Y ′. So Y ∩ right(F ) = ∅. Also, since X ∈ roots(F ), we
know X ∩ right(F ) = ∅. Taken together, we have m′[XY ] = n[XY ] by Lemma 4.4.5. By Lemma

4.3.2, we have a record m′′ such that m′
X→Y

L
// m′′ and a record n′ be the unique record such

that n
X→Y

L
// n′. By Lemma 4.3.10, we know m′′[XY ] = n′[XY ].

n′[XY ] = m′′[XY ]
= m′[XY ] (by Lemma 4.3.11)
= n[XY ]

Combining this with Lemma 4.3.7, we have n′[U ] = n[U ], which is sufficient by Lemma 4.3.4. �

4.4.7 Lemma: Let m ∈M , M |= F , and L ⊆M . If m
F

L
+3 n, then m = n.

Proof: We proceed by induction on the derivation of m
F

L
+3 n.

• Case FC-Empty: Immediate.

• Case FC-Step: Then, for some m′ and G, we have m
X→Y

L
// m′ and m′

G

L
+3 n, where F = G,X →

Y . By Lemma 4.3.12, m = m′, and, by the induction hypothesis m′ = n. Hence m = n. �

Next, the revised record m′ agrees with the relation L on the functional dependencies F :

4.4.8 Lemma: If m
F

L
+3 m′, then {l,m′} |= F for all l ∈ L.

Proof: Let l ∈ L and X → Y ∈ F . If l[X] 6= m′[X], then {l,m′} |= X → Y is trivially true. So

let’s assume that l[X] = m′[X]. By Lemma 4.4.6, we know m′
X→Y

L
// m′. Since m′[X] ∈ L[X], the rule

FC-Match must have been used. Because of Lemma 4.3.3, we know that FC-Match may be instantiated
with any record from L that agrees with m′ on X. Instantiating it with l in particular, we then must have
m′ = m′←+ l[Y ]. Hence,

m′[Y ] = (m′←+ l[Y ])[Y ] = l[Y ].

Thus, {l,m′} |= X → Y . �

4.4.9 Lemma: If m
F

N
+3 m′, then there exist functional dependencies X1 → Y1, . . . ,Xn → Yn and records

l0, . . . , ln such that all of the following hold:

• F = {X1 → Y1, . . . ,Xn → Yn}

• Yi ∩ names({X1 → Y1, . . . ,Xi−1 → Yi−1}) = ∅

• l0 = m and ln = m′

• li−1
Xi→Yi

N
// li for i = 1, . . . , n

• l0[Yi] = li−1[Yi] and li[Yi] = ln[Yi]

Proof: Simple induction on the derivation of m
F

N
+3 m′. �
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The crux of the previous lemma is the last two points, which can be explained as a statement that the
fields of the left-hand side Yi of each functional dependency get modified exactly once.

By inspecting the result of a revision operation with a single functional dependency and comparing it
with the relation used in the operation, we may be able to learn some information about the original record.
The following lemma describes this.

4.4.10 Lemma: If l
X→Y

M
// l′ and l′[Y ] /∈M [Y ], then l′[Y ] = l[Y ].

Proof: Proof is by inspection of the inference rules. We rule out the case where the derivation ends in
C-Match by attempting to invert the inference rule and finding l′[Y ] ∈M [Y ]. Therefore l and l′ are related
by C-NoMatch, which trivially implies the desired result. �

4.4.11 Lemma: If m
F

M
+3 n, X → Y ∈ F , F is tree-form and n[X] /∈M [X] then m[X] = n[X].

Proof: If 6 ∃Z.Z → X ∈ F , then Lemma 4.4.5 shows m[X] = n[X]. However, if such a Z exists (because
F is in tree form there is at most one), then by Lemma 4.4.9 there exist l and l′ such that m[X] = l[X]

and n[X] = l′[X] where l
Z→X

M
// l′. As l′[X] /∈ M [X], Lemma 4.4.10 gives l[X] = l′[X]. Therefore

m[X] = n[X]. �

Also, any pair of records revised with the same relation and functional dependencies are guaranteed not
to conflict with each other under the functional dependencies:

4.4.12 Lemma: Suppose m1
F

L
+3 m′1 and m2

F

L
+3 m′2, where F is in tree form. If {m1,m2} |= F , then

{m′1,m
′
2} |= F .

Proof: Let X → Y ∈ F . If m′1[X] 6= m′2[X], then we trivially have {m′1,m
′
2} |= X → Y . So let’s assume

m′1[X] = m′2[X].
First, we consider the case where there exists l ∈ L such that l[X] = m′1[X] = m′2[X]. Then Lemma 4.4.8

would give {l,m′1} |= F , so from l[X] = m′1[X], we infer m′1[Y ] = l[Y ]. Symmetrically, m′2[Y ] = l[Y ]. Thus,
we have m′1[Y ] = m′2[Y ]. Hence, {m′1,m

′
2} |= X → Y .

Now, we consider the case where there does not exist l ∈ L such that l[X] = m′1[X] = m′2[X]. By
Lemma 4.4.11, which gives m′1[X] = m1[X] and m′2[X] = m2[X], we conclude that m1[X] = m2[X]. From
this and {m1,m2} |= X → Y we know m1[Y ] = m2[Y ]. By Lemma 4.4.9 we can pick records l1 and

l′1 such that l1[Y ] = m1[Y ], l′1[Y ] = m′1[Y ], and l1
X→Y

L
// l′1. Because F is in tree form, we know that

either X ⊆ right(F ) or else X ∩ right(F ) = ∅. If X ∩ right(F ) = ∅, then l1[X] = m′1[X] (or, equivalently,
l1[X] = m1[X]) by Lemmas 4.2.7 and 4.4.5. On the other hand, if X ⊆ right(F ), then we know there exists
some functional dependency Z → X ∈ F , and we may use Lemma 4.4.9 to show that l1[X] = m′1[X] (or,
equivalently, l1[X] = m1[X]). Hence, this gives l1[X] /∈ L[X]. From the definition of single record revision,
l′1[Y ] = l1[Y ]. Therefore m′1[Y ] = m1[Y ]. Symmetrically, m′2[Y ] = m2[Y ], so {m′1,m

′
2} |= X → Y . �

4.4.13 Lemma: If M,m |= F and m
F

M
+3 m′, then m = m′.

Proof: Simple induction on the derivation of m
F

M
+3 m′ using Lemma 4.3.13. �
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4.5 Relation Revision

The record revision operation can be lifted to sets of records in a natural way. We call this relation revision:

M ←F L = {m′ | m
F

L
+3 m′ for some m ∈M}.

Relation revision preserves the domain of the relation.

4.5.1 Lemma: If M : U , then M ←F L : U .

Proof: Immediate from Lemma 4.4.2. �

We now record several key properties of relation revision. First, it does not make up new values.

4.5.2 Lemma: Let M : U , A ∈ U , and m′ ∈M ←F L. Then either m′[A] ∈M [A] or m′[A] ∈ L[A].

Proof: Consider some m′ ∈ M ←F L. Then there exists m ∈ M such that m
F

L
+3 m′. By Lemma 4.4.3,

either m′(A) = m(A), in which case m′[A] ∈M [A], or else m′[A] ∈ L[A]. �

Next, relation revision does not alter non-outputs.

4.5.3 Lemma: If Z ∩ outputs(F ) = ∅, then (M ←F L)[Z] ⊆M [Z].

Proof: Let n ∈ (M ←F L)[Z]. Then there is some m ∈ M such that m
F

L
+3 m′ and m′[Z] = n. By

Lemma 4.4.5, n = m[Z]. So n ∈M [Z]. �

Moreover, if P ignores the outputs of some set F of functional dependencies, then the property of a
relation M satisfying P is preserved when M is revised with respect to F .

4.5.4 Lemma: If M ⊆ P and P ignores outputs(F ), then M ←F L ⊆ P .

Proof: Let m′ ∈M ←F L. Then there is some m ∈M such that m
F

L
+3 m′. By Lemma 4.4.5,

m[dom(m)− outputs(F )] = m′[dom(m)− outputs(F )].

Since m ∈ P , we have m′ ∈ P by the definition of “ignores.” �

Most significantly, relation revision results in a relation that satisfies F if both of the relations involved
in the operation do.

