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Abstract
This paper introduces AuraConf, the first programming language
with a unified means to specify access-control and confidentially
policies. In concert with a proof-carrying access control mech-
anism, AuraConf allows confidentially policies to be specified
declaratively using types and enforced via cryptography. Programs
written in AuraConf enjoy a formal security guarantee via nonin-
terference. Additionally, the language definition introduces a novel
type system where the typechecker may use resources (i.e., private
keys) and knowledge of an object’s provenance (i.e., how a cipher-
text was computed) to guide analysis.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Languages, Security, Theory

Keywords Dependent types, information flow, cryptography

1. Introduction
Language based security research has made great strides in ad-
dressing the complementary problems of enforcing access-control
restrictions and preventing unintentional disclosure of confiden-
tial data. Indeed, ongoing research into access-control logics and
proof-carrying access control [1, 9, 14, 20] have realized an ex-
pressive, flexible framework for describing and enforcing autho-
rization policies. A largely orthogonal body of research uses in-
formation flow analysis to detect unsafe, in a precise sense, uses
of confidential information within a program. Such techniques can
ensure that secrets are appropriately encrypted—manually by the
programmer [3, 15, 22, 23, 33] or automatically by the language
framework [5, 39]—before (e.g.) transmission on an insecure net-
work.

Information flow analysis (with encryption) and proof-carrying
access control represent first-rate, language-based approaches to
mitigating different security problems. Because programs may deal
both with confidential data and access-controlled resources, it is
natural to ask: Can these techniques be combined?

Yes. This paper introduces AuraConf, a programing language
that provides direct support for both proof-carrying access control
and information flow with automatic encryption. The specific goals
of this design are as follows.
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• To establish a natural connection between information-flow
analysis for policy specification and cryptography for policy en-
forcement.
• To unify these confidentiality mechanisms with proof-carrying

access-control techniques as realized in Aura.
• To provide technical mechanisms for anomaly detection, in-

cluding audit of relevant security events and static discovery
of security errors via typing.

AuraConf is built as an extension to the Aura [20, 37, 38]
programming language. Plain Aura is a platform for programming
with access control and audit. Programs construct proofs of their
access-control rights at runtime, and such proofs are consumed and
logged by procedures that perform secure operations. Dependent
types provide a precise way to connect access-control predicates
with specific data values. And, mutually distrusting principals may
use digitally signed propositions to introduce new access-control
policies.

Aura is a solid foundation for the present work because its de-
sign explicitly captures core notations of proof-carrying access con-
trol. Additionally, Aura’s expressive type system provides many
components, including weak dependent types and a monadic pro-
graming style that, as we will discuss, are useful for reasoning
about confidentiality. Aura is, for these reasons, a practical frame-
work to investigate the general question of how to unify language-
based approaches to confidentiality and authorization.

Mixing an informative type system with encryption, as done in
AuraConf, is an enabling technology for trustworthy application
development. For instance, consider a distributed streaming-movie
service. Developers of such a system must address a variety of
security-focused issues.

• Authorization Policy: Who can access a movie? When can
access-rights may be transferred between users?
• Confidentiality Policy: What data is secret? Movie ratings and

reviews, or only the bits encoding videos?
• Enforcement and Audit Mechanisms: What data should be en-

crypted? When should encryption occur? When runtime de-
cryption failures occur, what does this mean?

While Aura provides mechanisms for answering only the
authorization-policy questions, AuraConf provides a framework in
which all the issues may be addressed. Confidentiality policies are
specified as types, and the language ensure that confidential in-
formation is automatically encrypted at system boundaries. De-
cryption failures are always accompanied by a proof-object indi-
cating system components that may be faulty or malicious; note
the mechanisms used to allow precise audit of such anomalous,
confidentiality-related events are defined in terms of Aura’s exist-
ing access-control features.



The mixture of encryption with an expressive type system ex-
poses a fundamental tension. Type systems gain power—the abil-
ity to prevent errors and uphold invariants—by exploiting precise
information about a program’s terms. In contrast, the point of en-
cryption is to obscure information in certain contexts.

This tension has several technical manifestations. First, typing
is relative; each principal has its own, local notion of what is
well-typed. This is desirable because it accounts for the following
real phenomenon. To Alice all arbitrary, unknown bit strings are
plausibly encrypted messages for Bob—elements of the AuraConf
type int for Bob. In contrast Bob can tell which bit strings are
well-formed at that type, and which are garbage.

Second, typing exhibits a hysteretic, or path dependent, effect.
When Alice creates a new ciphertext for Bob, she transforms a
perfectly legible piece of abstract syntax into an opaque binary
blob. In order for type preservation to hold during this process,
Alice’s computation must annotate the ciphertext and, as a side-
effect, record information to validate the annotation in the future.

Third, resolving the above issues requires a precise treatment of
public keys, both at compile time and at runtime. Discussing key
availability at different hosts requires ideas from modal type theo-
ries [21, 27]. Ensuring that needed keys are available dynamically
requires type-and-effect analysis [26, 36]. (In principle other tech-
niques could be used, but the concepts involved are essential.)

The AuraConf language resolves the tensions indicated above
and helps programmers both handle confidential data and manage
access-control credentials. Meeting these goals requires three sub-
stantial technical contributions:

• The design of AuraConf including the confidentiality type con-
structor for and a sophisticated type system that enforces both
key-management and code-mobility constraints.
• A mechanized proof that AuraConf satisfies type safety and that

type checking is decidable.
• A mechanized proof showing AuraConf programs protect con-

fidential data; more precisely, they satisfy noninterference.

The rest of this paper is structured as follows. Section 2
describes AuraConf’s new constructs informally, and Section 3
presents a sample program exercising these features. Section 4
summarizes the formal language definition and metatheory. Sec-
tion 5 discusses AuraConf from the perceptive of conventional in-
formation flow. Section 6 reviews related work and Section 7 con-
cludes.

2. Overview of AuraConf
This section provides an informal introduction to AuraConf’s new
features.

Access control in Aura
The core Aura language [20, 38] is designed to add support for

authorization policy specification, runtime enforcement, and audit
to a functional programming language. Aura security policies are
expressed as propositions in an authorization logic. Aura’s type
system cleanly integrates standard data types (like integers) with
proofs of authorization logic propositions, and programs manipu-
late authorization proofs just as they might other values.

In Aura, the proposition A says P denotes “Principal A says
(or endorses) proposition P.” Aura authorization proofs serve as ev-
idence of access-control decisions, and programs must present ap-
propriate proofs in order to access resources. Evidence is composed
of a mix of cryptographic signatures, which capture principals’ “ut-
terances,” and standard rules of logical deduction.

Aura has ML-like evaluation semantics, characterized by call-
by-value reduction and effectful operators. Its static semantics are

substantially more novel and are based on weak dependent types
that can express a variety of useful propositions. For instance, the
proposition

Alice says ((P: Prop) → Bob says P → P)

means that principal Alice will endorse any proposition that Bob
endorses. This proposition, which may be pronounced “Bob speaks
for Alice,” means that Alice is delegating all of her authority to Bob.
In contrast, the proposition

Alice says ((s : Song) → isJazz s →
Bob says (MayPlay Bob s) → MayPlay Bob s)

describes a more limited form of delegation, where Alice delegates
some, but not all, of her authority to Bob (only her rights to play
jazz songs). The latter proposition follows the principle of least
privilege and represents a safer, more secure form of delegation
than the former. The ability to express such restricted delegation is
an advantage of Aura compared with simpler authorization logics
containing only polymorphism.

The Aura runtime system automatically logs proofs used for
access-grants, and logged evidence enables useful post-hoc anal-
ysis of the authorization decisions made during a system’s execu-
tion.

Confidential Computations and the For-Monad
AuraConf integrates the mechanisms described above with fea-

tures for specifying and automatically enforcing confidentiality
constraints.

In AuraConf secrets are protected with an indexed confidential-
ity monad. A confidential integer intended only for Alice can be
given type ( int for Alice ). As expected, values of this type are
constructed using the following monadic return operator.

return Alice 42 : int for Alice

This expression evaluates by encrypting 42 with Alice’s public key,
yielding a blob of ciphertext, written E(Alice , 42, 0x2b63), with
an additional annotation that will be discussed shortly. The number
0x2b63 represents a random value inserted by the encryption algo-
rithm to ensure that encrypting identical plaintexts does not yield
identical ciphertexts. Code running on any host should be able to
perform the return operation, as it uses only Alice’s public key and
needs no access to private keys. A program running with Alice’s
private key may decrypt and declassify the ciphertext as follows.

run (return Alice 42) : int

Additionally, when given a value of type int for Alice , Aura-
Conf programs can use a bind operator to produce a new encrypted
computation, also for Alice, based on the existing secret.

bind ( int for Alice )
(return Alice 42)
(λ{Alice} x: int . return Alice (x ∗ 2))

: int for Alice

When Alice runs the resulting encrypted computation, she will
decrypt the 42 before supplying it to the decryption of the function.
For now, it’s ok to ignore the {Alice} component of the λ; this is an
effect annotation and will be defined and discussed later.

