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A distributed access control example

Jukebox’s signature:

playFor raw: (s: Song) → (p: prin) → Unit
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International Cartel for Fonograph Players Policy

Policy Statement (Simple):
Songs have one or more owners.
An owner may authorize principals to play songs he owns.

Policy Enforcement Problems (Hard):
distributed decision making
mutual distrust
prominent use of delegation
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AURA: Enforce policy with proof carrying access control.

Programs build proofs attesting to their access rights.

Proof components
standard rules of inference
evidence capturing principal intent (e.g. signatures)

AURA runtime:
checks proof structure (well-typedness)
logs appropriate proofs for later audit

Proof Carrying Code [Necula+ 98], Grey Project [Bauer+ 05],
Protocol Analysis [Fournet+ 07], Evidence-Based Audit [CSF 08]
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Encoding policy at the ICFP server

shareRule ≡ self says (
(o: prin) → (s: Song) → (r: prin) →
(Owns o s) →
(o says (MayPlay r s)) →
(MayPlay r s)))

playFor: (s: Song) → (p: prin) →
pf (self says (MayPlay p s)) → Unit

Key Property

A program can only call playFor when it has an appropriate
access control proof.

AURA features above: pf, self, says, dependency, effects. . .
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Using the ICFP policy.

sign(ICFP,shareRule):
    ICFP says shareRule
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Using the ICFP policy.

ICFP says ...

Alice says ...

shareRule

ICFP  says (MayPlay Bob, TakeFive)

...

...

 p 

⎫⎜⎜⎬⎜⎜⎭
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Using the ICFP policy.

Auditor
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Using the ICFP policy.

Signatures used to 
grant Bob access to TakeFive:

sign(ICFP,shareRule):
    ICFP says shareRule

sign(Alice, ...)

sign(ICFP, ...)
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Language Design and Features
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AURA’s type system is divided into two universes.

Type Contains computation expressions. Includes
non-termination and world effects.

Prop Contains pure expressions with a clear
interpretation as proofs.
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Aura’s says modality represents affirmation.

The proposition “principal Alice affirms proposition P.”

Alice says P: Prop

Principals may actively affirm propositions with signatures.

sign(Alice, P): Alice says P

Principals affirm “true” propositions

return Alice p: Alice says P

when p: P.

DCC [Abadi+ 06], Logic with Explicit Time [DeYoung+ 08]
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Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P: Prop) → Bob says P → P)

Example (Bob acts for Alice only regarding jazz)

Alice says ((s: Song) → isJazz s →
Bob says (MayPlay Bob s) → MayPlay Bob s)

Restricted formulation of dependent types:
expressive enough for access control
too weak for general correctness properties
AURA feels more like ML than Coq
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Effect say reifies a program’s authority as a signature.

Programs manufacture new sign objects with say.
Intuitively say uses the program’s (e.g. current user’s)
private key to generate the signature.
Special principal self stands in for the program.

say P: self says P

say P 7→ sign(self, P)

Technical Point
The pf monad protects the Prop universe from say’s world
effect.
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AURA contains inductive types and assertions.

Inductive Types define complex data structures.

data List : Type → Type {
| nil : ( t :Type) → (List t )
| cons : ( t :Type) → t → (List t ) → (List t ) }

Inductive Props define simple inference systems subject to
a (draconian) positivity constraint.

data And: Prop → Prop → Prop {
| both: (P: Prop) → (Q: Prop) → P → Q → And P Q }

data False: Prop { }

Assertions define access control predicates

assert Owns: prin → Song → Prop
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Assertion types are uninhabited, but not false.

Inductive types admit pattern matching.

Example

λ f: Alice says False. λP: Prop. . . .
match f with (P) {} . . .

: Alice says False → (P: Prop) → Alice says P

Assertions have no elimination form.
Intuition: Assertions ≈ type variables.
There is no analogous function of type

ICFP says (Owns Bob Thriller) →
(P:Prop) → ICFP says P.
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Theory and Practice
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AURA’s metatheory: the view from 30,000 feet.

AURA is defined in a Pure-Type-Systems style.

t ::= Prop | Type . . .
| (x: t ) → t | t says t . . .
| λx: t . t | sign(t , t ) . . .

Call-by-value reduction ensures⊥ isn’t confused for a proof.

Theorem (Syntactic Soundness)

Reduction preserves typing; well-typed terms don’t get stuck.

Theorem (Decidability of typechecking)

Either Σ;Γ ` t1 : t2 or Σ;Γ 6 ` t1 : t2, constructively.
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Aura’s core metatheory formalized in Coq.

Terms locally nameless, with DeBruijn indexed bound
variables and named free variables.
Formalized features: inductive data types, Prop and Type
language fragments, says and pf modalities. . . .

Development Size (in lines of commented Coq code)
Definitions 1400
Type Soundness 6000
Decidability of Typechecking 5000

Engineering Formal Metatheory [Aydemir+ 08]
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Aura is real.

Current Features:
Interpreter and typechecker for full language
Foreign function interface

Coming Soon:
Cryptographic implementation of sign
Automatic logging

Future Research:
Type inference?
Surface syntax?
Information flow?
Effects tracking?

Demo
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Conclusion

The AURA language . . .
unifies access control and computation.
supports arbitrary domain-specific authorization policies.
mixes weak dependency, effects, and authorization logic in
a compelling way.

Interpreter, Coq scripts, and papers available from
http://www.cis.upenn.edu/~stevez/sol/aura.html
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Bonus Slides

Access Control Matrices and Capabilities
Mechanizing AURAwas a positive experience.



Conventional techniques handle the ICFP policy
poorly.

Access control matrices
ICFP server stores the list of owners and delegations.
Owner must contact ICFP server directly to delegate.
All participants must trust server’s records re: delegation.

Atomic capabilities
Unforgeable, atomic tokens serve as tickets to play songs.
Who issues the tokens?



Mechanizing AURA was a positive experience.

Aura is large.
21 syntactic forms
15 judgments
63 inference rules

Mechanization helped us manage AURA’s complexity. Coq
proofs. . .

provided assurance that we hadn’t make mistakes.
enabled us to experiment without rechecking pages of
unaffected proofs.
simplified collaboration (source control, etc.).
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