4.5.5 Lemma: If M |= F , then M ←F L |= F .

Proof: Let m′1,m
′
2 ∈ M ←F L. By the definition of relation revision, there exist m1,m2 ∈ M such that

m1
F

L
+3 m′1 and m2

F

L
+3 m′2. By Fact 2.4, {m1,m2} |= F . So, by Lemma 4.4.12, {m′1,m

′
2} |= F . Since m′1

and m′2 were chosen arbitrarily, we conclude M ←F L |= F using Fact 2.4 in the other direction. �

4.5.6 Lemma: Let M : U and N : U . If M |= F , L |= F , and N ⊆ L, then (M ←F L) ∪N |= F .

Proof: Consider any pair of records l1, l2 ∈ (M ←F L) ∪ N . If l1, l2 ∈ M ←F L, then {l1, l2} |= F by
Lemma 4.5.5 (and Fact 2.4). If l1, l2 ∈ N , then l1, l2 |= F since N |= F by assumption. Finally, let us assume,
without loss of generality, that l1 = m′ ∈ M ←F L and l2 = n ∈ N . Then {m′, n} |= F by Lemma 4.4.8.
Since l1 and l2 were chosen arbitrarily, (M ←F N) ∪N |= F by Fact 2.4. �

16



Relation revision is at the heart of several of our primitive lenses. In some cases, it appears in the form
of a slightly higher-level operation that revises a relation and combines the result with the relation that was
used during the revision. We call this operation relational merge. Suppose M : U and N : U . Then we define

M
∪
←F N = (M ←F N) ∪N.

The basic properties of relation revision also hold for relational merge:

4.5.7 Lemma: Let M : U and N : U . If M |= F and N |= F , then M
∪
←F N |= F .

Proof: Corollary of Lemma 4.5.6. �

4.5.8 Lemma: If M |= F and M ′ ⊆M then M ′ |= F

Proof: For a contradiction assume M ′ 6|= F . Then by the definition of |=, ∃m′1,m
′
2 ∈ M ′,X → Y ∈

F.m′1[X] = m′2[X] and m′1[Y ] 6= m′2[Y ]. But M ′ ⊆M gives m′1,m
′
2 ∈M , hence M 6|= F . Contradiction. �

The following technical result is necessary to define join in terms of merge.

4.5.9 Lemma: If M |= F , N |= G, F is in tree form, and N ⊆M , then M
∪
←F N = M .

Proof: We must show two directions of set containment. First we demonstrate M
∪
←F N ⊆M . Pick some

m′ ∈M
∪
←F N . If m′ ∈ N , then (using assumption N ⊆M) we find m′ ∈M . Next, consider the case where

m′ /∈ N . We know m′ ∈ M ←R N , and, from the definition of relation revision, we can pick some m ∈ M

such that m
F

N
+3 m′. As N ∪ {m} ⊆ M we know N,m |= F . From Lemma 4.4.13 we find m′ = m which

gives m′ ∈M .

Now we must establish M ⊆M
∪
←F N . Pick m ∈M . By Lemma 4.4.4, there exists m′ ∈M

∪
←F N such

that m
F

N
+3 m′. As N ⊆M we have N,m′ |= F and, by Lemma 4.4.13, m′ = m. Thus m ∈M

∪
←F N . �

5 Relational Lens Primitives

We now proceed to describing our primitive lenses for updatable relational views.

5.1 Selection

The get component of the select lens performs a relational selection on a table in the database; this part
is simple. Equipping this get function with a putback function that behaves well in the presence of schemas
with functional dependencies and predicates is a little trickier.

Letting v stand for the lens expression

select from R where P as S,

the behavior of the select lens is defined as follows:

v↗ (I) = I\R[S 7→ P ∩ I(R)]

v↘ (J, I) = J\S [R 7→M1 \N#]

where

M1 = (¬P ∩ I(R))
∪
←F J(S)

N# = (P ∩M1) \ J(S)

F = fd(R)
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The get function extracts the relation R from I, selects with respect to the predicate P , and associates the
resulting relation with the name S. The putback function forms an approximation M1 of the updated table
R in the concrete database by performing a relational merge of the records in the abstract database with
those from the concrete database that do not satisfy the predicate. However, we have to be careful: in some
cases, M1 ends up with records that, if put in the concrete database, would result in a violation of PutGet,
but that may safely be removed from the concrete database. (Such a case will be illustrated later in this
section.) We collect these records in N# and remove them from the result.

The following typing rule captures the domain over which the select lens is guaranteed to behave well:

sort(R) = (U,Q, F ) sort(S) = (U,P ∩Q,F )
F is in tree form Q ignores outputs(F )

select from R where P as S ∈ Σ ] {R} ⇔ Σ ] {S}
(T-Select)

This typing rule should be read as a theorem that describes a set of database schemas and view schemas
over which the lens is well-behaved.

We use the notation Σ1]Σ2 for the disjoint union of Σ1 and Σ2 (which is defined only when Σ1∩Σ2 = ∅).
Thus, the Σ in the conclusion of the typing rule may be instantiated with any database schema as long as
R,S 6∈ Σ. Above the line, we declare the relationship that must exist between the sorts of the tables R
and S, along with two other constraints. The requirement that F be in tree form is necessary because our
relational merge operation is only defined for such functional dependencies. The restriction on the schema
predicate Q is necessary, since the relational merge results in record revisions that may change any fields in
outputs(F ).

Here is a typical example of the use of the select lens. Let v stand for the expression

select from R where C = c2 as S

and assume that our sort function has the following assignments for R and S:

sort(R) = (ABC,>, {A→ B})

sort(S) = (ABC,C = c2, {A→ B})

We may instantiate the rule T-Select to check that v ∈ {R} ⇔ {S}. Let us apply the lens in the get
direction to a database I containing a single table R:















R A B C
a1 b1 c1

a1 b1 c2

a2 b2 c2















I

v↗(I)
//







S A B C
a1 b1 c2

a2 b2 c2







J

Now assume that modification to the table S results in the new database J ′. Applying the lens in the putback
direction results in an updated concrete database I ′:















R A B C
a1 b2 c1

a1 b2 c2

a2 b2 c2















I′

oo
v↘(J ′,I)







S A B C
a1 b2 c2

a2 b2 c2







J ′

In the table R, the record (a1, b1, c1) has been replaced with the record (a1, b2, c1) in order to satisfy the
functional dependency A→ B, even though this record was not visible in the abstract view.

One of the conditions imposed upon v by T-Select is that Q ignores outputs(F ). We can justify this by
considering the following modification to the sort function: Assume that there is an ordering on elements,
such that bi ≤ ci exactly when i ≤ j, and that we have the following assignments:

sort(R) = (U,B ≤ C,A→ B)

sort(S) = (U,B ≤ C ∧ C = c2, A→ B)
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Then we would have I |= {R}, J |= {S}, and J ′ |= {S}, but I ′ 6|= {R}, which violates our fundamental
principle that lenses must be total on their specified domains. The problem arises because the field B
is updated in the process of a merge operation, but the record-level predicate associated with R puts a
restriction on the values in that field.

Finally, we consider an example where a rather unusual behavior can occur. Given the sort function

sort(R) = (U,>, A→ B)

sort(S) = (U,B = b2, A→ B)

consider the lens
select from R where B = b2 as S

applied to the database I:

{

R A B C
a1 b1 c1

}I
v↗(I)

//

{

S A B C
}J

The abstract database table S is empty, but suppose the record (a1, b2, c2) were added. One might expect
the following behavior from the putback function:







R A B C
a1 b2 c1

a1 b2 c2







I′

oo
v↘(J ′,I)

{

S A B C
a1 b2 c2

}J ′

However, this behavior would fail to satisfy the law PutGet because a subsequent get operation would
retrieve both rows from the concrete database, while only one was present in the abstract database. The
actual behavior of the select lens in the putback direction will delete the row present in the concrete
database.

{

R A B C
a1 b2 c2

}I′

oo
v↘(J ′,I)

{

S A B C
a1 b2 c2

}J ′

In general, it is safe, but somewhat counter-intuitive, to delete records from the concrete database that
result in conflicting values determined by functional dependencies. Although somewhat counter-intuitive,
this behavior is consistent with the GetPut and PutGet laws.

Let us now check that the lens we have defined is indeed well behaved.

5.1.1 Theorem: Suppose

sort(R) = (U,Q, F ) sort(S) = (U,P ∩Q,F )
F is in tree form Q ignores outputs(F )
∆ = Σ ] {R} ∆′ = Σ ] {S}
v = select from R where P as S

Then v ∈ ∆⇔ ∆′.