As illustrated above, for-monad operators treat their arguments
lazily. Imagine for the moment that we could use homomorphic
encryption [16, 31] to allow for-bound computations to be applied
eagerly. (I am not aware, by the way, of any practically efficient
homomorphic encryption scheme.) An eager for-bind would permit
curious adversaries to probe encrypted objects using functions that
diverge on known inputs. Giving the for-monad lazy semantics
eliminates this timing channel.



While the dynamic semantics of encryption are straightforward,
they pose a substantial problem for typechecking. Consider a ma-
chine running on Bob’s behalf that performs the above encryption
for Alice. A sound type system should satisfy subject reduction
and be able to relate ciphertext E(Alice , 42, 0x2b63) with type
int for Alice . But the entire point of encryption is to ensure that
users other than Alice cannot meaningfully inspect the ciphertext,
and Bob cannot decompose or examine the newly created object.

AuraConf resolves this tension as follows. Ciphertexts may be
annotated with one of two forms of typing metadata. First, the term

cast E(Alice , 42, 0x2b63) to ( int for Alice )
: int for Alice

is a true cast—a form of type coercion allowed only when seman-
tic evidence indicates that the cast is “correct.” A true cast type-
checks when the ciphertext is a known value with known prove-
nance. Whenever Bob’s program creates a ciphertext, it records a
fact associating the new ciphertext with the appropriate type. As
evaluation proceeds, programs accumulate a context of facts which
are used to typecheck known ciphertexts. We assume fact contexts
are part of a host’s local state and are not shared between different
principals. True casts are also permitted when the typechecker can
statically access an appropriate decryption key. Thus the above cast
can be typechecked on Bob’s machine, where it originated, as well
as on Alice’s machine, where it will be used. Evaluating a return
yields a ciphertext annotated with a true cast.

True casts alone are insufficient for writing some protocols.
Consider two programs, running with Bob and Charlie’s authority
respectively, jointly constructing an int for Alice using the return
and bind operators. In particular, Charlie’s program may need to
bind a ciphertext previously created by Bob. Because facts are not
shared between different principals, and because Charlie cannot
access Alice’s private key, there’s no way Charlie will be able
to typecheck the ciphertext annotated with a true cast. Instead,
Charlie’s program will need to work with a justified cast,

cast c to ( int for Alice ) blaming p : int for Alice

where p is a proof that ciphertext c has the correct form. Concretely,

p : (Bob says (c isa ( int for Alice ))).

Proposition constructor isa is a built-in constant with the job of
witnessing these justified casts.

In combination, true and justified casts allow us to reason about
ciphertexts, even those which cannot be decrypted in a particular
context. Subject reduction ensures that (for suitable fact contexts)
decryption never fails for true-cast ciphertexts. Furthermore, while
justified casts may lead to decryption failures, such failures are
accompanied by signed isa proofs that can be used to assign blame.
Observe that the justified cast mechanism and the very notion of
blame rest Aura’s ability to capture principal intent via says types.

Casting allows the programmer to assign a precise type to ci-
phertext. Conversely, asbits strips a ciphertext’s annotation, result-
ing in a term with the following less informative type.

asbits (cast(E(Alice , 42, 0x2b63)) to ( int for Alice ))
: bits

Type bits classifies naked ciphertexts, and this term reduces to

E(Alice , 42, 0x2b63) : bits .

3. Examples
This section shows sample AuraConf programs. For illustration,
we use modules—a feature that is not part of the formal language
definition. Additionally, Figure 2 uses syntactic sugar for writing

(∗ Interface providing a basic networking API ∗)
Signature NetIO

assert OkToSend: prin → Type → Prop;
val attempt acquire strong credential :

(b: prin ) →
Maybe ((a: prin) →
(T: Type) →
pf (b says OkToSend a T) →
pf (Kernel says OkToSend a T))

val recv : (T: Type) → T

val send: (T: Type) → (a: prin ) → T →
pf (Kernel says (OkToSend a T)) → Unit

End Signature

Figure 1: A simple communications library.

recursive functions; AuraConf supports general recursion (via a
datatype-base encoding) but does not have this convenient syntax.

Figure 1 defines a simple networking interface. The functions
send and recv are intended to send and receive data values. In
addition to data to transmit, send consumes a proof that the system
(that is the principal Kernel) permits the operation. Concretely

send int Bob 42 p

sends the data value 42 to principal Bob when p is an appro-
priate access-control proof. Note that both confidential and non-
confidential values may be transmitted over any channel.

Assertion OkToSend and function attempt acquire strong
credential define an access control policy for the send function.
This function allows client b to request a proof object permitting
arbitrary network writes.

Suppose that a program running with Alice’s authority needs to
build a secret message that will eventually be read by Bob after
being processed, and possibly for-bound, by Charlie. We can write
this program as follows.

Module Sender Of Alice
open NetIOImp

let msg at ⊥=
let x at Bob = return 312 as (int for Bob) in
let y at ⊥= asbits x in
cast y to ( int for Bob)

blaming (say Alice (y isa ( int for Bob)))
in

send ( int for Bob) Charlie msg (get cred msg)

End Sender

The program creates an annotated ciphertext for Bob—with the
form of a true cast—strips its annotation with asbits , and creates a
justified cast suitable for sending. The true cast is stored in x, whose
at Bob annotation reflects that the true cast may only be typed
in certain contexts—those where Bob’s key or relevant facts are
available. In contrast, y and msg may be interpreted anywhere; this
is reflected by the at ⊥ annotations. Finally, the get cred function
is assumed to return a proof granting permission to send. Even
this simple program relies on the harmonious interaction of several
language features: both casts, asbits , return, isa , and let at.

The Sender module is annotated with Of Alice , indicating that it
defines code that will be typechecked and run on behalf of principal
Alice . In the terminology of Section 4, the module’s top-level terms
must be typechecked with statically available key and effect label



1 Module NetworkedStore Of Server
2

3 (∗ Use the a module which implements the NetIO interface . ∗)
4 open NetIOImp: NetIO;
5

6 (∗ The type of network requests to this server ∗)
7 data request : Type {
8 | r put : (a: prin ) → ( id : Nat) → String for a → request
9 | r get : prin → Nat → request }

10

11 (∗ The Map datatype stores for each principal a natural -
12 number-indexed set of confidential Strings . ∗)
13 data Map: Type {
14 | m intro : ((a: prin ) → Nat →
15 Maybe (String for a)) → Map }
16

17 let empty map: Map =
18 m intro (λa: prin . λid: Nat. nothing (String for a))
19

20 let lookup: Map → (a: prin) →
21 Nat → Maybe (String for a) =
22 λm: Map. λa: prin. λn: Nat.
23 match m with Maybe (String for a) {
24 | m intro → λf : ((a: prin ) → Nat →
25 Maybe (String for a )). f a n }
26

27 let insert : Map → (a: prin) → Nat →
28 (String for a) → Map =
29 λm: Map. λa: prin. λid: Nat. λmsg: String for a.
30 m intro (λa′ : prin . λ id ′ : Nat.
31 if a = a′

32 then
33 match eqnat id id ′ with
34 Maybe (String for a′ ) {
35 | true → 〈 just (String for a) msg:
36 Maybe(String for a′ )〉
37 | false → lookup m a′ id ′ }
38 else lookup m a′ id ′ )
39

40 (∗ A helper function that lets that lets us compose functions of
41 type T → S with the for monad. Bind alone only works
42 with T → (S for a) functions . ∗)
43 let for lift : (T: Type) → (S: Type) → (a: prin ) →
44 (T → S) → T for a → S for a =
45 λT: Type. λS: Type. λa: prin . λf : T → S.
46 λx: T for a.
47 bind y = x
48 in (return (f y) as (S for a)) as (S for a)
49

50 (∗ rewrite cred uses say and a proof signed by the kernel to
51 ∗ produce a new, more useful proof access-control proof . ∗)
52 let rewrite cred : ((a: prin ) → (T: Type) →
53 pf ( self says OkToSend a T) →
54 pf (Kernel says OkToSend a T)) −{self}→
55 ((a: prin ) → (T: Type) →
56 pf (Kernel says OkToSend a T)) =
57 λ{self} p1: ((a: prin ) → (T: Type) →
58 pf ( self says OkToSend a T) →
59 pf (Kernel says OkToSend a T)).
60 let p2: pf ( self says ((b: prin ) →
61 (S: Type) → OkToSend b S)) =
62 say ((b: prin ) → (S: Type) → OkToSend b S) in
63 let p3: (b: prin ) → (S: Type) →

