
Animation and Effects
CIS 399-005 Notes

March 25, 2009

1 Full Screen
To make a form display in fullscreen, set its WindowState and BorderStyle properties
as below.

Form f = ...
f .WindowState = FormWindowState.Maximized;
f .FormBorderStyle = FormBorderStyle.None;

You can do this either in code explicitly or using the form designer.

2 Drawing on Forms
You can draw on forms just like custom controls. Override the OnPaint method and
provide drawing code.

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);

var g = e.Graphics;
g. FillEllipse (Brushes.OliveDrab,

new Rectangle(10, 20, 150, 80));
}

When the screen needs to be redrawn the form will receive a Paint message. The
above override is called because the Form base-class has already installed a handler
which calls the OnPaint virtual method.

3 Quiting nicely
Because we’ve created a full-screen window, we can’t quit the running program by
using the border’s close button. By handling the KeyDown event, we can respond to
key presses and quit the application when a user pushes the “q” key.

1

private void AnimationDemo KeyDown(object sender, KeyEventArgs e)
{

if (e.KeyData == Keys.Q)
{

Application. Exit ();
}

}

It’s worth pausing to observe that we’ve used two distinct techniques to alter the
behavior of our form. We used overriding to change OnPaint but handled the KeyDown
message directly. Both techniques are fine. However, for your own sanity, you should
use one consistently in a given project.

4 Displaying Text
Although the user can quit, he has no visual indication of this. We can updated OnPaint
to rectify the situation.

...
g.DrawString(”Press Q to Quit”,

new Font(”Comic Sans MS”, 15, FontStyle.Regular),
Brushes.SeaGreen,
200, 50);

5 Drawing an Image
Let’s try to display an image.

First find a bitmapped image, such as a jpg. Add this to your project using Project→Add
Existing. . . . The image file will now appear in the Solution Explorer. You can adjust
the image’s properties; set “Copy to Output Directory” to “Copy if Newer.” The jpg
will be copied into the same directory as your executable, and it will be easy to find.

Actually displaying the image is easy. Add the following code to OnPaint.

...
Image monkeyPhoto = Image.FromFile(Application.StartupPath + ”\\monkey.jpg”);
g.DrawImage(monkeyPhoto, 80, 100);

If your image isn’t precisely the size you want, you can resize it using an overload
of DrawImage.

g.DrawImage(monkeyPhoto, 80, 200,
monkeyPhoto.Width/10, monkeyPhoto.Height/10);

6 Moving the Image
It’s now easy to make the image move, using key presses and what we’ve seen so far.
Add a private member, MonkeyY, to track the current image’s current height and make
the corresponding changes to OnPaint.

2

At this point we can adjust MonkeyY in the KeyDown handler. As with custom
controls, we must call Invalidate to force the screen to redraw.

private void AnimationDemo KeyDown(object sender, KeyEventArgs e)
{

switch (e.KeyData)
{

case Keys.Q:
Application. Exit ();
break;

case Keys.Up:
MonkeyY−−;
break;

case Keys.Down:
MonkeyY++;
break;

default :
break;

}

this . Invalidate ();
}

7 Double Buffering
While the above code works, there’s a flickering effect when the image moves, and the
result is pretty ugly. To fix, set the form’s DoubleBuffered property to true.

Double buffered forms do all their drawing off-screen, then update the onscreen
image all at once.

8 Adding transparency
Using MS Paint (or Gimp or Photoshop) color the background of your image in a single
solid color. I’ll use red, in particular all the way red (255,0,0).

We can then use another override of DrawImage to draw image. It takes an addi-
tional argument of type System.Drawing.Imaging.ImageAttribute, which controls trans-
parency and several other image properties including gamma-correction.

We modify OnPaint as follows.

ImageAttributes attr = new ImageAttributes();
attr .SetColorKey(Color.Red, Color.Red);

Image monkeyPhoto = Image.FromFile(Application.StartupPath +
”\\monkey−red.bmp”);

3

var r = new Rectangle(80, MonkeyY,
monkeyPhoto.Width / 10, monkeyPhoto.Height / 10),

g.DrawImage(monkeyPhoto, r,
// Area of source image to use−−−use it all
0, 0, monkeyPhoto.Width, monkeyPhoto.Height,
// Specify the units of measurement
GraphicsUnit.Pixel,
// Attribute controlling transparency
attr);

9 Animating the monkey
We animate the image, by making it move at regular intervals. The following code
(all part of the AnimationDemo class) creates a new Timer object that fires an event at
regular intervals. The OnTick method handles this event by altering the images position
an invalidating the screen.

private int MonkeyY = 100;
private int MonkeyX = 80;
private Timer myTimer;

public AnimationDemo()
{

InitializeComponent();

myTimer = new Timer();
myTimer.Interval = 40; // tick every 40 ms (25 fps)
myTimer.Tick += OnTick;
myTimer.Enabled = true;

}

private void OnTick(object Sender, EventArgs e)
{

MonkeyX += 3;
this . Invalidate ();

}

We can drop the Invalidate call from the KeyDown handler. Redrawing occurs
periodically, so there’s no reason for an extra redraw.

4

