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Information flow protects secrets from disclosure.
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Noninterference: high inputs don’t affect low outputs
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Some programs need to violate noninterference.
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Satisfies (decentralized) robust declassification instead of
noninterference [Myers & Chong CSFW ’06].
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Encryption can restore noninterference.
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Our idea: make the cryptography transparent.
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Our solution: label directed implicit packing.

The Cryptographic Decentralized Label Model unifies
a high-level, information-flow language,
declarative labels that describe security policies,
and cryptographic packages that implement policies.

Key notation

data + policies ⇒ package
v + ` ⇒ 〈v〉`
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SImp language can pack and unpack labeled data.

Definition (SImp Syntax)

types τ ::= int | . . . | pkg
values v ::= 0 | 1 | . . .

| 〈v〉` package
expressions e ::= . . .

| pack e at ` package intro
| unpack e as τ{`} package elim

Packages may be constructed and analyzed according to `.
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SImp can implement a simple messaging system.

Example

text: string{high} dest: string{low}
out: pkg{low} in: pkg{low}

text := readLine()
match (pack text at {high}) with
ok(p) => out := p; send(out)
error => skip

...

in := receive()
match (unpack in as text{high})
ok(t) => text := t; printLine(text)
error => skip
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Pack succeeds iff runtime has sufficient authority.

The SImp runtime contains
a memory, M, and
an authority, p.

Evaluation Model

precondition
runtime state ` from → to

Definition (Pack Evaulation)

p writes `

p; M ` pack v at ` → ok(〈v〉`)
E-PACK-OK

¬(p writes `)

p; M ` pack v at ` → error
E-PACK-FAIL

Without enough keys, it is infeasible for the runtime to perform
these operations.
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Unpacking also performs dynamic checks.

Definition Fragment (Unpack Evaluation)

p reads ` `0 ≤ ` ` v0 : τ

p; M ` unpack 〈v0〉`0 as τ{`} → ok(v0)

Checks ensure
cryptographic feasibility
information flow
type safety (values have correct shapes)
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Is failure to pack a covert channel?

Example

h: bool{high}, l: bool{low}, v: pkg{?}

if h then
v := pack 0 at low

else
v := pack 0 at high

...
match (unpack v as bool{low}) with
ok(_) => l := true
error => l := false
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Is failure to pack a covert channel?

Example

h: bool{high}, l: bool{low}, v: pkg{?}

if h then
v := pack 0 at low

}}}
Rule: High guard requires variables
assigned in branches are high.

else
v := pack 0 at high

...
match (unpack v as bool{low}) with
ok(_) => l := true
error => l := false

Constraints: v is high
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Is failure to pack a covert channel?

Example

h: bool{high}, l: bool{low}, v: pkg{?}

if h then
v := pack 0 at low

else
v := pack 0 at high

...

Rule: Unpack does not
declassify secret data.

match (unpack v as bool{low}) with ⇐⇐⇐
ok(_) => l := true
error => l := false

Constraints: v is high; v is low
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Is failure to pack a covert channel?

Example

h: bool{high}, l: bool{low}, v: pkg{?}

if h then
v := pack 0 at low

else
v := pack 0 at high

...
match (unpack v as bool{low}) with
ok(_) => l := true
error => l := false

∴ reject statically
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Pack provides a limited declassify, unpack an endorse.

Definition Fragment (Pack Security Typing, 1st attempt)

If
e has label `e

labels ` and `e have equal integrity components,

then
pack e at `e has label `.

Definition Fragment (Unpack Security Typing, 1st attempt)

If
e has label `e, and
labels ` and `e are equal,

then
unpack e as τ{`} has label `.
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Pack provides a limited declassify, unpack an endorse.

Definition Fragment (Pack Security Typing)

If
e has label `e, and
labels ` and `e have equal integrity components,

then
pack e at `e has label `.

Definition Fragment (Unpack Security Typing)

If
e has label `e, and
labels ` and `e have equal confidentiality components,

then
unpack e as τ{`} has label `.
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Can we “cast away” security labels?

