
Subtyping and the Liskov Substitution Principle

March 18, 2008



Syntactic and Semantic Properties

Syntactic Properties
Program properties program defined by “simple”
formal rules, and automatically checked.

Are all parentheses matched?
Does the program contain type errors?
Are there are undefined variables?

Is class A derived from class B?

Semantic Properties
Program properties defined with arbitrary
reasoning.

Do these methods calculate the same
function?
What is the asymptotic complexity of this
method?
Does this loop satisfy an invariant?

Is it safe to treat an instance of A like a B?
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Subtyping

Say A is a subtype of B when an instance of A can be used in
place of an instance B.

Example

c lass Math {
v i r t u a l i n t Add ( i n t x , i n t y ) { r e t u r n x + y ; } }

/ / More math i s a subtype of Math
c lass MoreMath : Math {

v i r t u a l i n t D iv ide ( i n t x , i n t y ) { r e t u r n ( x / y ) ; } }

/ / What i s EvenMoreMath a subtype of ?
c lass EvenMoreMath : MoreMath {

ove r r i de i n t Add ( i n t x , i n t y ) { r e t u r n 399; } }
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Two views of subtyping

Syntactic view: A is_a B when A extends or implements
B.

Ensures type safety: Anyone expecting a B will find A has
the appropriate members.
Relatively easy to check.
But does not ensure programs will work correctly.

Semantic view: A <: B when instances of A exhibit
behavior equivalent to instances of B in places where Bs
are expected.

A is_a B necessary condition for A <: B
Rules out many errors possible with only syntactic
subtyping.
But impossible to enforce automatically.
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Back to the even more EvenMoreMath example

EvenMoreMath is a syntactic subtype of Math and
MoreMath.
EvenMoreMath is a semantic subtype of Math.
Is EvenMoreMath a semantic subtype of MoreMath?.

Depends on the specification of MoreMath and
EvenMoreMath. . .
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Method specification subtyping

Before working out class subtyping, need to figure out when
method specifications can be considered subtypes.

Use precise specifications to help determine subtyping relation.

Key Idea: m <: n when m
accepts more inputs than n
produces fewer potential outputs than n
otherwise obeys the specification of n.

N.B. We will be using some Java 1.5 features that have not
made it into C#.

5/16



Subtyping and method results

When is m <: n?

/ / r e tu rns : An assumption about the re turned S
S m(X i n )

/ / r e tu rns : An assumption about the re turned T
T n (X i n )

If some program expects an n, but is given an m, things will be
ok when both:

S <: T, and
assumptions about the returned S are stronger (i.e. more
specific, or more restrictive) than assumptions about the
returned T.
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Example

Assume W <: U

/ / a ( ) r e tu rns some W
W a (X i n )

/ / b ( ) r e tu rns some W != n u l l
W b (X i n )

/ / c ( ) r e tu rns some U
U c (X i n )

/ / d ( ) r e tu rns some U != n u l l
U d (X i n )

What subtypes are here?

b <: a, a <: c, b <: d, d <: c. . .
but a and d are not subtypes of each other.
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Subtyping and method inputs

When is m <: n?

/ / requ i res : An assumption about the X inpu t
T m(X i n )

/ / r equ i res : An assumption about the Y inpu t
T n (Y i n )

If some program expects an n, but is given an m, things will be
ok when:

Y <: X, and
assumptions about the input Y are stronger than
assumptions about the returned X.
Opposite of returns

Returns—“covariant”
Requires—“contravariant”
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Method Specification Subtyping Pictorially

m

n

Input Domain Output Range

m <: n
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Checks vs. Requires

//requires—anything can occur given bad input
//checks—an exception must be thrown on bad inputs
checks is more specific

/ / checks x > 0
void m( i n t x )

/ / r equ i res x > 0
void n ( i n t x )

m <: n
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Effects must be “invariant”.

/ / A counter i s pa r t o f some abs t rac t s t a t e .

/ / E f f e c t s : increment the counter
vo id m( )

/ / E f f e c t s : decrements the counter
vo id n ( )

Because m and n have different effects, we cannot replace one
by the other:

m <6 : n and n <6 : m

11/16



Class/Interface Semantic Subtyping

A <: B for classes/interfaces A and B

For all accessible members, m,
A.m <: B.m

Each abstract state of A is part of an abstract state of B.
Otherwise code trying to use an A in place of a B will be
confused.
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Example

/ / State : amount i s EMPTY or FULL
c lass Glass { . . . }

/ / State : amount i s EMPTY or FULL ;
/ / k ind i s ORANGE or APPLE
c lass JuiceGlass { . . . }

/ / State : amount i s EMPTY, HALF or FULL
c lass PreciseGlass { . . . }

/ / State : amount i s EMPTY, HALF or FULL
/ / k ind i s ORANGE or APPLE
c lass Prec iseJuiceGlass { . . . }

Subtypes:

JuiceGlass <: Glass, Glass <: PreciseGlass,
JuiceGlass <: PreciseJuiceGlass,
PreciseJuiceGlass <: PreciseGlass

(Adding methods may reduce number of subtypes)
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The Liskov Substitution Principle

A is_a B only makes sense when A <: B

Alternatively: Let q(x) be a property provable about objects x of
type T. Then q(y) should be true for objects y of type S where S
is a subtype of T.
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Thoughts on the Liskov Substitution Principle

Hard to design an maintain classes that respect the
<: relation.
Classes hierarchies that don’t respect <: are likely to

contain subtle bugs
requires lots of type tests using is or as
both

In practice we see lots of shallow class hierarchies—is this
due to the difficulty of building Liskov substitutable
classes?
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