Subtyping and the Liskov Substitution Principle

March 18, 2008



Syntactic and Semantic Properties

Syntactic Properties
Program properties program defined by “simple”
formal rules, and automatically checked.
@ Are all parentheses matched?
@ Does the program contain type errors?
@ Are there are undefined variables?

Semantic Properties
Program properties defined with arbitrary
reasoning.
@ Do these methods calculate the same
function?
@ What is the asymptotic complexity of this
method?
@ Does this loop satisfy an invariant?

1/16



Syntactic and Semantic Properties

Syntactic Properties
Program properties program defined by “simple”
formal rules, and automatically checked.
@ Are all parentheses matched?
@ Does the program contain type errors?
@ Are there are undefined variables?
@ Is class A derived from class B?

Semantic Properties
Program properties defined with arbitrary
reasoning.
@ Do these methods calculate the same
function?
@ What is the asymptotic complexity of this
method?
@ Does this loop satisfy an invariant?
@ Is it safe to treat an instance of A like a B?

1/16



Subtyping

Say A is a subtype of B when an instance of A can be used in
place of an instance B.

Example

class Math {
virtual int Add(int x,int y){ return x + vy; } }

/! More math is a subtype of Math
class MoreMath : Math {

virtual int Divide(int x, int y){ return (x/y); }

/! What is EvenMoreMath a subtype of?
class EvenMoreMath : MoreMath {
override int Add(int x,int y){ return 399; } }

2/16



Two views of subtyping

@ Syntactic view: A is_a B when A extends or implements
B.

e Ensures type safety: Anyone expecting a B will find A has
the appropriate members.

o Relatively easy to check.

e But does not ensure programs will work correctly.

@ Semantic view: A <: B when instances of A exhibit
behavior equivalent to instances of B in places where Bs
are expected.

@ A is_a B necessary condition for A <: B

e Rules out many errors possible with only syntactic
subtyping.

e But impossible to enforce automatically.

3/16



Back to the even more EvenMoreMath example

@ EvenMoreMath is a syntactic subtype of Math and
MoreMath.

@ EvenMoreMath is a semantic subtype of Math.

@ |s EvenMoreMath a semantic subtype of MoreMath?.

e Depends on the specification of MoreMath and
EvenMoreMath. ..

4/16



Method specification subtyping

Before working out class subtyping, need to figure out when
method specifications can be considered subtypes.

Use precise specifications to help determine subtyping relation.

Key Idea: m <: nwhen m
@ accepts more inputs than n
@ produces fewer potential outputs than n
@ otherwise obeys the specification of n.

N.B. We will be using some Java 1.5 features that have not
made it into C#.

5/16



Subtyping and method results

Whenism <: n?

//returns: An assumption about the returned S
S m(X in)

//returns: An assumption about the returned T
T n(X in)

If some program expects an n, but is given an m, things will be
ok when both:

6/16



Subtyping and method results

Whenism <: n?

//returns: An assumption about the returned S
S m(X in)

//returns: An assumption about the returned T
T n(X in)

If some program expects an n, but is given an m, things will be
ok when both:
@ S<:T,and

@ assumptions about the returned S are stronger (i.e. more
specific, or more restrictive) than assumptions about the
returned T.

6/16



Example

Assume W <: U

/!l a() returns some W

W a(X in)

/!l b() returns some W != null
W b(X in)

/!l ¢c() returns some U

Uc(X in)

/!l d() returns some U != null
U d(X in)

What subtypes are here?

7/16



Example

Assume W <: U

/!l a() returns some W

W a(X in)

/!l b() returns some W != null
W b(X in)

/!l ¢c() returns some U

Uc(X in)

/!l d() returns some U != null
U d(X in)

What subtypes are here? b <: a,a<: c,b<:d,d<:c...
but a and d are not subtypes of each other.

7/16



Subtyping and method inputs

Whenism <: n?

/lrequires: An assumption about the X input
T m(X in)

//requires: An assumption about the Y input
T n(Y in)

If some program expects an n, but is given an m, things will be
ok when:

8/16



Subtyping and method inputs

Whenism <: n?

/lrequires: An assumption about the X input
T m(X in)

//requires: An assumption about the Y input
T n(Y in)

If some program expects an n, but is given an m, things will be
ok when:

@ Y<: X and
@ assumptions about the input Y are stronger than
assumptions about the returned X.

@ Opposite of returns

e Returns—*“covariant”
e Requires—*“contravariant”

8/16



Method Specification Subtyping Pictorially

Input Domain Output Range

9/16



Checks vs. Requires

@ //requires—anything can occur given bad input
@ //checks—an exception must be thrown on bad inputs
@ checks is more specific

//checks x > 0
void m(int x)

//requires x > 0
void n(int x)

10/16



Effects must be “invariant”.

/A counter is part of some abstract state.

/] Effects: increment the counter
void m()

/] Effects: decrements the counter
void n()

Because m and n have different effects, we cannot replace one
by the other:

m<£n and n<fm

11/16



Class/Interface Semantic Subtyping

A <: B for classes/interfaces A and B

@ For all accessible members, m,
A.m<: Bm

@ Each abstract state of A is part of an abstract state of B.

e Otherwise code trying to use an A in place of a B will be
confused.

12/16



Example

// State: amount is EMPTY or FULL
class Glass{ ... }

// State: amount is EMPTY or FULL;
/1 kind is ORANGE or APPLE
class JuiceGlass{ ... }

// State: amount is EMPTY, HALF or FULL
class PreciseGlass{ ... }

// State: amount is EMPTY, HALF or FULL

/1 kind is ORANGE or APPLE
class PreciseduiceGlass{ ... }
Subtypes:

13/16



Example

// State: amount is EMPTY or FULL
class Glass{ ... }

// State: amount is EMPTY or FULL;
/1l kind is ORANGE or APPLE

class JuiceGlass{ ... }

// State: amount is EMPTY, HALF or FULL
class PreciseGlass{ ... }

// State: amount is EMPTY, HALF or FULL
/1 kind is ORANGE or APPLE
class PreciseduiceGlass{ ... }

Subtypes: JuiceGlass <: Glass, Glass <: PreciseGlass,
JuiceGlass <: PreciseduiceGlass,
PreciseduiceGlass <: PreciseGlass

(Adding methods may reduce number of subtypes) 13/16



The Liskov Substitution Principle

A is_a B only makes sense when A <: B
Alternatively: Let q(x) be a property provable about objects x of

type T. Then q(y) should be true for objects y of type S where S
is a subtype of T.

14/16



Thoughts on the Liskov Substitution Principle

@ Hard to design an maintain classes that respect the
<: relation.
@ Classes hierarchies that don’t respect <: are likely to
e contain subtle bugs
e requires lots of type tests using is or as
@ both
@ In practice we see lots of shallow class hierarchies—is this
due to the difficulty of building Liskov substitutable
classes?

15/16