Proof: We must show the following statements:

v↗∈ ∆→ ∆′

v↘∈ ∆′ ×∆→ ∆
v↘ (v↗ (I), I) = I for all I ∈ ∆
v↗ (v↘ (J, I)) = J for all (J, I) ∈ ∆′ ×∆

We first show that v↗∈ ∆ → ∆′. Suppose I |= ∆. From the assumptions, we know I\R |= Σ
and I(R) satisfies (U,Q, F ). From the definition of v↗, it is easy to check that S ∈ dom(v↗ (I)) and
(v↗ (I))\S |= Σ. It remains to show that (v↗ (I))(S) satisfies (U,P ∩Q,F ), where (v↗ (I))(S) = P ∩I(R).
This involves checking three facts:
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1. P ∩ I(R) : U . This follows from P : U and I(R) : U .

2. P ∩ I(R) ⊆ P ∩Q. This follows from the assumption that I(R) ⊆ Q.

3. P ∩ I(R) |= F . Immediate.

Hence, we conclude that v↗ (I) |= ∆′, as required.
Next, we show that v↘∈ ∆′ ×∆ → ∆. Suppose I |= ∆ and J |= ∆′. From the assumptions we know

I\R |= Σ and I(R) satisfies (U,Q, F ), and similarly J\S |= Σ and J(S) satisfies (U,P ∩Q,F ). From the
definition of v↘, it is easy to check that R ∈ dom(v↘ (J, I)) and (v↘ (J, I))\R |= Σ. It remains to show
that (v↘ (J, I))(R) satisfies (U,Q, F ), where

(v↘ (J, I))(R) = M1 \N#

M1 = (¬P ∩ I(R))
∪
←F J(S)

N# = (P ∩M1) \ J(S).

Again, this involves checking three facts:

1. M1 \N# : U . This follows from P : U , I(R) : U , J(S) : U , and Lemma 4.5.1.

2. M1 \N# ⊆ Q. Since I(R) ⊆ Q and J(S) ⊆ Q, we have M1 ⊆ Q by Lemma 4.5.4, and the fact follows
immediately.

3. M1 \N# |= F . Since I(R) |= F and J(S) |= F , we have M1 |= F by Lemma 4.5.7, and the fact again
follows immediately.

Next, we show that v satisfies the law GetPut—that is, v↘ (v↗ (I), I) = I for all I ∈ ∆. It is easy
to check that dom(v↘ (v↗ (I), I)) = dom(I) and that (v↘ (v↗ (I), I))\R = I\R. It remains to show
that (v↘ (v↗ (I), I))(R) = I(R). Expanding the definitions of v↗ and v↘, we see that we must show
M1 \N# = I(R) where

M1 = (¬P ∩ I(R))
∪
←F (P ∩ I(R))

N# = (P ∩M1) \ (P ∩ I(R)).

We first check that M1 \N# ⊆ I(R). Of course, it suffices to show that M1 ⊆ I(R). Consider a record

n ∈ (¬P ∩ I(R))
∪
←F (P ∩ I(R)). Then, from the definition of

∪
←F , either n ∈ P ∩ I(R) (in which case we

immediately know that n ∈ I(R)) or there is some m ∈ ¬P ∩ I(R) such that m
F

P∩I(R)
+3 n. If such an m

exists, then m = n by Lemma 4.4.7, since m ∈ I(R) and I(R) |= F , which also gives us n ∈ I(R).
Now we check that I(R) ⊆ M1 \ N#. Consider a record m ∈ I(R). First assume that m ∈ P . Then

m ∈ P ∩ I(R), so m 6∈ N#. Furthermore, m ∈ (¬P ∩ I(R))
∪
←F (P ∩ I(R)) by the definition of

∪
←F . Thus,

m ∈ M1 \ N#. On the other hand, suppose m ∈ ¬P . We see that m 6∈ N# because m 6∈ P ∩M1. Now

it remains to show that m ∈ M1. We may use Lemmas 4.4.4 and 4.4.7 to show that m
F

P∩I(R)
+3 m since

m ∈ ¬P ∩ I(R) and I(R) |= F . Hence, m ∈ (¬P ∩ I(R))
∪
←F (P ∩ I(R)), and therefore m ∈M1 \N#.

Finally, we show that v satisfies the law PutGet—that is, v↗ (v↘ (J, I)) = J for all I ∈ ∆ and J ∈ ∆′.
It is easy to check that dom(v↗ (v↘ (J, I))) = dom(J) and that (v↗ (v↘ (J, I)))\S = J\S . It remains to
show that (v↗ (v↘ (J, I)))(S) = J(S). Expanding the definitions of v↗ and v↘, we see that we must show
P ∩ (M1 \N#) = J(S) where

M1 = (¬P ∩ I(R))
∪
←F J(S)

N# = (P ∩M1) \ J(S).
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We first check that P ∩ (M1 \N#) ⊆ J(S). Suppose m ∈ P ∩ (M1 \N#)—that is, m ∈ P , m ∈M1, and
m 6∈ N#. But then it must be that m ∈ J(S), by the definition of N#.

Now we check that J(S) ⊆ P ∩ (M1 \N#) ⊆ P . We know by assumption that J(S) ⊆ P ∩ Q. Also,
J(S) ⊆ M1 by the definition of the relational merge. Furthermore, we know that J(S) ∩ N# = ∅ by the
definition of N#. Hence, J(S) ⊆ P ∩ (M1 \N#), completing the proof. �

5.2 A Simple Join

Relational join is another operation with non-obvious putback semantics. There are actually many variants,
all sharing the same get component but with different update policies; we begin in this section with a concrete
lens illustrating one particular possible choice of update policy, and then in Section 5.3 show how this lens
and several others can be obtained as instances of a more general scheme. In the get direction, the lens

join dl R, S as T

performs a natural join. In the putback direction join dl may add records to both tables R and S, but may
only delete from table R (the name is intended to suggest “deleting from the left table”).

The following example illustrates a typical use of join dl:

v = join dl R, S as T
fd(R) = {A→ B}















R A B C
a1 b1 c1

a2 b2 c2

a2 b2 c3

S C
c1

c2















I

v↗(I)
//







T A B C
a1 b1 c1

a2 b2 c2







J







R A B C
a2 b′2 c2

a2 b′2 c3

S C
c1

c2







I′

oo
v↘(J ′,I)

{

T A B C
a2 b′2 c2

}J ′

Note that the record (a1, b1, c1) is deleted from R, rather than deleting (c1) from S, in accordance with
the “delete from the left table” policy. Moreover, note that the record (a2, b2, c3) from R, which does not
appear in the view, is updated to (a2, b

′
2, c3) by the putback; this a consequence of the functional dependency

A→ B.
The behavior of join dl is defined as follows:

v↗ (I) = I\R,S [T 7→ I(R) ./ I(S)]

v↘ (J, I) = J\T [R 7→M ][S 7→ N ]

where

(U,P, F ) = sort(R)

(V,Q,G) = sort(S)

M0 = I(R)
∪
←F J(T )[U ]

N = I(S)
∪
←G J(T )[V ]

L = (M0 ./ N) \ J(T )

M = M0 \ L[U ]

The get function just computes table T in the result from the join of R and S in the input; the complexity
is in the putback, where each piece of the definition is necessary to guarantee well-behavedness. To see why,
recall from section 3 that defining putback by

vbroken↘ (J, I) = J\T [R 7→ J(T )[U ]][S 7→ J(T )[V ]]
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satisfies neither GetPut nor PutGet. This definition fails because (i) records which are not included in
the view are dropped after the putback, and (ii) records may be added to create a view state which is not
the result of any natural join.

To address (i), we merge the concrete relations with projections of J(T ). Adding records from the concrete
view fixes (i), and the definition of merge guarantees that functional dependencies are obeyed. However,
anomalous behavior may still occur. Consider defining the putback function as

vbroken2↘ (J, I) = J\T [R 7→M0][S 7→ N ].

We can see that this definition is not correct by examining this database state:

{

R A B
a b

S B C
b c

}I

In the get direction, v yields a view state with one row in table T . Removing this row and invoking v↘
yields database state I again, in violation of PutGet. The lens definition fails to distinguish deleted records
from those simply not expressed in the initial view state.

Our actual definition avoids this problem, removing any records that would, when using broken2 , violate
PutGet. To achieve this, we simulate a putback-get with vbroken2 as the putback function and calculate
which records appear that should not. This yields L. We find the final right hand relation by removing L[U ]
from M0. Note that update anomalies and user deletions are indistinguishable in this calculation, and L
handles both.