64 pf ( self says (OkToSend b S)) =
65 λb:prin . λS:Type.
66 bind p2
67 (λp2′ : self says (
68 (b:prin ) → (S:Type) → OkToSend b S).
69 return (bind p2′

70 (λp2′′ : (b:prin ) → (S:Type) →
71 OkToSend b S.
72 return self (p2′ ′ b S))))
73 in
74 λc: prin . λU: Type. p1 c U (p3 c U)
75

76 (∗ attempt acquire credential gets a proof allowing access to the send
77 function and rewrites it into a useful form using rewrite cred . ∗)
78 let attempt acquire credential : Unit −{self}→ Maybe ((a: prin) →
79 (T: Type) → pf (Kernel says OkToSend a T)) =
80 λ{self} x: Unit.
81 match ( attempt acquire strong credential self ) with
82 Maybe ((a: prin) → (T: Type) →
83 pf (Kernel says OkToSend a T)) {
84 | just → λ{self} p: (a: prin ) → (T: Type) →
85 pf ( self says OkToSend a T) →
86 pf (Kernel says OkToSend a T).
87 just ((a: prin ) → (T: Type) →
88 pf (Kernel says OkToSend a T))
89 ( rewrite cred p)
90 | nothing → nothing ((a: prin ) → (T: Type) →
91 pf (Kernel says OkToSend a T)) }
92

93 (∗ The main server loop. This reads input requests from the network
94 and stores or retrieves confidential values as needed. ∗)
95 let server loop : ((a: prin ) → (T: Type) →
96 pf (Kernel says OkToSend a T)) →
97 Map → Unit =
98 λp: (a: prin ) → (T: Type) →
99 pf (Kernel says OkToSend a T).

100 fun rec : Map → Unit =
101 λm: Map. rec
102 match recv request with Map {
103 | r put → λa: prin . λid: Nat.
104 λmsg: String for a. insert m a id msg
105 | r get → λa: prin . λid: Nat.
106 let u: Unit =
107 match lookup m a id with Unit {
108 | just → λmsg: String for a.
109 send (String for a) a
110 ( for lift String String
111 a time stamp msg)
112 (p a (String for a))
113 | nothing → send (String for a) a
114 (String a ”not found”)
115 (p a (String for a)) }
116 in m }
117 in rec end
118

119 (∗ This code starts the server loop after acquiring necessary
120 credentials . If such credentials are not available , it fails . ∗)
121 match attempt acquire credential unit with Unit {
122 | just → λp: ((a: prin ) → (T: Type) →
123 pf (Kernel says OkToSend a T)).
124 server loop p empty map
125 | nothing → unit }
126

127 End Module

Figure 2: Code for confidential storage server.



both equal to singleton world Alice . Furthermore, the code must be
run with authority Alice .

Figure 2 illustrates a larger program that uses the NetIO inter-
face to implement a storage server. Clients use the NetworkedStore
program to store encrypted objects. Each principal has a storage
area with a set of slots indexed by natural numbers. A request of
form r put Alice 3 v instructs the server to store value v (of type
String for Alice ) in principal Alice ’s third storage cell. This value
can be retrieved with request r get Alice 3. The server allows any-
one to store or retrieve data from any storage location, even those
belonging to another principal. Confidentiality of slot contents is
maintained by the use of for-types and encryption. It is also possi-
ble to add a layer of proof-based access-control to limit access to
ciphertexts.

At the heart of this example is the server loop function. This
reads incoming requests from the network and adds values to, or
finds values in, the store. In the case of an r get request, the loop
adds a time stamp to the retrieved value (Line 111). Note that
whether or not returned values are timestamped does not affect the
type of the resulting object; in general the ability to compose com-
putations with ciphertexts allows the server’s behavior to change
without breaking existing interfaces. This composition is made pos-
sible by function for lift which is defined using bind (Lines 43–
48).

The storage server must acquire access-control proofs and
rewrite them into useful forms. Function attempt acquire
credential (Lines 78–91) attempts to get a proof, which permits
liberal use of send, from the network module’s attempt acquire
strong credential function. Success yields a proof with the form
of a delegation:

(a: prin ) → (T: Type) → pf (Server says OkToSend a T) →
pf (Kernel says OkToSend a T).

We read this proposition as delegation because it transforms an ac-
cess control statement by Server into a statement by Kernel; that is,
Server principal is “speaking for” Kernel. This is rewritten to a sim-
pler form using rewrite cred (Lines 52–52). Function rewrite cred
uses say to create a fresh (Server says ...) proof and compose it
with the delegation above. Evaluating say requires Server’s private
key, and this fact is recorded as a latent effect in rewrite cred ’s
type. The following section discusses effects annotations is more
detail.

4. Language Definition
This section describes the definition and metatheory of AuraConf.

In type-safe languages such as AuraConf, a conservative algo-
rithm identifies and rejects programs that might go wrong—that is
crash—at runtime. There are many ways that a program can crash,
such as by accessing a memory location out of scope or jumping
to an invalid instruction sequence. AuraConf’s type system, like
Aura’s or ML’s, rules out these particular errors. However, an Au-
raConf program could potentially go wrong in several other ways,
and the type system must address the following two challenges just
to ensure soundness.

Challenge 1
Ensure decryption failures—in which a ciphertext cannot be de-
crypted to a well-typed plaintext—only occur where a proof can
be used to assign blame. Failures without such proofs constitute
undefined behavior.

Challenge 2
Ensure that running programs only (attempt to) use private keys
that are actually available at runtime. Programs that require
unavailable keys for decryption or signing are stuck.

Worlds
W,V,U ::= ⊥ Bottom world (no keys)

| t Singleton worlds
| > Top world (all keys)

Terms
t ::= . . . (Standard functional programming)
| (x : t)→{W} t Implication, quantification,

and function arrow
| λ{W}x : t. t Abstraction

| a forP Type of encrypted data
| E(a, e, n) Ciphertext (n ∈ N)
| returnf e as t Private data e with type t
| bindf x = e1 in e2 as t Private computation
| runf e Extract private data
| cast e to t blaming p Cast using type-evidence
| cast e to t Empirical cast
| fail p Decryption-failed exception

| a says P Proposition “a affirms P ”
| say aP Direct affirmation
| returns a e Affirmation when given proof
| binds e1 e2 Says composition

Figure 3: AuraConf Syntax

We address the first challenge by constraining the canonical
forms of for types. Enforcing these constraints requires that types
and terms have (loosely) consistent meanings to typecheckers with
different capabilities, i.e. different access to private keys. Aura-
Conf’s type system accomplishes this using ideas based on modal
type systems for distributed computing [21, 27, 28].

We address the second challenge by statically tracking the use
of say and run, the only operators that use private keys, and ensuring
that required keys will be accessible at runtime. To do so, we blend
ideas from modal type systems with those from type-and-effect
analysis [26, 36].

Types, propositions, and core Aura We pause to briefly summa-
rize important features of core Aura’s language design. Vaughan
[37] describes this in detail.

Following the Curry-Howard correspondence [12, 19], Aura
propositions are expressed as programming language types. For
instance Aura’s → type constructor can express several different
concepts. Intuitively, (s : Song) → P → Q is analogous to the uni-
versally quantified formula ∀s ∈ Song . P ⇒ Q. Proofs of propo-
sitions are given a programming-language terms. For instance,
λx: P. x is a proof of P → P.

At the same time→ can be interpreted as an ML-style function
arrow. Thus the factorial function might have type int → int . A
kinding relation keeps track of whether→ should be interpreted as
logical implication or as function arrow. The kind Prop classifies
propositions while the kind Type classifies computations. Aura
supports general recursion for Types, and the Type-Prop distinction
is needed to prevent diverging computations from being unsoundly
confused with valid proofs. Logical consistency of Aura’s Prop
fragment is a corollary of a strong normalization result by Jia and
Zdancewic [22].

Syntax AuraConf’s syntax is summarized in Figure 3, and in-
cludes the new operators introduced in Section 2. Not shown are
standard functional-programming constructs, like pattern match-
ing, and some access-control structures, like the Aura’s says modal-
ity. While all terms are members of a single syntactic class, we



will use the metavariables p, P , e, T , and a to indicate places
where proofs, propositions, computational expressions, computa-
tional types, and principals are expected. To enable the type-and-
effect analysis described above, abstractions and arrows are labeled
with worlds that summarize latent uses of private keys.

