sml2java
a source to source translator

Justin Koser, Haakon Larsen,

Jeffrey Vaughan
PLI 2003 .
CORNELL
DP-COOL

Contents

Overview of SML
Overview of Java
Motivation behind sml2java

A Look at Translations
— Key ldeas
— Examples

Conclusion

What We Like About SML

 SML has a powerful type system
— Strong types prevent errors due to casting
— Static typing prevents run-time type errors

 Pattern matching on data structures
produces clean and intuitive code

e Parametric polymorphism allows generic
functions while maintaining type safety

More Reasons We Like SML

e SML functions are powerful

— Higher order functions facilitate writing
compact and expressive code

— SML compliers unwrap tail recursive functions
o Garbage collection makes references easy

What’s so Great About Java?

Java Is widely known and used in both
Industry and academia

Java permits the programmer to write
platform independent software

Java’s first class objects can be built at run-
time, and named or left anonymous

Garbage collection makes references easm

Why sml2java ??

e Concepts underlying the translation could
prove educationally valuable in teaching the
functional paradigm

e Using a restricted subset of Java and a proof
of correctness of the sml2java translator, the
generated code would possess the same
well-defined properties as the original SML

Abstraction Function ™

Example: union
Abstract

Abstract Input Algorithm Abstract Output
——
(e.g. {1, 2} and {3}) (e.9.{1,2,3})

¢ ¢

Program
Program Input Algorithm Program Output

I
(e.g.[1, 2] and [3]) (e.g.[1, 2, 3])

Translation Diagram

34
¢

(3,4) : Int * Int

» Abstract Algorithm (+)

» 7. Int

)

SML

CORNELL

Translation Diagram

3 4

Java input

» Abstract Algorithm (+)

> Java result

CORNELL

Translation Diagram

34
¢

(3,4): Int * Int

» Abstract Algorithm (+)

» 7. Int

Java input

> Java result

CORNELL

Primitives

« SML primitives are translated into Java

objects

 Java primitives (e.g. int, float) cannot be

chosen as they would require
functions to special-case for t

« An included library provides
operations on the translated o
add)

translated
nem

NasIC

njects (e.g.

Tuples and Records

e SML tuples and e Java’s HashMap maps
records map unique unique keys to
field names to the assoclated values
values they contain e A HashMap permits

o Field names are set at keys to be added at
compile time runtime

Thus a record of length n will require
n sequential additions to the HashMap

Datatypes

« SML datatypes create a new type with one or
more constructors

A datatype named dt with constructors c1, c2...cn
produces a Java class named dt with static
methods c1, c2...cn, which return an object of
type dt

e Thus, SML code invoking a datatype constructor
becomes a static method call in the translated Java

. .
CORNELL

Datatype Example

datatype qux = FOO of int public static class qux extends
val myvar = FOO (42) Datatype {
public static qux FOO
(Object 0) {
return new qux (“FOO", 0);
h
¥

public static qux myvar =
qux.FOO(new Integer (42));

CORNELL

Function Translations

e SML’s first class o Java’s first class
functions can be built objects can be built at
at run-time, named or run-time, named or
left anonymous, and left anonymous, and
passed to and returned passed to and returned
from functions from functions

Therefore,

(SML—Java) =——= (functions-—=o0bjects)

Functions

val getFirst = fn(x:int, y:int) => x public static Function getFirst =
val one = getFirst(1,2) (new Function () {
Integer apply(Object arg) {
Record rec = (Record) arg;
RecordPattern pat = new RecordPattern();
pat.match(rec);
Integer x = (Integer) pat.get("1");
Integer y = (Integer) pat.get("2");
return X;
by
b
public static Integer one =
getFirst.apply(((
(new Record())
.add("1", (new Integer (1))))
.add("2", (new Integer (2)))));

CORNELL

et Expressions

« SML Letexpressions < A Java function inside
allow for N>1 variable a class allows for N>0

pindings (where variable bindings
pinding 1 can use (where binding I can
pindings 1...1), which use bindings 1...1),
then can be used In a which can then be
single expression, used in a return
which is the result of expression, which is
the whole expression the result of the entire

function

et Expressions

val X = public static Integer x =
let (new Let() {
valy =1 Integer in() {
valz=2

Integer y = new Integer (1);
Integer z = new Integer (2);
return
(Integer.add()).apply(((
(new Record())
add("1",y))
.add(*'2", 2)));

In
yt+z
end

}

}).in0);

Let Expression Options

o A Let [Java] Interface with one function, In,
with no parameters and returning Object

» A Let [Java] interface with no functions,
where every Instance would contain an in
function that returns an appropriate type

o Separate the Let clause from the in clause

Module System

e SML signatures Java abstract classes
cannot be instantiated cannot be instantiated
 They declare variables ¢ They declare functions

that structures that non-abstract
Implementing these classes extending an
signatures must abstract class must
Implement Implement

Module System Example

signature 1D = sig private static abstract class ID {
val name : string public static String name = null;
end }
structure Id :> ID = struct public static class Id extends ID {
val name = “1337 h4x0r" public static String name =
val secret = “CIA supports ..." (new String (*“1337 h4x0r"));
end private static String secret =
(new String(*CIA supports ..."));
¥

CORNELL

Conclusion

One can successfully translate many core
constructs of SML elegantly into Java

Some Interesting constructs (e.g. parameterized
polymorphism) remain

While the ideas behind the translation have
educational value, the implementation does not

Investigating whether a “proof of correctness” (i.e.
to ensure the safeness of translated code) Is
possible

Acknowledgements

* \WWe would like to thank Professor David
Gries and Ms. Lesley Yorke for securing
financing for our presentation

 \We would like to thank Professor Dexter
Kozen for his invaluable assistance and
guidance