Working the example with the full, correct definition of putback gives

{

R A B S B C
b c

}I

This reasonable result illustrates that join dl is well-behaved.
We still need to address problem (ii). This is accomplished by the following typing rule:

(U,P, F ) = sort(R) (V,Q,G) = sort(S)
(UV, P ./ Q,F ∪G) = sort(T ) G |= U ∩ V → V F is in tree form G is in tree form

P ignores outputs(F ) Q ignores outputs(G)

join dl R, S as T ∈ Σ ] {R,S} ⇔ Σ ] {T}
(T-Join)

The most interesting premise is G |= U ∩ V → V , which asserts that join dl can only join two tables if the
shared fields are a key for the right table. This is necessary because relations such as

A B C
a1 b1 c1

a1 b1 c2

a2 b1 c1

cannot be decomposed into relations over AB and BC. As desired, the typing rule prevents J(T ) from
having this form when U = AB and V = BC. Imposing the key constraint on the left table would work
too; picking the right table was an arbitrary choice. In a well typed join, sort(T ) ensures that any J(T ) is
decomposable into components satisfying schemas sort(R) and sort(S). Additionally, F and G must be in
tree form for merge to be well defined.

5.3 A Parameterized Join

A great variety of natural join lenses, including join dl and many others, can be derived from a single

generic lens, called join template, which is parameterized by an operation
∪?
← and a boolean function1

1Φ is a predicate in the mathematical sense, but we use the term “boolean function” to avoid confusion with predicates over

records.
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Φ. The operation
∪?
← takes two relations over the same domain and is used in the putback direction to

update the records in a concrete relation using an abstract relation and a set of functional dependencies.
The accompanying boolean function Φ takes a set of field names, a predicate over those field names, and a
set of functional dependencies over those field names as arguments; it is used in the typing rule to check that

a particular use of join template meets the constraints necessary to guarantee that
∪?
← behaves sensibly.

For example, join dl is an instantiation of join template with

∪?
← =

∪
←

Φ(U,P, F ) = (F is tree-form) and (P ignores outputs(F )).

Formally we write an instance of the join template lens as join template ∪?
← ,Φ

(R,Pd) (S,Qd) as T , ex-

plicitly showing the parameterization by
∪?
← and Φ, as well as on R and S, the relations to be joined,

T , the result of the join, and Pd and Qd, predicates that control the treatment of “ambiguous dele-

tions,” as described below. Most of the time, however, we will leave
∪?
← and Φ implicit and write just

join template (R,Pd) (S,Qd) as T .

Naturally, we cannot expect to obtain a well-behaved lens if we instantiate
∪?
← with a completely arbitrary

update operator: we need to impose some constraints. Accordingly, we say that
∪?
← and Φ are suitable at U

if, for all M : U , N : U , F : U and P : U such that M |= F , N |= F , and Φ(U,P, F ), we have:

N ⊆ M
∪?
←F N (1)

N ⊆M =⇒ M
∪?
←F N = M (2)

M
∪?
←F N : U (3)

M ⊆ P ∧N ⊆ P =⇒ M
∪?
←F N ⊆ P (4)

M
∪?
←F N |= F (5)

The first property ensures that, when we use the update operation to add some new records N to some
existing ones M , all of the new ones actually make it into the result. The second limits the “aggressiveness”
of the update operation: if there is no new information in N , then the update does nothing. The last three

properties ensure that if M and N satisfy (V,Q,G) then M
∪?
←F N does too.

In Section 5.4, we show that the record merge operator is suitable; we also define a variant called “squash”
and prove it suitable as well. But for a simpler example, which also illustrates the role of Φ, consider ordinary
set union. It is easy to see that ∪ satisfies the first four properties, but to make it satisfy 5 we must pick a
restrictive Φ, such as

Φ(U,P, F ) = (F = ∅).

Given a suitable
∪?
← and Φ, the behavior of join template is defined as

v = join template (R,Pd) (S,Qd) as T

v↗ (I) = I\R,S [T 7→ I(R) ./ I(S)]

v↘ (J, I) = J\T [R 7→M ][S 7→ N ]
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where

(U,P, F ) = sort(R)

(V,Q,G) = sort(S)

M0 = I(R)
∪?
←F J(T )[U ]

N0 = I(S)
∪?
←G J(T )[V ]

L = M0 ./ N0 \ J(T )

Ll = L ./ (J(T )[U ∩ V ])

La = L \ Ll

M = (M0 \ (La ∩ Pd)[U ]) \ Ll[U ]

N = N0 \ (La ∩Qd)[V ]

While the get direction is identical to join dl’s, the putback has changed. As before, M0 corresponds to
a naive putback and L is a set of records corresponding to deletions and to anomalies in the naive update
policy. A reasonable putback must ensure that an immediate get will not contain any l ∈ L. Where join dl

is defined such that deletions from the right table, M0, handle L, join template allows deletions on either
side. Here N is defined by the naive right table N0 less such deletions.

The two new arguments to the join template lens—Pd and Qd—specify a policy for ambiguous deletions.
However not all deletions are ambiguous; sometimes well-behavedness forces a deletion to occur in left table
alone. The sets Ll and La are a partition of L where Ll represents deletions which must be taken from the
left table, M0, and La represents ambiguous cases. This asymmetry stems from the different requirements
(discussed in section 5.2) imposed on functional dependency sets F and G by the typing rule for the join
template given below—while G is unconstrained, G will imply that U ∩ V is a key for S. The following
example shows how these relations interact.

Consider the following database instances:














R A B
a1 b1

a′1 b1

a2 b2

S B
b1

b2















I

{

T A B
a1 b1

}J

We can calculate:

L =
A B
a′1 b1

a2 b2

Ll =
A B
a′1 b1

La =
A B
a2 b2

Record (a′1, b1) ∈ Ll captures the intuition that (a′1, b1)[B] = (b1) cannot be removed from the right hand
table because this would prevent (a1, b1) from appearing after a get. In contrast (a2, b2) ∈ La because we can
delete from either R or S and maintain well-behavedness. The predicates Pd and Qd determine the database
instance I which results from a putback:

(a2, b2) ∈ Pd ∧ (a2, b2) /∈ Qd yields







R A B
a1 b1

S B
b1

b2







I

(a2, b2) /∈ Pd ∧ (a2, b2) ∈ Qd yields







R A B
a1 b1

a2 b2

S B
b1







I

(a2, b2) ∈ Pd ∧ (a2, b2) ∈ Qd yields

{

R A B
a1 b1

S B
b1

}I

(a2, b2) /∈ Pd ∧ (a2, b2) /∈ Qd yields







R A B
a1 b1

a2 b2

S B
b1

b2







I
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The astute reader will notice that PutGet will fail on the last example where (a2, b2) /∈ Pd ∧ (a2, b2) /∈ Qd.
This motivates one of the premises to the typing rule given below, namely, Pd ∪Qd = >UV .

The typing rule for join template defined below:

sort(R) = (U,P, F ) sort(S) = (V,Q,G) sort(T ) = (UV , P ./ Q,F ∪G)
G |= U ∩ V → V Pd ∪Qd = >UV Φ(U,P, F ) Φ(V,Q,G)

join template (R,Pd) (S,Qd) as T ∈ Σ ] {R,S} ⇔ Σ ] {T}

This varies in two interesting ways from join dl. We discussed one of these above. Additionally, the
premises Φ(U,P, F ) and Φ(V,Q,G) ensure the lens will only be applied to databases instances which can
be properly handled by the update operator. As with select, we must show that these premises imply
join template (R,Pd) (S,Qd) as T ∈ Σ ] {R,S} ⇔ Σ ] {T}.

5.3.1 Theorem: If
∪?
← and Φ are suitable at U and V and

sort(R) = (U,P, F )
sort(S) = (V,Q,G)
sort(T ) = (UV , P ./ Q,F ∪G)
G |= U ∩ V → V
Pd ∪Qd = >UV

Φ(U,P, F )
Φ(V,Q,G)
∆ = Σ ] {R,S}
∆′ = Σ ] {T}
v = join template (R,Pd) (S,Qd) as T,

then
v ∈ ∆⇔ ∆′

Proof: By the definition of lenses, there are four properties to be established. We consider them in turn.

Subclaim Get Total: If I |= ∆ then v↗ (I) |= ∆′.
The definition of v gives

v↗ (I) = I\R,S [T 7→ I(R) ./ I(S)].

As I |= ∆, we know I\R,S |= Σ. Hence to prove v↗ (I) |= ∆′, we need to show I(R) ./ I(S) satisfies sort(T ).
From the form of sort(T ) we see that it suffices to show the following:

• I(R) ./ I(S) : UV . Trivial.

• I(R) ./ I(J) ⊆ P ./ Q. Follows from Fact 2.1.