Syntactically, the set of worlds is the set of terms augmented
with distinguished top and bottom elements. AuraConf’s static se-
mantics identify only some worlds as well formed: namely princi-
pal constants, variables of type prin, >, and ⊥. We define a partial
order on worlds,

⊥ vW W vW W v ⊥
and can visualize the lattice of well-formed worlds as follows.
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Intuitively W v U when U describes more private keys than W .
World > represents the set of all private keys. Generalizing worlds
to arbitrary principal sets would work formally, but is less appealing
from an implementation perspective.

The special term fail p represents fatal exceptions caused by
decryption failures. Argument p represents a proof to be blamed
for the exception.

Static Semantics AuraConf’s static semantics is based on Aura’s,
but with several substantial changes.

The static semantics are defined terms of several auxiliary judg-
ments:

Term e1 equals e2 in E converts E e1 e2

e is a value value e
W is a world constant simple W
T has simple inhabitants atomic ΣT
Approximate typing E |∼ e : T

The value relation holds for free variables, computations suspended
by returnf or bindf , and usual values like lambda abstractions and
constants. Judgment atomic ΣT is intended to hold when T is prin
or T is an inductive type that defines an enumeration, such as bool.
The other auxiliary relations are discussed later in this section.

AuraConf typechecks programs using the following main judg-
ments:

Well-formed/typed. . .
. . . signature Σ ` �
. . . type environment Σ;F ;W | ` E
. . . world (V ) Σ;F ;W |E;V ` �
. . . worlds (V and U ) Σ;F ;W |E;V ;U ` �
. . . term Σ;F ;W |E;V ;U ` t : s
. . . match branches Σ;F ;W |E;V ;U ; s; args ` brns : t

The typing relation (well-typed term) is complex. How do we read
this judgment?

Facts, worlds, and the typing judgment Meta-variable F is a fact
context as described in Section 2. It’s formally defined by the
grammar

Fact Contexts
F ::= · | F , E(a, e, n) : t.

Intuitively, typechecking uses the fact context to associate typing
information with newly created ciphertexts. This is important, be-
cause ciphertexts are not generally amenable to inspection. Intu-

itively, F grows during evaluations and allows the runtime type-
checker to to take advantage of information not statically available.

World W , the statically available key, describes which key
is available for use by the typechecker. We will only consider
singleton and bottom worlds here; typechecking a program with
W = > corresponds to having all private keys available at once—
a well-defined but unlikely scenario. Together the fact context and
statically available key determine a hard limit on the typechecker’s
ability to reason about ciphertext.

World V , the soft decryption limit, is a formal upper limit
describing which decryption keys or facts should be used when
typechecking a particular term. Intuitively the keys used to check
a term are W u V . The soft decryption limit is necessary to deal
with mobile code. Consider what happens when Alice creates a
string for Bob. She is building an object containing a subterm,
say s, that Bob must decrypt and typecheck as string . However,
Bob must check s without the benefit of Alice’s private key and
using a different fact context. (Because s might be a computation
containing nested binds Bob’s task is non-trivial.) To account for
this, Alice’s typing derivation uses V = Bob when checking s, thus
ensuring Bob can understand s without Alice’s private information
or state. Typechecking a top-level program takes places with V =
>, indicating no restriction on key or fact use.

The interaction between fact context, statically available key
and soft decryption limit can be better understood by examin-
ing simplified versions of typing rules for true casts and return.
(Unabridged versions of these rules may be found in figure 4; all
rules including those elided here are given in author’s thesis [37].)
WF-TM-FORRET has form

;F ;W | ; a; ` e : t a v V · · ·
;F ;W | ;V ; ` returnf e as (t for a) : t for a .

This rule is packaging expression e for consumption by principal
a. The first premise checks that e is classified by t under soft
decryption limit a—this will ensure that the derivation will work
even when a does not have access to the facts in F or a private
key indicated by W . Having checked e under this restriction it’s
ok to conclude that returnf e as (t for a) has type t for a in a less
restricted context, where soft decryption limit V is greater than a.

Observe that elements right of the vertical bar differed between
WF-TM-FORRET’s premise and conclusion, but symbols on the
bar’s left stayed the same. In general, symbols left of the bar are
parameters of the relation and are held constant throughout an
entire derivation tree. Symbols right of the bar are indices and may
change within a derivation.

The statically available key is used directly in rule WF-TM-
CASTDEC.

b vW b v V ;F ;W | ;V ; ` e : t

;F ;W | ;V ; ` cast E(b, e, n) to (t for b) : t for b

Here an annotated ciphertext encrypted for b is type checked by de-
crypting and recursively typechecking its contents. Premise b vW
checks that the statically available key is sufficient to perform the
decryption. WF-TM-CASTDEC may only be applied when current
soft decryption limit V is greater than b. This last point is impor-
tant. Together with setting the soft decryption limit to a in WF-TM-
FORRET, it ensures that impossible decryptions are not required to
later typecheck data packaged by correct programs.

Finally, WF-TM-CASTFACT has form

(E(a, e, n) : t for b) ∈ F b v V
;F ;W | ;V ; ` cast E(a, e, n) to (t for b) : t for b .

This says that an annotated piece of ciphertext can have type t for b
when a fact indicates the type. As above, soft decryption limit V
must be greater than b. Critically, it’s not necessary that b v W—



Σ;F ;W |E;V ;U ` e : t

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` Type : Kind

WF-TM-TYPE

Σ;F ;W |E;⊥;⊥ ` u1 : k1 Σ;F ;W |E;V ;U ` � Σ;F ;W |E;V ;U0 ` �
Σ;F ;W |E, x : u1 at⊥;⊥;⊥ ` u2 : k2 k2 ∈ {Type,Prop,Kind} k1 ∈ {Type,Prop} ∨ u1 ∈ {Type,Prop}

Σ;F ;W |E;V ;U ` (x :u1)→{U0} u2 : k2
WF-TM-ARR

Σ;F ;W |E;V ;U ` � (x : t atV0) ∈ E V0 v V
Σ;F ;W |E;V ;U ` x : t

WF-TM-VAR

Σ;F ;W |E;⊥;⊥ ` u1 : k1 Σ;F ;W |E;V ;U0 ` � Σ;F ;W |E, x : u1 at⊥;V ;U0 ` f : u2

Σ;F ;W |E;V ;U ` (x :u1)→{U0} u2 : k k ∈ {Type,Prop} k1 ∈ {Type,Prop} ∨ u1 ∈ {Type,Prop}
Σ;F ;W |E;V ;U ` λ{U0}x :u1. f : (x :u1)→{U0} u2

WF-TM-ABS

Σ;F ;W |E;V ;U ` e1 : (x : t2)→{U0} u
Σ;F ;W |E;⊥;U2 ` e2 : t2 Σ;F ;W |E;V ;U ` t2 : k2 Σ;F ;W |E;V ;U ` {e2/x}u : ku

U0 v U
(

(value e2 ∧ U2 = ⊥) ∨ (ku = Type ∧ x /∈ fv(u) ∧ U2 = U)
∨ (k2 ∈ {Prop,Kind} ∧ x /∈ fv(u) ∧ U2 = U)

)
Σ;F ;W |E;V ;U ` e1 e2 : {x/e2}u

WF-TM-APP

Σ;F ;W |E;V1;U ` e1 : t1 Σ;F ;W |E;V ;V1 ` �
Σ;F ;W |E;⊥;⊥ ` t1 : k Σ;F ;W |E, x : t1 atV1;V ;U ` e2 : t k ∈ {Type,Prop} V1 v V

Σ;F ;W |E;V ;U ` let x atV1 = e1 in e2 : t
WF-TM-LETAT

Σ;F ;W |E; b;U ` e1 : t1 for b Σ;F ;W |E; b ` � Σ;F ;W |E;⊥;⊥ ` t1 : Type
Σ;F ;W |E;⊥;⊥ ` t for b : Type Σ;F ;W |E;V ` � Σ;F ;W |E, x : t1 at b; b; b ` e2 : t for b b v V

Σ;F ;W |E;V ;U ` bindf x = e1 in e2 as (t for b) : t for b
WF-TM-FORBIND

value a Σ;F ;W |·;⊥;⊥ ` a : prin Σ;F ;W |·;⊥;⊥ ` P : Prop Σ;F ;W |E;V ;U ` P : Prop

Σ;F ;W |E;V ;U ` sign(a, P ) : a saysP
WF-TM-SIGN

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` prin : Type

WF-TM-PRIN

Figure 4: Selected typing rules for AuraConf

this rule enables typing checking of ciphertexts without decryption
and without principal b’s private key.

AuraConf typing contexts track a soft decryption limit for each
bound variable. This is necessary to ensure that a substitution
property—replacing variables with appropriate values maintains a
term’s type—holds. Formally, AuraConf environments are defined
by the following grammar.

