
AuraConf: A Unified Approach to
Authorization and Confidentiality

Jeff Vaughan

Department of Computer Science
University of California, Los Angeles

TLDI
January 25, 2011

Some attackers don’t play fair.

playFor: (s: Song)→ (p: prin) →
pf (RecCo says (MayPlay p s))→ Mp3Of s

1/25

Some attackers don’t play fair.

playFor: (s: Song)→ (p: prin) →
pf (RecCo says (MayPlay p s))→ Mp3Of s

1/25

Some attackers don’t play fair.

playFor: (s: Song)→ (p: prin) →
pf (RecCo says (MayPlay p s))→ Mp3Of s

1/25

AURAconf protects confidential data.

Types provide a formal description of confidentiality policy.

Encryption provides an enforcement mechanism.

Blame mechanism allows audit of (some) failures.

2/25

AURAconf protects confidential data.

Types provide a formal description of confidentiality policy.

Encryption provides an enforcement mechanism.

Blame mechanism allows audit of (some) failures.

2/25

AURAconf protects confidential data.

Types provide a formal description of confidentiality policy.

Encryption provides an enforcement mechanism.

Blame mechanism allows audit of (some) failures.

2/25

First thought: borrow someone else’s idea!

Direct use of cryptography
Applied Crytpo. [Schneier ’96]

Language operations supporting cryptography
Spi Calculus [Abadi+ ’98], λseal [Sumii+ ’04]

Type-based information flow
Aura [Jia & Zdancewic ’09]

Information flow + explicit cryptography
Key-Based DLM [Chothia+ ’03], [Askarov+ ’06]

Declarative policy enforcement by automatic encryption
SImp [Vaughan & Zdancewic ’06]

None of these are good fits with AURA.

3/25

First thought: borrow someone else’s idea!

Direct use of cryptography
Applied Crytpo. [Schneier ’96]

Language operations supporting cryptography
Spi Calculus [Abadi+ ’98], λseal [Sumii+ ’04]

Type-based information flow
Aura [Jia & Zdancewic ’09]

Information flow + explicit cryptography
Key-Based DLM [Chothia+ ’03], [Askarov+ ’06]

Declarative policy enforcement by automatic encryption
SImp [Vaughan & Zdancewic ’06]

None of these are good fits with AURA. 3/25

New mechanism, for types describe encrypted data.

playForEnc: (s: Song)→ (p: prin) →
pf (RecCo says MayPlay p s)→
(Mp3Of s) for p

4/25

New mechanism, for types describe encrypted data.

10111001

playForEnc: (s: Song)→ (p: prin) →
pf (RecCo says MayPlay p s)→
(Mp3Of s) for p

4/25

New mechanism, for types describe encrypted data.

10111001

playForEnc: (s: Song)→ (p: prin) →
pf (RecCo says MayPlay p s)→
(Mp3Of s) for p

4/25

New mechanism, for types describe encrypted data.

10111001

?

playForEnc: (s: Song)→ (p: prin) →
pf (RecCo says MayPlay p s)→
(Mp3Of s) for p

4/25

Outline

1 Introduction

2 Overview of for types

3 Feature design

4 Language theory

5 Conclusion

5/25

Overview of for types

6/25

AURAconf represents confidentiality monadically: return.

return Alice 42: int for Alice

E (Alice, 42, 0x32A3)
and some metadata

N.B.
Monads are a common Haskell design pattern:

return: creates an object
run: consumes an object
bind: composes objects

7/25

AURAconf represents confidentiality monadically: return.

return Alice 42: int for Alice

E (Alice, 42, 0x32A3)
and some metadata

N.B.
Monads are a common Haskell design pattern:

return: creates an object
run: consumes an object
bind: composes objects

7/25

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
wrong decryption key
ill-formed/ill-typed payload plaintext
corrupt ciphertext

run e e′ where e′ blames p.

8/25

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
wrong decryption key
ill-formed/ill-typed payload plaintext
corrupt ciphertext

run e e′ where e′ blames p.

8/25

AURAconf represents confidentiality monadically: run.

run (return Alice 42): int

42

run can fail on “bad” ciphertext.
wrong decryption key
ill-formed/ill-typed payload plaintext
corrupt ciphertext

run e e′ where e′ blames p.

8/25

AURAconf represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

This is mobile code

9/25

AURAconf represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

This is mobile code

9/25

AURAconf represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

This is mobile code

9/25

AURAconf represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(λ{ } x: int . return Alice (2∗x))

: int for Alice

E (Alice,
(λ{ } x: int . return 2∗x) (run E (Alice, 21, 0x32A4))
0x32A3)

and some metadata

≈ E (Alice, 42, 0x32A5)
and some metadata

This is mobile code
9/25

Static and dynamic static coupled by for types

Programs may dynamically load data or code with run
Dynamic type-checking needed to catch errors
Ciphertexts may be paired with digitally signed proofs
describing their contents
In case of emergency, evaluation “blames” such proofs

Well-typed clients create values that don’t cause blame
Typing of bind makes sure mobile expressions can be
correctly decrypted by the receiver
Receiver’s dynamic resources are modeled by sender’s
typechecker

10/25

Feature design

11/25

The tension in AURAconf’s design.

Suppose expression e contains secrets. A client analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

12/25

The tension in AURAconf’s design.