• I(R) ./ I(S) |= F ∪ G. Assume, for a contradiction, that we can pick X → Y ∈ F ∪ G and l1, l2 ∈
I(R) ./ I(S) such that l1[X] = l2[X] but l1[Y ] 6= l2[Y ]. By the definition of union, either X → Y ∈ F
or X → Y ∈ G. Without loss of generality, assume the former. From the definition of ./ we find
l1[U ], l2[U ] ∈ I(R). I’s schema gives I(R) |= F , thus, by Lemma 4.5.8, l1[U ], l2[U ] |= F . Consequently
(as l1[X] = l2[X]) we find l1[Y ] = l2[Y ]. This contradicts l1[Y ] 6= l2[Y ]; therefore I(R) ./ I(S) |= F ∪G.

This proves Get Total.

Subclaim Put Total: If I |= ∆ and J |= ∆′ then v↘ (J, I) |= ∆′.
Unrolling join template’s definition we obtain

v↘ (J, I) = J\T [R 7→M ][S 7→ N ]
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where
M ⊆M0 = I(R)

∪?
←F J(T )[U ]

N ⊆ N0 = I(S)
∪?
←G J(T )[V ].

By the definitions of ∆′ and database instances, J\T |= Σ. Therefore, to show v↘ (J, I) |= ∆, we must
demonstrate that M satisfies sort(R) and N satisfies sort(S). Thus, it suffices to show the following:

• M : U . Straightforward.

• M ⊆ P . The definition of I and J gives I(R) ⊆ P and J(T )[U ] ⊆ P . Property 4 of
∪?
← gives

I(R)
∪?
←F J(T )[U ] ⊆ P , from which the result follows since M ⊆M0 ⊆ I(R)

∪?
←F J(T )[U ].

• M |= F . By property 5, we find M0 |= F . Lemma 4.5.8 gives M |= F .

• N : V , N ⊆ Q, and N |= Q. These statements can be proved symmetrically.

This proves Put Total.

Subclaim GetPut: If I |= ∆ then v↘ (v↗ (I), I) = I.
Unfolding the definition of join template gives

v↘ (v↗ (I), I) = J\T [R 7→M ][S 7→ N ]

where

J = I\R,S [T 7→ I(R) ./ I(S)]

M0 = I(R)
∪?
←F J(T )[U ]

N0 = I(S)
∪?
←G J(T )[V ]

L = M0 ./ N0 \ J(T )

Ll = L ./ (J(T )[U ∩ V ])

La = L \ Ll

M = (M0 \ (La ∩ Pd)[U ]) \ Ll[U ]

N = N0 \ (La ∩Qd)[V ].

By the definition of ./ (Fact 2.2, we have J(T )[U ] ⊆ I(R). Applying property 2 of
∪?
← gives M0 = I(R).

Similarly, N0 = I(S). Thus we can unroll the definition of L as follows:

L = M0 ./ N0 \ J(T ) = I(R) ./ I(S) \ I(R) ./ I(S) = ∅

Therefore
Ll = La = ∅
M = M0 = I(R)
N = N0 = I(S).

We now calculate as follows:

v↘ (v↗ (I), I) = J\T [R 7→M ][S 7→ N ]

= (I\R,S [T 7→ I(R) ./ I(S)])\T [R 7→M ][S 7→ N ]

= I\R,S,T [R 7→M ][S 7→ N ]

= I\R,S [R 7→M ][S 7→ N ] (as I |= Σ ] {R,S} and T /∈ Σ ] {R,S})

= I\R,S [R 7→ I(R)][S 7→ I(S)]

= I
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Subclaim PutGet: If I |= ∆ and J |= ∆ then v↗ (v↘ (J, I)) = J .
With the definition of join template, we calculate

v↗ (v↘ (J, I)) = v↗ (J\T [R 7→M ][S 7→ N ])

= J\R,S,T [T 7→M ./ N ]

= J\T [T 7→M ./ N ] (as J\T |= Σ and R,S /∈ Σ)

where

M0 = I(R)
∪?
←F J(T )[U ]

N0 = I(S)
∪?
←G J(T )[V ]

L = M0 ./ N0 \ J(T )

Ll = L ./ (J(T )[U ∩ V ])

La = L \ Ll

M = (M0 \ (La ∩ Pd)[U ]) \ Ll[U ]

N = N0 \ (La ∩Qd)[V ].

To conclude, we must show M ./ N = J(T ). We do this by showing that each is contained in the other.

• J(T ) ⊆M ./ N . Pick l ∈ J(T ). We want to show l[U ] ∈M and l[V ] ∈ N .

Applying property 1, we see J(T )[U ] ⊆ M0 and J(T )[V ] ⊆ N0; this gives l[U ] ∈ M0 and l[V ] ∈ N0.
Therefore it suffices to show that l[U ] /∈ L[U ] (from which it immediately follows that l[U ] ∈M by the
definition of M) and l[V ] /∈ La[V ] (from which it immediately follows that l[V ] ∈ N by the definition
of N).

To show l[U ] /∈ L[U ], let us assume, for a contradiction, that there is some l′ ∈ L such that l′[U ] = l[U ].
Clearly, l′[U ∩ V ] = l[U ∩ V ]. From l′ ∈ L we know that l′ ∈ M0 ./ N0 and, consequently, l′[V ] ∈ N0.
Likewise l[V ] ∈ N0, because l ∈M0 ./ N0.

Now, by assumption, we know I(S) |= G and J(T )[V ] |= G. Therefore, property 5 of
∪?
← gives N0 |= G.

From this, Lemma 4.5.8 gives l[V ], l′[V ] |= G. The hypothesis also tells us G |= (U∩V )→ V . Therefore
l[V ], l′[V ] |= (U ∩ V ) → V . By assumption, we have l′[U ∩ V ] = l[U ∩ V ], which, with this functional
dependency, implies l′[V ] = l[V ]. The foregoing—coupled with the assumption that l′[U ] = l[U ]—gives
l′ = l and so l′ ∈ J(T ). But L and J(T ) are disjoint, so l′ ∈ J(T ) contradicts the assumption l′ ∈ L
and proves l[U ] /∈ L[U ].

To show l[V ] /∈ La[V ], let us assume the opposite (for a contradiction), and pick some l′ ∈ La such
that l′[V ] = l[V ]. From l ∈ J(T ) we know l[U ∪ V ] ∈ J(T )[UV ]. As l′[U ∩ V ] = l[U ∩ V ], we find
l′[U ∩ V ] ∈ J(T )[U ∩ V ]. We also know l′ ∈ L because La ⊆ L; thus, l′ ∈ L ./ J(T )[U ∩ V ]—that is,
l′ ∈ Ll. But this is a contradiction: we assumed l′ ∈ La, and La and Ll are disjoint.

• M ./ N ⊆ J(T ). Pick l ∈M ./ N and assume, for a contradiction, that l /∈ J(T ). Then l[U ] ∈M and
l[V ] ∈ N , which imply l[U ] ∈M0 and l[V ] ∈ N0. From these facts, we can see that l ∈M0 ./ N0\J(T )—
i.e., l ∈ L.

We continue by examining the form of L. The definitions of Ll and La give L = Ll ∪La. We assumed
Pd ∪Qd = >UV , so we can rewrite L as follows:

L = Ll ∪ La

= Ll ∪ (La ∩ (Pd ∪Qd))

= (Ll ∪ (La ∩ Pd)) ∪ (La ∩Qd)

Thus, we can have l ∈ L in two (non-exclusive) ways:
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– l ∈ (Ll ∪ (La ∩ Pd)). This is a contradiction because l[U ] ∈ M and M is disjoint from Ll ∪
(La ∩ Pd)[U ].

– l ∈ (La ∩Qd). This is a contradiction because l[V ] ∈ N and N is disjoint from La ∩Qd[V ].

This proves PutGet. �

5.4 Derived Joins

Using the join template, we can now define a variety of concrete join lenses with different update policies
and different restrictions on the situations in which they can be applied. We begin with some using relation
merge as the update operation, then introduce a simpler update operation called squash that yields a more
draconian update policy but that can be used in a wider variety of situations (because its accompanying
boolean function Φ is always true).

The first set of derived natural joins differ in their treatment of ambiguous deletions. Consider a simple
database with two relations R and S which are joined to create relation T :

R 7→
A B
a b

S 7→
B C
b c

T 7→
A B C
a b c

If the view state is modified to T = ∅, then there are three reasonable ways to update the database (plus
some unreasonable ones, which add irrelevant records to either R or S). We can delete from R—i.e., take
R = ∅—or delete from S, or both.2 These choices can be implemented by passing different deletion predicates
to the join template.