Environments
E ::= · | E, x : t atW | E, x∼(t1 = t2):u atW

Equalities in the environment enable type refinement as in core
Aura [20].

The typing relation’s final new metavariable, U , is the judg-
ment’s effect label. This summarizes the keys that are necessary
to successfully execute a piece of code. Effect label U = ⊥ indi-
cates that an expression is pure—that it can execute with no private
keys. For instance, say signs a proposition. It’s typed as follows:

Σ;F ;W |E;⊥;⊥ ` P : Prop
Σ;F ;W |E;⊥;⊥ ` a : prin a v U · · ·

Σ;F ;W |E;V ;U ` say aP : pf a saysP

Premise a v U records that say uses a’s key. Additionally Aura-
Conf typing maintains the invariant that type-level terms, such as
a saysP , are pure. Checking the rule’s premises with bottom effect
label helps to enforce this condition. For a comparison, consider
the rule

Σ;F ;W |E;⊥;⊥ ` P : Prop
Σ;F ;W |E;⊥;⊥ ` a : prin · · ·

Σ;F ;W |E;V ;U ` sign(a, P ) : pf a saysP ,

which types previously created signatures. Because no new signa-
tures are built by sign, typing does not require a v U , or otherwise
constrain effect label U .

It’s important to understand the distinction between a judg-
ment’s soft decryption limit and effect label. The soft decryption
limit controls access to a private key used statically for type check-
ing. In contrast, the effect label describes keys used dynamically for
decryption and signing. It’s appealing to attempt to conflate these,
but my attempts to do so were imprecise, inelegant, or plain in-
correct. The difficulties arise from several considerations. Consider
the application f(λx.e) where f does not apply λx.e. (Function f



Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` bits : Type

WF-TM-BITS

Σ;F ;W |E;⊥;⊥ ` P : Prop Σ;F ;W |E;V ;U ` � Σ;F ;W |E;⊥;⊥ ` a : prin a v U value a
Σ;F ;W |E;V ;U ` say aP : pf (a saysP )

WF-TM-SAY

Σ;F ;W |E;V ;⊥ ` t : Type Σ;F ;W |E;V ;⊥ ` a : prin Σ;F ;W |E;V ;U ` � value t value a
Σ;F ;W |E;V ;U ` t for a : Type

WF-TM-FOR

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` E(t1, t2, n) : bits

WF-TM-ENC
Σ;F ;W |E;V ;U ` � E |∼ e : t for a

Σ;F ;W |E;V ;U ` asbits e : bits
WF-TM-ASBITS

Σ;F ;W |E; a; a ` e : t Σ;F ;W |E;V ;U ` � Σ;F ;W |E;⊥;⊥ ` t for a : Type a v V
Σ;F ;W |E;V ;U ` returnf e as (t for a) : t for a

WF-TM-FORRET

Σ;F ;W |E;V ;U ` t for b : Type Σ;F ;W |E;V ;U ` e : bits value e
Σ;F ;W |E;V ;U ` e isa t for b : Prop

WF-TM-ISA

Σ;F ;W |E;V ;U ` e : t for a a v V a v U
Σ;F ;W |E;V ;U ` runf e : t

WF-TM-FORRUN

Σ;F ;W |E;V ;U ` e : t1 Σ;F ;W |E;V ;U ` t2 : Type converts E t1 t2
Σ;F ;W |E;V ;U ` 〈e : t2〉 : t2

WF-TM-CASTCONV

(E(a, e, n) : t for b) ∈ F Σ;F ;W |E;⊥;⊥ ` t for b : Type Σ;F ;W |E;V ;U ` � b v V
Σ;F ;W |E;V ;U ` cast E(a, e, n) to (t for b) : t for b

WF-TM-CASTFACT

Σ;F ;W |·; b; b ` e : t
Σ;F ;W |·;⊥;⊥ ` t for b : Type Σ;F ;W |E;V ;U ` � Σ;F ;W |·; b ` � b v V b vW

Σ;F ;W |E;V ;U ` cast E(b, e, n) to (t for b) : t for b
WF-TM-CASTDEC

Σ;F ;W |E;V ;U ` p : pf (a says (e isa t for b))
Σ;F ;W |E;V ;U ` e : bits Σ;F ;W |E;⊥;⊥ ` t for b : Type value e

Σ;F ;W |E;V ;U ` cast e to (t for b) blaming p : t for b
WF-TM-CASTJUST

Fig. 4: Selected typing rules for AuraConf (cont.)

may, however, do other interesting things with λx.e, such as store
it in a data structure.) We want the type system to require a suf-
ficient soft decryption limit to analyze e’s embedded ciphertexts.
In contrast, e’s latent effects are not forced and we would like the
application to check with ⊥ effect label. It’s unclear how a sin-
gle annotation can accommodate both views; using a separate soft
decryption limit and effect label resolves this. More generally, the
type system treats soft decryption limits like Jia and Walker’s [21]
at modality, while the effect labels are inspired by standard type-
and-effect systems. Technically, these analyses are quite different
and it’s unsurprising that to reap the benefits of both requires incor-
porating mechanisms inspired by each.

Signatures, worlds, environments, branches, and conversion.
The judgments for type signatures and branches follow core Aura
and are not reproduced here. Every branch of a pattern match must
share the same effect label. Types declared in signatures must be
pure and check with W = V = ⊥ and F = ·.

Definitions of environment, world, and worlds well-formedness
are more novel and are detailed in Figure 5.

The well-formed environment relation checks that all world
annotations are themselves well-formed. Additionally, type-level

variables (i.e., those classified by Type or Prop) may only be an-
notated with world ⊥. The well-formed environment relation also
ensures that the statically available key is a simple world—either a
principal constant or ⊥. Intuitively this ensures statically available
keys may be interpreted as key constants.

The well-formed world relation always accepts > and ⊥. If the
world wraps a term, it must be value of type prin. The well-formed
worlds relation checks that two worlds, typically a soft decryption
limit and effect label, are well-formed.

Finally, converts E e1 e2 holds when e1 and e2 are equal ac-
cording to constraints in environment E. This relation is of course
reflexive, symmetric, and transitive; the key rule is

x∼(s = t):k ∈ E
converts E s t ,

which uses equality assumptions in the environment. Such equali-
ties are introduced by a conditional operator,

Σ;F ;W |E, x∼(v1 = v2):k;V ;U ` e1 : t
Σ;F ;W |E;V ;U ` e2 : t . . .

Σ;F ;W |E;V ;U ` if v1 = v2 then e1 else e2 : t .



simple W

simple ⊥
a ∈ {A,B,C . . .}

simple a

Σ;F ;W | ` E

simple W

Σ;F ;W | ` ·

Σ;F ;W | ` E Σ;F ;W |E;V ` � Σ;F ;W |E;⊥;⊥ ` t : k
x fresh (k ∈ {Type,Prop}) ∨ (t ∈ {Type,Prop} ∧ V = ⊥)

Σ;F ;W | ` E, x : t atV

Σ;F ;W | ` E Σ;F ;W |E;⊥;U ` e1 : t
Σ;F ;W |E;⊥;U ` e2 : t atomic Σ t x fresh value e1
value e2 Σ;F ;W |E;⊥;⊥ ` t : Type Σ;F ;W |E;V ` �

Σ;F ;W | ` E, x∼(e1 = e2) : t atV

Σ;F ;W |E;V ` �

Σ;F ;W | ` E

Σ;F ;W |E;⊥ ` �
Σ;F ;W |E;⊥;⊥ ` a : prin value a

Σ;F ;W |E; a ` �

Σ;F ;W | ` E

Σ;F ;W |E;> ` �

Σ;F ;W |E;V ;U ` �

Σ;F ;W |E;V ` � Σ;F ;W |E;U ` �
Σ;F ;W |E;V ;U ` �

Figure 5: Major auxiliary judgments for AuraConf’s static seman-
tics. The predicate atomic Σ t, used here but not defined, indicates
that t is an inductive type whose elements can easily be tested for
equality [37].

(The Coq definition of converts includes an extra argument to al-
low for later language extensions; this is elided.) Conversion also
includes congruence rules. For instance, under assumption x =
self, term x saysP converts to self saysP . Equalities only mention
atomic values, and conversion only alters the “value” parts of a
type—convertible types always have the same shape up to embed-
ded data values. Many standard presentations of dependently typed
languages use implicit conversions, which may occur anywhere in
a type derivation, but Aura requires an explicit source-code cast.
This is appealing because it yields an algorithmic type system.

New and modified language constructs Moving from Aura to
AuraConf requires broad changes to the static semantics. Here
we will examine the most interesting aspects of the new static
semantics, using simplified typing rules.