Suppose expression e contains secrets. A client analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

12/25

The tension in AURAconf’s design.

Suppose expression e contains secrets. A client analyzing e is:

Good!

Type Theorist

Bad!

Cryptographer

12/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Challenge 1: Typing is relative.

13/25

Metadata casts guide typing of ciphertexts.

True cast
cast E (a, e, n) to (int for Alice) : int for Alice

Possible if typechecker can statically decrypt E (a,e,n).

Also possible if the typechecker has a prerecorded fact,
attesting to the form of E (a,e,n).

Justified cast
cast E (a, e, n) to (int for Alice) blaming p: int for Alice

Valid when p: c says (E (a,e,n) isa (int for Alice)).
Proof p can be blamed for decryption or typing failures.

14/25

Metadata casts guide typing of ciphertexts.

True cast
cast E (a, e, n) to (int for Alice) : int for Alice

Possible if typechecker can statically decrypt E (a,e,n).

Also possible if the typechecker has a prerecorded fact,
attesting to the form of E (a,e,n).

Justified cast
cast E (a, e, n) to (int for Alice) blaming p: int for Alice

Valid when p: c says (E (a,e,n) isa (int for Alice)).
Proof p can be blamed for decryption or typing failures.

14/25

Decryption failures may be audited with justified casts.

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Decryption failures may be audited with justified casts.

Evidence: mentions Mal

Action: blame Mal

Evidence: ill-formed

Action: ignore message

Evidence: mentions Alice

Action: blame Alice 1111111

15/25

Challenge 2: Keys affect static & dynamic semantics.

Dynamic semantics
Keys are required at runtime to implement run (and say).
Type-and-effect analysis tracks these keys.

FX [Lucassen+ ’88], foundations [Talpin+ ’92]

Static semantics
True casts need keys at compile time for typechecking.
Tracked using ideas from modal type systems.

Modal Proofs as Distributed Programs [Jia+ 04],
ML5 [Murphy ’08]

Combining these analyses is interesting!

16/25

Challenge 3: Typing exhibits history-dependence.

1000101

Consider Bob preparing a confidential message for Alice

return Alice 3 cast E (−) to int for Alice

Naively: Bob lacks Alice’s private key—he can’t typecheck
this.

Solution
Evaluation semantics creates new facts to guide the
typechecker.

This ensures types are preserved at runtime and programs
don’t “go wrong.”

17/25

Language theory

18/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.

Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.

Key W is available for signing and decrypting.
“The program is running with W ’s authority.”

Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”

Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.

New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Evaluation tracks fact generation and authority.

Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F

e steps to e′.
Randomization seed n is updated to n′.
Key W is available for signing and decrypting.

“The program is running with W ’s authority.”
Signature Σ, facts context F0, and key W are available for
dynamic type-checking.
New facts F are produced during encryptions.

19/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.

Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.

Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.

Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.

Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Anatomy of the typing relation.

Σ;F ;W ;Γ;U;V ` e : t

e has type t w.r.t. Γ’s free variables and Σ’s type definitions.
Facts in F summarize knowledge about ciphertexts.
Statically available key W indicates keys available for
typechecking.
Soft decryption limit U specifies a subset of W safe to use
currently.
Effects label V summarizes the keys needed to run e.

soft decryption limit ∼ modal-logic world

effects label ∼ standard type-and-effects label

20/25

Soundness requires handling fact contexts explicitly.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

Soundness results m
echanized

in
Coq

21/25

Soundness requires handling fact contexts explicitly.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

Soundness results m
echanized

in
Coq

21/25

Soundness requires handling fact contexts explicitly.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

Soundness results m
echanized

in
Coq

21/25

Soundness requires handling fact contexts explicitly.

Definition (validΣF)

validΣF holds when
1 Σ is well formed: Σ ` �.
2 Facts are true: E (a,e,n) : t for b ∈F implies

a = b and Σ; ·;b; ·;b;b ` e : t .

Lemma (New Fact Validity)

Assume validΣF0 and Σ;F0;W ;Γ;U;V ` e : t . Then
Σ;F0;W ` {|e,n|} → {|e′,n′|} learning F implies validΣF .

Slogan

Preservation + Progress + New Fact Validity = Soundness

Soundness results m
echanized

in
Coq

21/25

Noninterference: Secrets don’t affect public outputs.

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

15

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

b ⊢ Aura Program

 (Alice, "toaster", 0x0399)

: string for Alice

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

15

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Noninterference: Secrets don’t affect public outputs.

15

 (Alice, "lambda", 0x0312)

: string for Alice

b ⊢ Aura Program

Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ ’08]

22/25

Conclusion

23/25

Summary

Type specification + cryptographic enforcement
 confidentiality

Type-and-effects analysis + modal-type theory
 precise resource tracking

AURAconf unifies mechanisms for confidentiality, audit and
access control.

24/25

Acknowledgments

Thank you to all my collaborators on Aura project!
Limin Jia
Karl Mazurak
Joseph Schorr
Luke Zarko
Steve Zdancewic
Jianzhou Zhao

Questions?

25/25

Acknowledgments

Thank you to all my collaborators on Aura project!
Limin Jia
Karl Mazurak
Joseph Schorr
Luke Zarko
Steve Zdancewic
Jianzhou Zhao

Questions?

25/25

	Introduction
	Overview of for types
	Feature design
	Language theory
	Conclusion