Let Φm(U,P, F ) = F is tree form and P ignores outputs(F ). The three merge-based variants of natural
join are defined as follows:

join (R) (S) as T = join template ∪

←,Φm

(R,>dom(R)) (S,>dom(S)) as T

join dl (R) (S) as T = join template ∪

←,Φm

(R,>dom(R)) (S, ∅) as T

join dr (R) (S) as T = join template ∪

←,Φm

(R, ∅) (S,>dom(S)) as T

The differences between these alternative forms of join is clearly conveyed by example. To this end, we define
a pair of database states J with relation T and I with relations R and S.















R A B C
a1 b1 c1

a2 b2 c2

a2 b2 c3

S C
c1

c2















I

{

T A B C
a2 b′2 c2

}J

Relation R is constrained by the functional dependency F = {A→ B}, but relation S has no dependencies.
As a consequence of the typing rules we see T must also satisfy {A → B}. The results of the joins are as
follows:

• join (R) (S) as T↘ (J, I)






R A B C
a2 b′2 c2

a2 b′2 c3

S C
c2







I′

• join dl (R) (S) as T↘ (J, I)







R A B C
a2 b′2 c2

a2 b′2 c3

S C
c1

c2







I′

2There is also a more refined possibility: we could parameterize the join template on a function that chooses, on a case by

case basis, whether a given deletion in the view should be reflected as a deletion from the left table, the right table, or both.
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• join dr (R) (S) as T↘ (J, I)















R A B C
a1 b1 c1

a2 b′2 c2

a2 b′2 c3

S C
c2















I′

These update policies give reasonable results; unfortunately, they are only applicable when the functional
dependencies are in tree form. In cases where we need to perform a join and this is not the case, we can use

a different update policy, defined in terms of an update operator called squash (and written
∪
←/).

Squash is analogous to relation merge. However, while relation merge modifies conflicting records to
conform to functional dependencies, squash simply deletes such records. Formally, given M , N , and F all
over U with M |= F and N |= F , we define

M
∪
←/F N = {m | m ∈M and N,m |= F} ∪N.

The chief advantage of the squash operator is that, unlike Merge, it is suitable when paired with the trivial
boolean function, Φs(U,P, F ) = true.

The following three derived joins are analogous to those above, but use squash to perform updates and
Φs for static checking:

joins (R) (S) as T = join template ∪

←/,Φs

(R,>dom(R)) (S,>dom(S)) as T

join dls (R) (S) as T = join template ∪

←/,Φs

(R,>dom(R)) (S, ∅) as T

join drs (R) (S) as T = join template ∪

←/,Φs

(R, ∅) (S,>dom(S)) as T

Using the example databases I and J from above, the results of the squashing variants of join are as follows:

• joins (R) (ABC) as SCT↘ (J, I)

{

R A B C
a2 b′2 c2

S C
c2

}I′

• join dls (R) (ABC) as SCT↘ (J, I)







R A B C
a2 b′2 c2

S C
c1

c2







I′

• join drs (R) (ABC) as SCT↘ (J, I)







R A B C
a1 b1 c1

a2 b′2 c2

S C
c2







I′

To conclude the discussion of derived joins, we must check that relation merge and squash are actually
suitable.

5.4.1 Theorem: The operator
∪
← and the boolean function

Φ(U,P, F ) = F is tree form and P ignores outputs(F )

are suitable at U for any U .
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Proof: We must show that all five suitability properties hold.

1. N ⊆ M
∪
←F N . Immediate from the definition.

2. N ⊆M =⇒ M
∪
←F N = M . Immediate from Lemma 4.5.9.

3. M
∪
←F N : U . Immediate from Lemma 4.4.2.

4. M ⊆ P ∧N ⊆ P =⇒ M
∪
←F N ⊆ P . By the definition of

∪
← and Lemma 4.5.3, we know that

(M
∪
←F N)[U − outputs(F )] ⊆ (M ∪N)[U − outputs(F )] ⊆ P [outputs(F )].

Because P ignores outputs(F ), this implies M
∪
←F N ⊆ P .

5. M
∪
←F N |= F . Immediate from Lemma 4.5.7. �

5.4.2 Theorem: The operator
∪
←/ and the boolean function

Φ(U,P, F ) = true

are suitable at any U .

Proof: All conditions can easily be checked. �

Of course, this discussion has not exhausted the possibilities for join lenses—far from it. The notion of
suitability gives an easily checked criterion for other update operations. We have already remarked that
ordinary union is suitable (with a strong Φ); there are undoubtedly others to be discovered.

5.5 Projection

Rather than defining a lens corresponding to a general relational projection operation, we consider a more
basic lens, which we call drop, that projects away just a single column in the get direction. This simplification
is useful because some special care must be taken to make sure that values in the missing column can be
safely reconstructed; the policy for how to do this and the associated type constraints describing when it is
feasible are most easily understood by considering only a single column at a time. In cases where a general
projection makes sense, it can be implemented by composing several drop operations in sequence.

Letting v stand for the lens expression

v = drop A determined by (X, a) from R as S,

the behavior of the drop lens is given by the following definitions for the get and putback components:

v↗ (I) = I\R[S 7→ I(R)[U −A]]

v↘ (J, I) = J\S [R 7→M ←X→A I(R)]

where

M = (I(R) ./ J(S)) ∪ (N+ ./ {{A = a}})

N+ = J(S) \ I(R)[U −A]

U = dom(R)

The syntax of the drop expression includes a set of attributes X upon which the field A has a functional
dependency (the typing rule will ensure this) and a value a, which will be used as a default value for the
column A when functional dependencies are not sufficient to infer it. The get component simply projects
away the single field A. The behavior of the putback component revolves around reconstructing the values
in the missing column. Records that were unchanged in the view are guaranteed to receive their original
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values. Records that were added in the view (captured by the expression associated with N+) are first paired
with the default value, but this may be overwritten by the relational revision operation using the functional
dependency X → A.

We assign types to the drop lens with the following typing rule:

sort(R) = (U,P, F ) A ∈ U F ≡ F ′ ∪ {X → A}
sort(S) = (U −A,P [U −A], F ′})

P = P [U −A] ./ P [A] {A = a} ∈ P [A]

drop A determined by (X, a) from R as S ∈ Σ ] {R} ⇔ Σ ] {S}
(T-Drop)

This rule imposes several restrictions on the dropped column A. We require A ∈ U as a sanity check. Then
we require that F has a representation in which a set of fields X determines A. This set of fields must be
unique because F ′ : U −A, as required by the sort of S. (Note that, if A is not determined by any other
fields, then taking X = A satisfies the premise.) Indeed, it is easy to see that no reasonable behavior exists
if this condition is not satisfied. For example, assume that fd(R) = {A→ C,B → C} (note that the typing
rule does not require fd(R) or fd(S) to be in tree form) and we create a new table S by projecting away
the field C. A get operation on the database I followed by the insertion of a new row (a1, b2) would cause a
problem for the putback operation:







R A B C
a1 b1 c1

a2 b2 c2







I

v↗(I)
//







S A B
a1 b1

a2 b2







J















R A B C
a1 b1 c1

a2 b2 c2

a1 b2 ?















I

oo
v↗(I,J ′)















S A B
a1 b1

a2 b2

a1 b2















J ′

Since B and C independently determine A, any value that is put in place of ? will result in a table that does
not satisfy F .

We must also constrain the predicate in the schema. The expression P = P [U −A] ./ P [A] implies that
the predicate may not impose any sort of dependency between the value in field A and the values other fields.
This is necessary because it is not possible to statically guarantee that the value assigned to the attribute
A in the putback direction would have any particular relationship with the rest of the record. Finally, we
require that {A = a} ∈ P [A], so that filling in the default value is safe with respect to the predicate.

5.5.1 Theorem: Suppose

sort(R) = (U,P, F ) F ≡ G ∪ {X → A}
U = Z ] {A} sort(S) = (Z,P [Z], G)
P = P [Z] ./ P [A] {A = a} ∈ P [A]
∆ = Σ ] {R} ∆′ = Σ ] {S}
v = drop A determined by (X, a) from R as S

Then v ∈ ∆⇔ ∆′.