Example

h: bool{high}, l: bool{low}, v: pkg{low}

v := pack h at {high}
...

match (unpack v as bool{low}) with
ok(true) => l := true
ok(false) => l := false
error => skip
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match (unpack v as bool{low}) with
ok(true) => l := true
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Example

h: bool{high}, l: bool{low}, v: pkg{low}

v := pack h at {high}
...

match (unpack v as bool{low}) with ⇐⇐⇐
ok(true) => l := true
ok(false) => l := false
error => skip

Check: high ≤ low
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Can we “cast away” security labels?

Example

h: bool{high}, l: bool{low}, v: pkg{low}

v := pack h at {high}
...

match (unpack v as bool{low}) with ⇐⇐⇐
ok(true) => l := true
ok(false) => l := false
error => skip

∴ unpacking fails
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Can we “cast away” security labels?

Example

h: bool{high}, l: bool{low}, v: pkg{low}

v := pack h at {high}
...

match (unpack v as bool{low}) with
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Can we “cast away” security labels?

Example

h: bool{high}, l: bool{low}, v: pkg{low}

v := pack h at {high}
...

match (unpack v as bool{low}) with
ok(true) => l := true
ok(false) => l := false
error => skip

Conclusion: not a leak
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Evaluation respects noninterference.

Property (M1
∼=` M2)

Memories M1 and M2
are equivalent to an
observer with power
`, if the observer
cannot distinguish the
memories.

Example

M1 M2
xlow 7→ 2 xlow 7→ 2

ylow 7→ 〈3〉high ylow 7→ 〈4〉high
zhigh 7→ 3 zhigh 7→ 4

M1
∼=low M2

M1 6∼=high M2

Property (Noninterference)

M1
∼=` M2 M ′

2
∼=` M ′

1evaluation
//

evaluation

))
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SImp is parameterized by a security lattice.

Definition Fragment (Security lattice)
A lattice whose elements are composed of orthogonal
confidentiality and integrity components is a security lattice.

Example

high = {private!tainted}

{private!trusted} {public!tainted}

low = {public!trusted}

55lllllll
iiRRRRRRR

iiRRRRRRR
55lllllll
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Decentralized labels specify security policies.

` = {Alice : Bob ! Charlie;

Bob : Alice ! Charlie, Dave}
A label is a list of policies.
A policy consists of

an owner (who may distrust other owners),
a reader set, and
a writer set.

Property (p reads `)
Principal set p reads ` when
each owner in ` permits
some member of p to read.

Example

re
ad

s

w
rit

es

Alice X x
Dave x x
{Alice, Dave} x X

Labeling is a variant of Myers and Liskov’s DLM [TOSEM ’00].
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Labels and packages need meaning outside of SImp.

Cryptographic assumptions
Each principal is mapped to a well-known public key.
Cryptographic functions follow the Dolev-Yao model.

Goals of interpretation
Package confidentiality protects data from eavesdroppers.
Package integrity protects the program from data.
Packages can created and consumed offline.

17/21



Packages compile to cryptographic messages.

Example (Compile 〈42〉{Alice: Bob ! })

1. Generate fresh key pairs (R+, R−) and (W +, W−).
2. Let payload = sign(W−, {|42|}R+)

3. Let seal = sign(Alice, ["{Alice: Bob!}", R+, W +,
{|R−|}K +

Alice
, {|R−|}K +

Bob
, {|W−|}K +

Alice
])

4. Return package = (seal , payload)

R− is a read capability.
W− is a write capability.
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Package compilation is adequate.

Property (m1
∼=` m2)

Say m1
∼=` m2 when messages m1 and m2 reveal only

equivalent information to Dolev-Yao observers weaker than `.

Lemma (Adequacy for Values)
If

v1
∼=` v2

then

compile(v1) ∼=` compile(v2).

Corollary

M1
∼=` M2

σ1 ∼=` σ2

com
pile

��

com
pile

��
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Read the paper for more results.

Today we discussed noninterference and adequacy.
In the paper we consider feasibility.