Variables and binding with soft decryption limits Application, ab-
straction, and variable expressions are changed when moving from
Aura to AuraConf. This is necessary to work with soft decryption
limits and effect labels.

The variable rule is

Σ;F ;W |E;V ;U ` � (x : t atV0) ∈ E V0 v V
Σ;F ;W |E;V ;U ` x : t .

From an AuraConf perspective the important part is the premise
V0 v V . Elsewhere, we ensure that whenever some value v is
substituted for x that value is well typed with soft decryption limit
V0.

A function’s type is annotated with its body’s suspended effects.
The typing rule looks like

Σ;F ;W |E;V ;U0 ` �
Σ;F ;W |E, x : u1 at⊥;V ;U0 ` f : u2 · · ·

Σ;F ;W |E;V ;U ` λ{U0}x :u1. f : (x :u1)→{U0} u2 .

The rule could be generalized by allowing latent effect label U0

to depend on x. This was omitted in the interest of simplicity.
Dependent effects can still be written; they must reference variables
quantified at a surrounding abstraction. To avoid annotating every
abstraction with a soft decryption limit, this rule binds x at bottom.

Lambda abstractions are used at applications. The essence of
application typing is as follows.

Σ;F ;W |E;V ;U ` e1 : (x : t2)→{U0} u
Σ;F ;W |E;⊥;U2 ` e2 : t2

(value e2 ∧ U2 = ⊥) ∨ (x /∈ fv(u) ∧ U2 = U)
U0 v U · · ·

Σ;F ;W |E;V ;U ` e1 e2 : {x/e2}u

Application ensures that argument e2 is typeable with bottom soft
decryption limit; this matches with abstraction typing. Because
evaluating the abstraction may trigger latent effect U0, we require
U0 v U . When e2 is not a value—which implies e1’s type is not
dependent—e2 may also have have an effect label up to U .

So far we’ve only seen a way to introduce variables at⊥. The
let at construct allows us to reason about variables with different
soft decryption limits. This construct’s typing rule is summarized
by

Σ;F ;W |E;V1;U ` e1 : t1
Σ;F ;W |E, x : t1 atV1;V ;U ` e2 : t V1 v V · · ·

Σ;F ;W |E;V ;U ` let x atV1 = e1 in e2 : t .

Here e1 is checked with soft decryption limit V1 and is bound to x
in e2. In e2’s environment, x is typed atV1. The restriction V1 v V
is necessary to prevent let ats from raising the soft decryption
limit and allowing the unsafe use of facts or statically available
keys. While let at could be defined as a derived form, based on
an enhanced abstraction form, the independent construct simplifies
function definition and breaks the language into simple, orthogonal
pieces.

The ciphertext and the for monad The AuraConf type system al-
ways interprets unannotated ciphertexts as unintelligible blobs.

Σ;F ;W |E;V ;U ` �
Σ;F ;W |E;V ;U ` E(t1, t2, n) : bits

As discussed above, more precise typings may be given to cipher-
texts annotated with true casts or justified casts.

The main operators for working with confidential values are
return, run, and bind. The return operator packages an expression
as a confidential computation and is typed as follows.

Σ;F ;W |E; a; a ` e : t a v V · · ·
Σ;F ;W |E;V ;U ` returnf e as (t for a) : t for a .

Because e will eventually be run with a’s authority it is type
checked with soft decryption limit and effect label a. Typically
W 6v a so setting the soft decryption limit to a prevents statically
available key W from being used when checking e—important
because W will not be on hand when a’s program needs to check
e. Likewise effect label a rules out inappropriate occurrences of
say or runf . Typing for bindf works analogously; see rule WF-TM-
FORBIND.



E |∼ e : t

(x : t atV ) ∈ E
E |∼x : t

GE-TM-VAR

E |∼ E(a, e, n) : bits
GE-TM-ENC

value cast e to t for a [ blaming p ] E |∼ e : bits
∀x ∈ vars(p, t for a).∃tx, Vx.(x : tx atVx) ∈ E

E |∼ cast e to t for a [ blaming p ] : t for a
GE-TM-CAST

Figure 6: Approximate typing judgment used by WF-TM-ASBITS

The runf operator decrypts and evaluates annotated ciphertexts.
It’s typed by:

Σ;F ;W |E;V ;U ` e : t for a a v V a v U
Σ;F ;W |E;V ;U ` runf e : t

The premise a v U forces effect label U to record that the runf
uses a’s private key. Premise a v V prevents problems with nested
occurrences of runf . For example when a evaluates runf (runf e1)
to runf e2, term e2 might be contain true-casts for a. Hence V must
be greater than a to ensure preservation.

Finally, asbits transforms an annotated ciphertext with for type
into a bare ciphertext with type bits. This operator is typed as
follows.

Σ;F ;W |E;V ;U ` � E |∼ e : t for a

Σ;F ;W |E;V ;U ` asbits e : bits

The first premise maintains the invariant that the typing judgment’s
subjects are well-formed. The second premise uses a liberal over-
approximation of typing to check that e is almost a t for a. The ap-
proximation, formalized in Figure 6, types variables and bare en-
cryptions as usual, but always trusts the annotation on true or justi-
fied casts. (The square-bracket notation in GE-TM-CAST defines a
rule that works for both flavors of cast.) It’s sound to use the approx-
imation here because asbits dynamically discards casts, returning
the underlying ciphertexts; asbits launders bad fors into good bits.
The typing rule is desirable because the typing of asbits e is inde-
pendent of the facts context and statically available key, a useful
property for defining mobile code.

Dynamic semantics The dynamic semantics for AuraConf makes
precise the notion of a program’s authority, realistically models the
state necessary to perform (pseudo-)randomized cryptography, and
enables reasoning about dynamically created ciphertexts.

The evaluation judgment is written

Σ;F0;W ` {|e, n|} 7→ {|e′, n′|} learning F .

This says that an expression e running with W ’s authority—with
the private keys described by world W—steps to e′. Expression e
may, as described below, dynamically invoke the type checker, so
the evaluation relation contains a signature Σ and fact context F0

for this purpose. Natural number n represents the initial seed of
a randomization vector for encryption; the step updates it to n′.1

Finally F is a fact context, with zero or one elements, containing
facts about freshly created ciphertexts.

1 Note that literally using a stream of sequential numbers as inputs to the
encryption algorithm may not be secure for some protocols. Instead we
should view such uses of n as actually looking up the nth number in a
sequence of (pseudo-)random numbers.

In general AuraConf’s evaluation relation subsumes Aura’s. For
intuition, when e 7→ e′ in Aura,

Σ;F0; self ` {|e, n|} 7→ {|e′, n|} learning ·

holds in AuraConf. Figure 7 lists the evaluation rules for new
operators.

Rules STEP-FORRET and STEP-FORBIND introduce new ci-
phertexts. In each case the current randomization seed, n is inserted
into the ciphertext and the seed is incremented. Additionally a fact
describing the ciphertext is learned. While STEP-FORRET is sim-
ple, STEP-FORBIND looks more complicated. The latter builds an
expression using let at that can be run by the destination machine
and that performs necessary decryptions.

Rule STEP-FORRUN-OK, STEP-FORRUN-ILLTYPED, and
STEP-FORRUN-JUNK attempt to decrypt and typecheck an anno-
tated ciphertext, signaling an error as needed.

Figure 7 elides several congruence rules. They are all similar
to STEP-APP-CONGL, which copies its premise’s new facts and
randomization seed.

Basic metatheory and soundness AuraConf satisfies two impor-
tant properties: syntactic soundness and noninterference. Syntac-
tic soundness guarantees that all well-typed programs have a well-
defined evaluation semantics. Noninterference [4, 40], states that
a program’s outputs are not affected (up to a natural equivalence
induced by cryptography) by inputs intended to be secret. Aura-
Conf’s type system has several non-standard aspects; consequently,
the technical statements and proofs of these properties are novel.

All properties of AuraConf are formalized as constructive
proofs in the Coq proof assistant.2 Such formalization is particu-
larly important for large languages and security-focused languages;
AuraConf is both.

Stating preservation and progress requires defining when a term
has reached an exceptional state. This is intended to occur only
after a decryption failure, and identifies a proof to be used when
diagnosing the failure. We write e blames p when (fail p) is a
subterm of e, not located under a returnf or a bindf . In Coq this
is defined as an inductive predicate over the syntax of terms.

Preservation states that if a well-typed term steps the result has
the same type, or else a decryption error has been detected and a
proof identified for blame assignment.

LEMMA 1 (Preservation). Assume Σ;F0;W |E;V ;U ` e : t and
Σ ` �. Then Σ;F0;W ` {|e, n|} 7→ {|e′, n′|} learning F implies
either Σ;F0 ++F ;W |E;V ;U ` e′ : t or there exists p such that
e′ blames p.