Proof: We first show that v↗∈ ∆ → ∆′. Suppose I |= ∆. Then R ∈ dom(I), where I\R |= Σ
and I(R) satisfies (U,P, F ). From the definition of v↗, it is easy to check that S ∈ dom(v↗ (I)) and
(v↗ (I))\S |= Σ. It remains to show that (v↗ (I))(S) satisfies (Z,P [Z], G), where (v↗ (I))(S) = I(R)[Z].
This involves checking three facts:

1. I(R)[Z] : Z. This follows from Z ⊆ U .

2. I(R)[Z] ⊆ P [Z]. This follows directly from the definitions.
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3. I(R)[Z] |= G. Assume, for a contradiction, {m1,m2} 6|= G, where m1,m2 ∈ I(R)[Z]. Then there exists
a functional dependency Y1 → Y2 ∈ G such that {m1,m2} 6|= Y1 → Y2. There must then exist records
n1, n2 ∈ I(R) such that m1 = n1[Z] and m2 = n2[Z]. Furthermore F |= Y1 → Y2. So we would have
I(R) 6|= F , which is a contradiction. Since m1 and m2 were arbitrary, I(R)[Z] |= G follows by Fact 2.4.

Hence, we conclude that v↗ (I) |= ∆′, as required.
Next, we show that v↘∈ ∆′ ×∆→ ∆. Suppose I |= ∆ and J |= ∆′. Then R ∈ dom(I), where I\R |= Σ

and I(R) satisfies (U,P, F ). Furthermore, S ∈ dom(J), where J\S |= Σ and J(S) satisfies (U,P [Z], G).
From the definition of v↘, it is easy to check that R ∈ dom(v↘ (J, I)) and (v↘ (J, I))\R |= Σ. It remains
to show that (v↘ (J, I))(R) satisfies (U,P, F ), where

(v↘ (J, I))(R) = M ←X→A I(R)

M = (I(R) ./ J(S)) ∪ (N+ ./ {{A = a}})

N+ = J(S) \ I(R)[Z].

Note that this definition may also be written as

(v↘ (J, I))(R) = (I(R) ./ J(S)) ∪M+

M+ = (N+ ./ {{A = a}})←X→A I(R)

N+ = J(S) \ I(R)[Z]

since the revision operation can only affect the records in the right-hand side of the union: N+ ./ {{A = a}}.
We use this alternate presentation in several places below.

Again, showing the totality of v↘ involves checking three facts:

1. M ←X→A I(R) : U . Checking with the original definition, we have N+ ./ {A = a} : U since N+ : Z.
Also, I(R) ./ J(S) : U . So M ←X→A I(R) : U by Lemma 4.5.1.

2. M ←X→A I(R) ⊆ P . Again, we use the original definition. Since P = P [Z] ./ P [A], by Fact 2.1 it
suffices to show (M ←X→A I(R))[Z] ⊆ P [Z] and (M ←X→A I(R))[A] ⊆ P [A]. We consider these two
requirements in turn.

(a) Since J(S) ⊆ P [Z], we can see that N+ ⊆ P [Z] and (I(R) ./ J(S))[Z] ⊆ P [Z]. Hence, M [Z] ⊆
P [Z]. By Lemma 4.5.3, M ←X→A I(R)[Z] ⊆M [Z], so we have M ←X→A I(R)[Z] ⊆ P [Z].

(b) Since A ∈ dom(I(R)), by Fact 2.2 we have (I(R) ./ J(S))[A] ⊆ I(R)[A]. Also, since I(R) ⊆ P
and P = P [Z] ./ P [A], by Fact 2.2, I(R)[A] ⊆ P [A]. Furthermore, since A 6∈ dom(N+), by
Fact 2.2, (N+ ./ {{A = a}})[A] ⊆ {{A = a}}, and {A = a} ∈ P [A] by assumption. So

M [A] = ((I(R) ./ J(S)) ∪ (N+ ./ {{A = a}}))[A]

= (I(R) ./ J(S))[A] ∪ (N+ ./ {{A = a}})[A]

⊆ I(R)[A] ∪ (N+ ./ {{A = a}})[A]

⊆ I(R)[A] ∪ {{A = a}}[A]

⊆ P [A].

Since M [A] ⊆ P [A] and I(R)[A] ⊆ P [A], Lemma 4.5.2 tells us that (M ←X→A I(R))[A] ⊆ P [A],
as required.

3. (I(R) ./ J(S))∪M+ |= F . (Here we use the alternate definition.) We must show that (I(R) ./ J(S))∪
M+ |= G and (I(R) ./ J(S))∪M+ |= X → A. For the first part, we begin by noting that, if we have a
relation M : U and a set of functional dependencies H : Z where Z ⊆ U , then M |= H iff M [Z] |= H.
Since G : Z, it suffices to show that ((I(R) ./ J(S)) ∪M+)[Z] |= G. We have (I(R) ./ J(S))[Z] ⊆

32



J(S) (by Fact 2.2). Since N+ ⊆ J(S), we also have M+[Z] ⊆ J(S), using Lemma 4.5.3 (not-
ing that Z is disjoint from outputs(X → A) = {A}). Hence ((I(R) ./ J(S)) ∪M+)[Z] ⊆ J(S). So
((I(R) ./ J(S)) ∪M+)[Z] |= G (by Fact 2.3).

For the other part, we have I(R) |= X → A since F |= X → A, and it is easy to see that N+ ./
{{A = a}} |= X → A. Then, since (I(R) ./ J(S))[Z] ⊆ I(R), we may use Lemma 4.5.6 to show that
((I(R) ./ J(S)) ∪M+)[Z] |= X → A, as required.

Next, we show that v satisfies the law GetPut—that is, v↘ (v↗ (I), I) = I for all I ∈ ∆. It is easy to
check that dom(v↘ (v↗ (I), I)) = dom(I), and that (v↘ (v↗ (I), I))\R = I\R. It remains to show that
(v↘ (v↗ (I), I))(R) = I(R). Expanding the definitions of v↗ and v↘ (using the alternate definition), we
see that we must show (I(R) ./ I(R)[Z]) ∪M+ = I(R) where

M+ = (N+ ./ {{A = a}})←X→A I(R)

N+ = I(R)[Z] \ I(R)[Z].

We have M+ = ∅ since N+ = ∅, and it is easy to see that (I(R) ./ I(R)[Z]) ∪ ∅ = I(R).
Finally, we show that v satisfies the law PutGet—that is, v↗ (v↘ (J, I)) = J for all I ∈ ∆ and J ∈ ∆′.

It is easy to check that dom(v↗ (v↘ (J, I))) = dom(J) and that (v↗ (v↘ (J, I)))\S = J\S . It remains
to show that (v↗ (v↘ (J, I)))(S) = J(S). Expanding the definitions of v↗ and v↘ (using the alternate
definition), we see that we must show ((I(R) ./ J(S)) ∪M+)[Z] = J(S) where

M+ = (N+ ./ {{A = a}})←X→A I(R)

N+ = J(S) \ I(R)[Z].

This follows from a straightforward calculation:

((I(R) ./ J(S)) ∪M+)[Z] = (I(R) ./ J(S))[Z] ∪M+[Z]

= (I(R)[Z] ∩ J(S)) ∪M+[Z]

= (I(R)[Z] ∩ J(S)) ∪N+

= (I(R)[Z] ∩ J(S)) ∪ (J(S) \ I(R)[Z])

= J(S) �

5.6 Lens Composition

Lens composition is at the heart of our language. Given two lenses v and w, their composition (v; w) has
get and putback components with the following behavior:

(v; w)↗ (I) = v↗ (w↗ (I))

(v; w)↘ (J, I) = w↘ (v↘ (J,w↗ (I)), I)

The get direction applies the get function of v, yielding a first abstract database, to which the get function of
w is applied. In the other direction, the two putback functions are applied in turn: first, the putback function
of w is used to put J into the concrete database that the get of w was applied to, i.e., w↗ (I); the result is
then put into I using the putback function of v.

The typing rule for composition reflects the fact that the abstract domain of the first lens must coincide
with the concrete domain of the second lens:

v ∈ Σ⇔ Σ′ w ∈ Σ′ ⇔ ∆

v; w ∈ Σ⇔ ∆
(T-Compose)

The proof of well-behavedness of composition can be found in [5].
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5.7 Other Primitive Lenses

The operational behavior of our lenses does not permit any table to be referred to more than once in a
view definition. This is because our schema language is not powerful enough to express arbitrary constraints
across different relations, which may be necessary if data from tables in the concrete database were to appear
in multiple places in the view. Thus, even without restrictions on schemas, our language for defining views
is substantially weaker that the general relational algebra. In order to express operations such as an outer
join, new basic lenses must be developed. We have investigated versions of outer join that give a wide range
of flexibility.

