
sml2java
a source to source translator

Justin Koser, Haakon Larsen,
Jeffrey Vaughan

PLI 2003

DP-COOL

Contents

• Overview of SML
• Overview of Java
• Motivation behind sml2java
• A Look at Translations

– Key Ideas
– Examples

• Conclusion

What We Like About SML

• SML has a powerful type system
– Strong types prevent errors due to casting
– Static typing prevents run-time type errors

• Pattern matching on data structures
produces clean and intuitive code

• Parametric polymorphism allows generic
functions while maintaining type safety

More Reasons We Like SML

• SML functions are powerful
– Higher order functions facilitate writing

compact and expressive code
– SML compliers unwrap tail recursive functions

• Garbage collection makes references easy

What’s so Great About Java?

• Java is widely known and used in both
industry and academia

• Java permits the programmer to write
platform independent software

• Java’s first class objects can be built at run-
time, and named or left anonymous

• Garbage collection makes references easy

Why sml2java ??

• Concepts underlying the translation could
prove educationally valuable in teaching the
functional paradigm

• Using a restricted subset of Java and a proof
of correctness of the sml2java translator, the
generated code would possess the same
well-defined properties as the original SML

Abstraction Function

Abstract Input
(e.g. {1, 2} and {3})

Program Input
(e.g. [1, 2] and [3])

Program Output
(e.g. [1, 2, 3])

Abstract Output
(e.g. {1, 2, 3})

Abstract
Algorithm

Program
Algorithm

Example: union

Translation Diagram
Abstract Algorithm (+)

λ
SML

3 4 7

(3,4) : int * int 7: int

Translation Diagram
Abstract Algorithm (+)3 4 7

Java input Java result

Translation Diagram
Abstract Algorithm (+)

λ
SML

3 4 7

(3,4): int * int 7: int

Java input Java result

Primitives

• SML primitives are translated into Java
objects

• Java primitives (e.g. int, float) cannot be
chosen as they would require translated
functions to special-case for them

• An included library provides basic
operations on the translated objects (e.g.
add)

Tuples and Records

• SML tuples and
records map unique
field names to the
values they contain

• Field names are set at
compile time

• Java’s HashMap maps
unique keys to
associated values

• A HashMap permits
keys to be added at
runtime

Thus a record of length n will require
n sequential additions to the HashMap

Datatypes

• SML datatypes create a new type with one or
more constructors

• A datatype named dt with constructors c1, c2…cn
produces a Java class named dt with static
methods c1, c2…cn, which return an object of
type dt

• Thus, SML code invoking a datatype constructor
becomes a static method call in the translated Java
code

Datatype Example
datatype qux = FOO of int
val myvar = FOO (42)

public static class qux extends
Datatype {

public static qux FOO
(Object o) {

return new qux (“FOO", o);
}

}
public static qux myvar =
qux.FOO(new Integer (42));

Function Translations

• SML’s first class
functions can be built
at run-time, named or
left anonymous, and
passed to and returned
from functions

• Java’s first class
objects can be built at
run-time, named or
left anonymous, and
passed to and returned
from functions

(SML Java) (functions objects)

Therefore,

Functions
val getFirst = fn(x:int, y:int) => x
val one = getFirst(1,2)

public static Function getFirst =
(new Function () {
Integer apply(Object arg) {

Record rec = (Record) arg;
RecordPattern pat = new RecordPattern();
pat.match(rec);
Integer x = (Integer) pat.get("1");
Integer y = (Integer) pat.get("2");
return x;

}
});
public static Integer one =
getFirst.apply(((
(new Record())

.add("1", (new Integer (1))))

.add("2", (new Integer (2)))));

Let Expressions

• SML Let expressions
allow for N>1 variable
bindings (where
binding i can use
bindings 1…i), which
then can be used in a
single expression,
which is the result of
the whole expression

• A Java function inside
a class allows for N>0
variable bindings
(where binding i can
use bindings 1…i),
which can then be
used in a return
expression, which is
the result of the entire
function

Let Expressions
val x =
let

val y = 1
val z = 2

in
y+z

end

public static Integer x =
(new Let() {
Integer in() {

Integer y = new Integer (1);
Integer z = new Integer (2);
return

(Integer.add()).apply(((
(new Record())

.add("1", y))

.add("2", z)));
}

}).in();

Let Expression Options

• A Let [Java] interface with one function, in,
with no parameters and returning Object

• A Let [Java] interface with no functions,
where every instance would contain an in
function that returns an appropriate type

• Separate the Let clause from the in clause

Module System

• SML signatures
cannot be instantiated

• They declare variables
that structures
implementing these
signatures must
implement

• Java abstract classes
cannot be instantiated

• They declare functions
that non-abstract
classes extending an
abstract class must
implement

Module System Example
signature ID = sig
val name : string

end

structure Id :> ID = struct
val name = “1337 h4x0r"
val secret = “CIA supports ..."

end

private static abstract class ID {
public static String name = null;

}

public static class Id extends ID {
public static String name =
(new String (“1337 h4x0r"));

private static String secret =
(new String(“CIA supports ..."));

}

Conclusion

• One can successfully translate many core
constructs of SML elegantly into Java

• Some interesting constructs (e.g. parameterized
polymorphism) remain

• While the ideas behind the translation have
educational value, the implementation does not

• Investigating whether a “proof of correctness” (i.e.
to ensure the safeness of translated code) is
possible

Acknowledgements

• We would like to thank Professor David
Gries and Ms. Lesley Yorke for securing
financing for our presentation

• We would like to thank Professor Dexter
Kozen for his invaluable assistance and
guidance