Notation F0 ++F denotes a fact context containing the ele-
ments of F and F0.

The above lemma misses an important aspect of evaluation.
Running an AuraConf program doesn’t simply reduce an input
term to a result; it also generates a sequence of new facts. There
are terms that typecheck under bad fact contexts, but get stuck at
evaluation. Thus we must ensure that newly generated facts are, in
the following sense, semantically valid.

DEFINITION 1 (validΣ F). We write validΣ F when both the fol-
lowing hold. First, Σ ` �. Second, for every E(a, e, n) : t for b in
F it is the case that a = b and Σ; ·; b|·; b; b ` e : t.

Intuitively this predicate holds when decrypting each ciphertext in a
fact context would validate the declared types. Certain bogus facts,
say "hello" : int, aren’t harmful to soundness, and are ignored.
The empty fact context is trivially valid.

2 Coq scripts are available from the author’s webpage, http://www.cs.
ucla.edu/~jeff/.

http://www.cs.ucla.edu/~jeff/
http://www.cs.ucla.edu/~jeff/


Σ;F0;W ` {|e1, n1|} 7→ {|e2, n2|} learning F

value v
Σ;F0;W ` {|let x atV = v in e, n|} 7→ {|{v/x}e, n|} learning · STEP-LETAT

Σ;F0;W ` {|returnf e as (t for a), n|} 7→ {|cast E(a, e, n) to (t for a), n+ 1|}
learning E(a, e, n) : t for a

STEP-FORRET

value v
Σ;F0;W ` {|bindf x = v in e as t for a, n|}

7→ {|cast E(a, let x at a = (runf v) in (runf e), n) to (t for a), n+ 1|}
learning E(a, let x at a = (runf v) in (runf e), n) : t for a

STEP-FORBIND

value(cast E(a, e,m) to t [ blaming p ])

Σ;F0;W ` {|asbits cast E(a, e,m) to t [ blaming p ], n|} 7→ {|E(a, e,m), n|} learning · STEP-ASBITS

value(cast E(a, e,m) to t [ blaming p ]) Σ;F0;W |·; a; a ` e : t a vW
Σ;F0;W ` {|runf (cast E(a, e,m) to t [ blaming p ]), n|} 7→ {|e, n|} learning · STEP-FORRUN-OK

value(cast E(a, e,m) to t blaming p) Σ;F0;W |·; a; a 6` e : t a vW
Σ;F0;W ` {|runf (cast E(a, e,m) to t blaming p), n|} 7→ {|fail p, n|} learning · STEP-FORRUN-ILLTYPED

value(cast E(a, e,m) to (t for b) blaming p) b vW a 6= b

Σ;F0;W ` {|runf (cast E(a, e,m) to (t for b) blaming p), n|} 7→ {|fail p, n|} learning · STEP-FORRUN-JUNK

Σ;F0;W ` {|e1, n|} 7→ {|e′1, n′|} learning F
Σ;F0;W ` {|e1 e2, n|} 7→ {|e′1 e2, n

′|} learning F
STEP-APP-CONGL

Figure 7: Selected AuraConf evaluation rules.

Importantly validΣ F is not defined as a typing judgment be-
cause its truth, in general, may only be ascertained with access to
every principal’s private key. Such a property is useless when im-
plementing a typechecker. Thus it is better to consider validity as
a semantic property existing beside but distinct from AuraConf’s
type system.

The following lemma shows facts generated during reduction
are valid.

LEMMA 2 (New Fact Validity). Assume that Σ ` � holds and
Σ;F0;W |E;V ;U ` e : t. Then validΣ F0 and Σ;F0;W `
{|e, n|} 7→ {|e′, n′|} learning F implies validΣ F .

Additionally, AuraConf has a decidable typing relation. Decid-
ability is of independent theoretic interest, but matters in particu-
lar because evaluating runf dynamically invokes the type checker.
Were typing undecidable, runf could instead conservatively ap-
proximate; otherwise the progress lemma would not hold.

LEMMA 3 (Decidability). Suppose Σ ` �; then it is decidable if
that Σ;F ;W |E;V ;U ` e : t. Furthermore, it is also decidable if
there exists any S such that Σ;F ;W |E;V ;U ` e : t.

The AuraConf statement of progress follows. Note that it de-
scribes the behavior of terms that are well-typed using a valid fact
context. Additionally, any simple world greater than U and V—
that is with the private keys specified by the soft decryption limit
and effect label—has enough authority to step a program without
getting stuck.

LEMMA 4 (Progress). Assume Conjecture 3 holds. Assume also
that Σ ` �, validΣ F0, and Σ;F0;W0|E;V ;U ` e : t. Now

W ` t1 ' t2

W ` x ' x
SIM-VAR

W ` t11 ' t12 W ` t21 ' t22

W ` (t11 t21) ' (t12 t22)
SIM-APP

a vW W ` e1 ' e2
W ` E(a, e1, n1) ' E(a, e2, n2)

SIM-DECRYPT

a 6vW b 6vW
W ` E(a, e1, n1) ' E(b, e2, n2)

SIM-OPAQUE

Figure 8: Selected rules from the definition of similar terms.

suppose W is a simple world where U v W and V v W . Then
either e is a value, or there exist e′, n′, and F where Σ;F0;W `
{|e, n|} 7→ {|e′, n′|} learning F .

Lemmas 1, 2, and 4 together imply that AuraConf is sound.

Noninterference Noninterference properties, which state that a
program’s secret inputs do not influence its public outputs, are a
common way of defining security for programming languages [4,
39, 40]. Such properties are formalized by saying programs which
differ only in their secret components are similar and showing that
similar terms reduce to similar values. The following develops a
noninterference property for AuraConf.



AuraConf similarity is defined relative to particular set of keys
used to analyze ciphertexts. Figure 8 gives the key rules from the
definition of similarity. Most often, two terms are related when they
are identical, as in SIM-VAR, or share a top-level constructor with
similar subterms, as in SIM-APP. The figure elides a tedious quan-
tity of rules implementing this scheme. Similarity is more interest-
ing for ciphertexts. Rule SIM-DECRYPT finds two ciphertexts simi-
lar when they are encrypted with the same key, can be decrypted by
W (captured by premise a v W ), and have similar payloads. This
formalizes the idea that encrypting similar terms should yield sim-
ilar results. Finally, SIM-OPAQUE states two ciphertexts are similar
when neither can be decrypted. This captures the intuition that ci-
phertexts are black boxes, immune to analysis without a key. We
implicitly assume ciphertexts are (randomly) padded such that ci-
phertext length cannot be used at a side channel. A faithful imple-
mentation will require care to properly handle AuraConf’s rich data
structures.

The following lemma gives AuraConf’s noninterference prop-
erty. It considers running two terms, e1 and e2, that step without
error under authority W . If the terms are similar at W (or any
higher world W0), the resulting terms, e′1 and e′2, are similar as
well. That is, running a program twice with two different confi-
dential inputs yields results that cannot be distinguished without a
sufficiently privileged private key.

THEOREM 1 (Noninterference). Assume that both Σ ` � and
Σ;F1;W |·;V ;U ` e1 : k1. Pick W0 and e2 where W0 ` e1 ' e2

and W vW0. If

• Σ;W ;F1 ` {|e1, n1|} 7→ {|e′1, n′
1|} learning F ′

1,
• Σ;W ;F2 ` {|e2, n2|} 7→ {|e′2, n′

2|} learning F ′
2,

• there is no p such that e′1 blames p, and
• there is no p such that e′2 blames p,

then W0 ` e′1 ' e′2.

5. Discussion

Information-flow and Aura Information-flow analyses [32] in-
spired this paper’s goal of augmenting Aura to handle confidential
data. However, while these techniques influenced and informed the
design of AuraConf, they cannot be directly applied.

In standard information-flow systems, programmers use labels
to express confidentiality and integrity constraints on data, and the
language’s typing judgment is specialized to deal with these la-
bels [40]. Well-typed terms are correct by construction; they satisfy
noninterference. (However, increasingly expressive information-
flow languages often satisfy variously weakened versions of the
property.) Most conventional information-flow languages are lim-
ited by a focus on closed systems: the programmer must, for exam-
ple, manually encrypt confidential data leaving the program with
an unsafe declassification operator.

Aura can encode this style of of information flow analy-
sis [22]. However, this encoding makes also makes ”closed world”
assumptions—attackers are assumed to respect Aura’s runtime in-
variants and confidential data is not protected by cryptography. This
work provides a means for programmers to rule out implementa-
tion errors on a single host, but, unlike AuraConf, does not directly
address distributed aspects of confidentiality. Similar information
flow encodings are possible in Fine [35], and Haskell [24].