6 Related Work

The basic framework of lenses was introduced in a 2005 paper by Foster, Greenwald, Moore, Pierce, and
Schmitt [5], to which we refer readers for an extensive survey of the related literature. Here, we give a high-
level picture of the similarities and differences between our work and other approaches to view update—
in particular Dayal and Bernstein’s notion [3] of “correct update translation,” Bancilhon and Spyratos’s
notion [1] of “update translation under a constant complement,” Gottlob, Paolini, and Zicari’s “dynamic
views” [8], and the basic view update and “relational triggers” mechanisms offered by commercial database
systems such as Oracle.

The view update problem concerns translating updates on a view into “reasonable” updates on the
underlying database. It is helpful to structure the discussion by breaking this broad problem statement
down into more specific questions. First, how is a “reasonable” translation of an update defined? Second,
what should we do about the possibility that, for some update, there may be no reasonable way of translating
its effect to the underlying database? And third, how do we deal with the possibility that there are many
reasonable translations from which we must choose? We consider these questions in order.

One can imagine many possible ways of assigning a precise meaning to “reasonable update translation,”
but in fact there is a remarkable degree of agreement in the literature, with most approaches adopting one of
two basic positions. The stricter of these is enunciated in Bancilhon and Spyratos’s [1] notion of complement
of a view, which must include at least all information missing from the view. When a complement is
fixed, there exists at most one update of the database that reflects a given update on the view while
leaving the complement unmodified—i.e., that “translates updates under a constant complement.” The
constant complement approach has influenced numerous later works in the area, including recent papers by
Lechtenbörger [14] and Hegner [9].

The other, more permissive, definition of “reasonable” is elegantly formulated by Gottlob, Paolini, and
Zicari, who call it “dynamic views” [8]. They present a general framework and identify two special cases, one
being formally equivalent to Bancilhon and Spyratos’s constant complement translators and the other—which
they advocate on pragmatic grounds—being their own dynamic views.

Our notion of lenses adopts the same, more permissive, attitude towards reasonable behavior of update
translation. Our definition of select, for example, is similar to an example proposed by Keller [13] as an
illustration of a natural update policy that would be disallowed under the constant complement approach.
Indeed, modulo some small technical refinements required to connect our inclusive notion of “totality” to
the specific sets of update operations considered by others, the correspondence is exact [5, 15]: the set of all
well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini, and Zicari.
(Moreover, the set of well-behaved lenses that also obey an additional law called PutPut in [5]

v↘ (J ′, v↘ (J, I)) = v↘ (J ′, I) (PutPut)
for all J, J ′ ∈ ∆ and I ∈ Σ

is isomorphic to the set of translators under constant complement in the sense of Bancilhon and Spyratos.
Intuitively, this law says that each putback completely overwrites the effects of all previous updates—the
effect of doing two putbacks is the same as doing just the second.)
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Dayal and Bernstein’s [3] seminal theory of “correct update translation” also adopts the more permissive
position on “reasonableness.” Their notion of “exactly performing an update” corresponds, intuitively, to
our PutGet law.

The pragmatic tradeoffs between these two perspectives on reasonable update translations are discussed
by Hegner [10, 9], who introduces the term closed view for the stricter constant complement approach and
open view for the looser approach adopted by dynamic views and in the present work. Hegner himself works in
a closed-world framework, but notes that both choices may have pragmatic advantages in different situations,
open-world being useful when the users are aware that they are “really” using a view as a convenient way to
edit an underlying database, while closed-world is preferable when users should be isolated from the existence
of the underlying database, even at the cost of offering them a more restricted set of possible updates.

Hegner [9] also formalizes an additional condition on reasonableness (which has also been noted by
others—e.g., [3]): monotonicity of update translations, in the sense that an update that only adds records
from the view should be translated just into additions to the database, and that an update that adds more
records to the view should be translated to a larger update to the database (and similarly for deletions). As
we have noted, some of our primitive lenses are not monotone in general. Many specific uses of our lenses will
be monotone, however, and we conjecture that our type system could be refined so as to track monotonicity
and let users know when it may be violated.

Commercial databases such as Oracle, SQL Server, and DB2 typically provide two quite different mech-
anisms for updating through views. First, some very simple views—defined using select, project, and a very
restricted form of join (where the key attributes in one relation are a subset of those in the other)—are con-
sidered inherently updatable. For these, the notion of reasonableness is essentially the constant complement
position. Alternatively, programmers can support updates to arbitrary views by adding relational triggers
that are invoked whenever an update is attempted on the view and that can execute arbitrary code to update
the underlying database. In this case, the notion of reasonableness is left entirely to the programmer.

The second question posed at the beginning of the section was how to deal with the possibility that there
are no reasonable translations for some update. The simplest response is just to let the translation of an
update fail, if it sees that its effect is going to be unreasonable; this is Dayal and Bernstein’s approach, for
example. Its advantage is that we can determine reasonableness on a case-by-case basis, allowing translations
that usually give reasonable results but that might fail under rare conditions. The disadvantage is that we
lose the ability to perform updates to the view offline—we need the concrete database in order to tell whether
an update is going to be allowed.

Another possibility is to restrict the set of operations to just the ones that can be guaranteed to correspond
to reasonable translations; this is the position taken by most papers in the area.

A different approach—the one we have taken in this work—is to restrict the view schema so that arbitrary
(schema-respecting) updates are guaranteed to make sense.

The third question posed above was how to deal with the possibility that there may be multiple reasonable
translations for a given update.

One attractive idea is to somehow restrict the set of reasonable translations so that this possibility does
not arise—i.e., so that every translatable update has a unique translation. For example, under the constant
complement approach, for a particular choice of complement, there will be at most one translation. Hegner’s
additional condition of monotonicity [9] ensures that (at least for updates consisting of only inserts or only
deletes), the translation of an update is unique, independent of the choice of complement.

Another possibility is to place an ordering on possible translations of a given update and choose one that is
minimal in this ordering. This idea plays a central role, for example, in Johnson, Rosebrugh, and Dampney’s
account of view update in the Sketch Data Model [11]. Buneman, Khanna, and Tan [2] have established a
variety of intractability results for the problem of inferring minimal view updates in the relational setting
for query languages that include both join and either project or union.

The key idea in the present work is to allow the programmer to describe the update policy at the same
time as the view definition, by enriching the relational primitives with enough annotations to select among
a variety of reasonable update policies.
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7 Future Work

The use of lenses represents a novel approach to the view update problem for relational databases, for which
many avenues of inquiry remain to be examined. On a theoretical level we are curious about extensions to
the lens language and type system. We are also interested in potential applications both within and outside
the context of the Harmony system. Here we introduce a few of the most promising areas for future research.

The choice of schema language is a fundamental issue in designing relational lenses, significantly con-
straining the design space for lens primitives. It may be fruitful to consider extensions to the schema language
we have proposed here. Possibilities include multivalued dependencies and foreign key constraints—or more
generally, inclusion dependencies. Multivalued dependencies would allow us to support join lenses with
wider domains. Among other benefits, inclusion constraints would allow us to define lenses for database
normalization.

A weaker version of PutPut can be formulated if there is an order on states in the abstract domain. Let
v ∈ Σ⇔ ∆ and let ≺ ⊆ ∆×∆ be a preorder on the elements of ∆. Then we define the law PutPutOrd:

v↘ (J ′, v↘ (J, I)) = v↘ (J ′, I) (PutPutOrd)
for all J, J ′ ∈ ∆ and I ∈ Σ
such that v↗ (I) ≺ J ≺ J ′

We conjecture that all of our lenses in this paper satisfy PutPutOrd for the subset and superset partial
orders on the relations in the database.

Other theoretical work may include ideas farther afield from lenses. In particular, we are curious about
composable techniques in the realm of pure constant complement or dynamic views. For example, it may
be possible to use types to describe the set of view updates available to an end user who supplies a few
definition.

We are interested in practical concerns surrounding potential implementations of the theory we have
presented. We believe that type-checking should be decidable, given a reasonable choice of language for
expressing predicates. Another potential concern is the efficiency of implementing the putback operations
as defined in the paper; it would be interesting to study whether we can preserve lens semantics while only
working with small “deltas” instead of whole database states. We also want to consider how our lenses would
interact with traditional DBMS requirements like transactionality. Finally, while we have confined this work
to total lenses, it may be better in some cases to allow lenses to fail during putback, accepting the loss of
offline operation in return for greater flexibility of behavior.

We have experimented with several examples of modest complexity (larger than Figure 1, but not huge).
In the future, we plan to try larger applications. This will be aided by an implementation of relational lenses
now under development in the context of the Harmony system.
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