M1
∼=` M2 M ′

2
∼=` M ′

1

σ1 ∼=` σ2

evaluation
//

evaluation

))

com
pile

��

com
pile

��
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Read the paper for more results.
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1

σ1 ∼=` σ2 σ′
2
∼=` σ′

1

evaluation
//

evaluation

))

crypto. ops //__________

crypto. ops
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Take home messages

SImp explores a new space in information flow languages with
declarative policies implemented by a cryptographic
mechanism,
a strong noninterference property,
and a rich, structural label language.
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Pack provides a limited declassify, unpack an endorse.

Definition Fragment

Θ; Γ ` e : τ{`e} I(`e) = I(`)
Θ; Γ ` pack e at `e : (pkg+ error){`}

Θ; Γ ` e : pkg{`e} C(`e) = C(`)

Θ; Γ ` unpack e as τ{`} : (τ + error){`}

These rules are safe because of the dynamic checks.

toc A



This is just the beginning.

Further research questions:
Can homomorphic encryption be used for computation
within packages?
How can we compile alternative label models?

“share semantics”
uniqueness labels

How does package upgrading and downgrading interact
with cryptography?

toc B



A explicit non-goal: package uniqueness.

Replay attacks (vs. legitimate uses of persistence) are best
detected at higher levels of abstraction.
Uniqueness checks appear to require interactive protocols.
Resolving these challenges would be interesting future
work.

toc C



Our DLM is a variant of Myers and Liskov’s original.

Example

` = {Alice : Charlie ! ∅; Bob : Dave ! ∅}
Here:

` {Charlie, Dave} reads `

Myers and Liskov:

6` {Dave, Charlie} reads `

We don’t consider an explicit acts-for-hierarchy.
It should work technically but is orthogonal.
Intuitively, principal sets “act for” component principals.
Key difference:

Myers and Liskov: Calculate readers, then close under
acts-for.
Here: Close under acts-for, then calculate readers.

toc D



Formal statement of expression noninterference.

Theorem (Expression noninterference)
If

Θ ` M1 OK , Θ ` M2 OK and Θ ` M1
∼=` M2

Θ; · ` e1 : τ{`e} and e1
∼=` e2 where `e ≤ `

p; M1 ` e1 →∗ v1 and p; M2 ` e2 →∗ v2

then v1
∼=` v2.

toc E



Command evaluation respects noninterference.

Theorem (Command Noninterference)
If

Θ ` M1 OK , Θ ` M2 OK and Θ ` M1
∼=` M2

pc; Θ; · ` c1 and c1
∼=` c2

p ` 〈M1, c1〉 →∗ 〈M ′
1,skip〉 and

p ` 〈M2, c2〉 →∗ 〈M ′
2,skip〉

then Θ ` M ′
1
∼=` M ′

2.

toc F



Adequacy theorems: compilation is secret preserving.

Lemma (Adequacy of Value Translation)

If v1
∼=` v2 and κ is fresh then V[[v1]]κ

∼=` V[[v2]]κ.

Corollary (Adequacy of Memory Translation)

If Θ ` M1
∼=` M2 and κ is fresh then M[[M1]]

Θ
κ
∼=` M[[M2]]

Θ
κ .

toc G



Realizable operations simulate SImp evaluation.

Theorem (Feasibility)
If

Θ ` M OK
pc; Θ; Γ ` c
p reads pc and p writes pc,
p ` 〈M, c〉 → 〈M ′, c′〉

then
∃κ3, κ4. ` M[[M]]Θκ1

∪ state(κ2, p, c) →∗ M[[M ′]]Θκ3
∪ state(κ4, p, c).

toc H



Only some operations are cryptographically realizable.

Definition

` σ → σ, knows (K +
κ , K−

κ )
CS-FRESH

κ fresh

CS-DERIVE
σ `d m

` σ → σ, knows m

CS-FORGET
σ′ ⊆ σ

` σ → σ′

CS-COMPUTE
σ `d "i1" σ `d "i2"

` σ → σ,"i3"
where i3 = i1 + i2

toc I
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