In previous work with Zdancewic [39], I described an
information-flow language, SImp, suitable for programming in
open systems. SImp resolves the mismatch between policy spec-
ification and enforcement by connecting information flow labels
directly with public key cryptography. Policies and data may be

combined into packages that use digital signatures and encryption
to ensure only principals with appropriate keys may access data.

SImp policies are specified by annotating data values and heap
locations with semantically rich labels. Labels are lists of security
sublabels with owner, confidentiality, and integrity components.
Sublabel o : r !w means owner o certifies that any principal in
set r may read from the associated location, and any principal in
set w may write. Full labels allow (groups of) principals to read or
write when each sublabel is satisfied. This is a variant of Myers and
Liskov’s [29] decentralized label model (DLM).

Although SImp’s design influenced AuraConf, its technical
mechanisms could not be adopted wholesale. Information-flow
analysis with DLM labels, the basis for SImp, provides a very
different model of declarative information security than Aura. In
particular Aura’s says monad decorates propositions to express en-
dorsement, while SImp’s integrity sublabels described tainted data.
While intuitively related, these concepts demand different treat-
ments. It is unclear how to understand DLM owners in Aura. Ad-
ditionally, interpreting the semantics of a DLM label—that is, cal-
culating its effective reader and writer sets—requires knowledge
of the global delegation relation, or “acts-for hierarchy,” informa-
tion that cannot be reliably obtained in Aura’s distributed setting.
SImp’s design did provide direct inspiration for several aspects of
AuraConf, including declarative policy specification, a key-based
notion of identity, and automatic encryption.

On Noninterference AuraConf’s noninterference property
(Lemma 1) is weak in the following sense. It discusses what
happens when a pair of terms with different secrets successfully
take a step, but does not deal with the situation in which one steps
successfully and the other fails. The reason is subtle. Consider the
following definitions and terms:

data Singleton : bits → Type
{ | inject : (t : bits ) → Singleton t }

ok: Singleton E(a, ”hi”, 1) → Prop
e1 ≡ ok( inject (E(a, ”hi”, 1)) )
e2 ≡ ok( inject (E(a, ”hi”, 2)) )

Terms e1 and e2 represent differently randomized encryptions of
the same string. It’s intuitively appealing that these are similar for
purposes of noninterference, and indeed a ` e1 ' e2. However
term e1 is well-typed, but e2 is not. Terms like these can cause
runf to show different failure behavior when applied to similar
terms. Consequently, Lemma 1’s definition of noninterference is
an example of termination-insensitive noninterference [4].

Termination insensitivity is required because AuraConf and
its metatheory have the following three properties. First, the lan-
guage can express singleton types on ciphertexts—useful in gen-
eral and necessary for isa propositions. Second, it features a type-
safe decryption operator that works at arbitrary types—a design
goal. Third, the similarity relation is aligned with standard Dolev-
Yao [1983] cryptanalysis. While it’s possible to alter one of these
properties to induce a stronger form of noninterference, such a
change appears counterproductive.

6. Related Work
Modal logics provide a framework to describe the way in which a
proposition holds. Common modalities can specify that a sentence
is necessarily vs. possibly true or that a condition will be met even-
tually vs. from-now-on. In the vernacular of Kripke structures this
is a technique for reasoning about different worlds, a terminology
that AuraConf borrows [17]. Pfenning and Davies [30] introduced a
constructive, type-theoretic treatment of modal logic. Their account
focuses on the logical foundations of the system. Jia and Walker
[21] studied a similar theory from a distributed-programming per-



spective, interpreting modal operators as specifying the locations
at which code may run. While Pfenning discusses three judgments:
truth, validity and possibility, Jia presents an indexed judgment
form that can describe a large quantity of locations. Murphy’s [27]
dissertation describes a full-scale programming language based on
these ideas.

The systems above have an absolute static semantics. That is,
although executing code may depend on location or resource avail-
ability, checking that a type (or proposition) is well-formed can
happen anywhere. AuraConf’s ability to make typing more precise
using statically available keys appears novel.

One intended semantics for AuraConf implements objects of
form sign(a, P) as digital signatures and objects like E(a, e, n)
as ciphertext. All cryptography occurs at a lower level of abstrac-
tion than the language definition. This approach has previously
been used to implement or model declarative information flow poli-
cies [25, 39]. An alternative approach is to treat keys as types or
first class objects and to provide encryption or signing primitives
in the language [3, 15, 23, 33]. Such approaches typically provide
the programmer with additional flexibility but complicate the pro-
gramming model; in contrast, a goal of AuraConf is to free the
programmer from such explicit key management.

Askarov and Sabelfeld [5] describe both approaches to infor-
mation flow and give a translation of a high-level language with a
declassification operator into a low-level language that implements
declassification via publication of specific cryptographic keys. Sim-
ilarly to this paper, Askarov and Sabelfeld’s work uses an algebraic
model of randomized cryptography to demonstrate that noninter-
ference is preserved when secrets are encrypted. Their model can
describe declassification directly, something not done here, and it
would be interesting to extend the analysis of AuraConf to account
for intentional declassification.

Sumii and Pierce [34] studied λseal, an extension to lambda
calculus with terms of form {e}e′ , meaning e sealed-by e′, and
a corresponding elimination form. Unlike AuraConf, λseal makes
seal (i.e. key) generation explicit in program text. Additionally,
λseal includes black-box functions that analyze sealed values, but
cannot be disassembled to reveal the seal (key). It is unclear how to
implement these functions using cryptography.

Heintze and Riecke’s [18] SLam calculus is an information flow
lambda calculus in which the right to read a closure corresponds
to the right to apply it. This sidesteps the black-box function is-
sue from λseal. In SLam, some expressions are marked with the
function writer’s authority. This differs from AuraConf’s notion of
dynamic authority which describes the program’s available keys.

We use the algebraic Dolev-Yao model to study the connection
between information flow and cryptography. Laud and Vene [23]
examined this problem using a computational model of encryption.
More recently, Smith and Alpı́zar [33] extended this work to in-
clude a model of decryption. They prove noninterference for a sim-
ple language without declassification (or packing) and a two-point
security lattice.

Abadi and Rogaway [2] proved that Dolev-Yao analysis is
sound with respect to computational cryptographic analysis in a set-
ting similar to Vaughan and Zdancewic’s [39]. However, there are
several significant differences between these approaches. In partic-
ular, Abadi and Rogaway do not discuss public key cryptography,
which we use extensively. Backes and Pfitzmann [6] with Waid-
ner [7] have also investigated the connection between symbolic and
computational models of encryption. They define a Dolev-Yao style
library and show that protocols proved secure with respect to li-
brary semantics are also secure with respect to computational cryp-
tographic analysis. Likewise Barthe et al. [8] have published a Coq
formalization of several cryptographic algorithms, including ElGa-

mal digital signatures. These techniques and artifacts might provide
an excellent foundation for further rigorous analysis of AuraConf.

7. Conclusions and Future Work
AuraConf’s treatment of cryptography includes several novel ele-
ments. Because AuraConf uses statically available keys and fact
contexts to augment compile-time typechecking, it places unusual
demands on its type system. In particular, the very notion of well-
typedness is dependent on which keys are available statically, and it
is challenging to predict where a term can typecheck. Additionally,
evaluation can also use private keys, and programs will get stuck if
run in the wrong context. AuraConf answers “where can a term be
typechecked?” and “where can it be run?” by combining, in a new
way, ideas from modal type theory and type-and-effect analysis.

AuraConf trades increased complexity for increased ability to
detect and debug security problems both statically via type check-
ing and dynamically via audit. It appears possible to reduce com-
plexity by giving up certain features, such as higher-order confi-
dential data or static detection of some key-management bugs. It
would be interesting to explore and evaluate these and other points
in the design space.

Currently AuraConf provides a fail-stop semantics: decryption
failures lead to an uncatchable, fatal exception. It would be bet-
ter to handle these errors programmatically, and a variety of tech-
niques could be brought to bear. Most promising, AuraConf could
be extended with a general purpose exception mechanism like
ML’s or Java’s. Doing this properly requires merging exceptions
with effects analysis with higher-order types, a topic of active re-
search [10, 11]. A more readily implementable scheme might make
runf return a discriminated union.

AuraConf’s worlds provide a simple model of key management.
Programs may be run and typechecked using zero or one statically
available keys. The typing judgment additionally allows> to repre-
sent “all keys” in effect labels and soft decryption limits. However
worlds are treated primarily as lattice elements and it appears inter-
esting to define worlds using a richer structure, such as sets of keys
or DLM-inspired labels. This generalization would require making
(hopefully) straightforward modifications to the language metathe-
ory and, more interestingly, carefully designing an expressive and
practical security lattice.
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