
Properties, Events and Delegates
Taking the magic out of GUI programming

January 28, 2008

1 Properties

2 Events and Delegates

3 Gui Programing

1/33

Recall last lecture:

/ / Create a form (i . e . a window)
Form theForm = new Form () ;

/ / Set the t i t l e
theForm . Text = "My Window" ;

Q. Is theForm.Text really a member?
A. No. theForm.Text is a property.

2/33

Recall last lecture:

/ / Create a form (i . e . a window)
Form theForm = new Form () ;

/ / Set the t i t l e
theForm . Text = "My Window" ;

Q. Is theForm.Text really a member?

A. No. theForm.Text is a property.

2/33

Recall last lecture:

/ / Create a form (i . e . a window)
Form theForm = new Form () ;

/ / Set the t i t l e
theForm . Text = "My Window" ;

Q. Is theForm.Text really a member?
A. No. theForm.Text is a property.

2/33

Properties provide special syntax for common
methods.

A property consists of two methods: get and set.
Clients call set with assignment notation

e.g. theForm.Text = "My Window";
Clients call get with member read notation

e.g. WriteLine(theForm.Text)
Each property access runs a method.

3/33

Property Example (I/III)

p u b l i c c lass Temperature {
p r i v a t e double myKelvin ;

p u b l i c double Ke lv in {
get {

/ / Think " p u b l i c double get () "
r e t u r n myKelvin ;

}
se t {

/ / Think " p u b l i c vo id set (double value) "
myKelvin = value ;

}
}
. . .

4/33

Property Example (II/III)

. . .
p u b l i c double Fahrenhei t {

get {
r e t u r n myKelvin ∗ (9 . 0 / 5 . 0) − 459.67;

}
se t {

myKelvin = (5 . 0 / 9 . 0) ∗ (value + 459 .67) ;
}

}
}

5/33

Property Example (III/III)

p u b l i c c lass Runner {
p u b l i c s t a t i c vo id Main (s t r i n g [] args)
{

Temperature Temp = new Temperature () ;
Temp. Fahrenhei t = 32 .0 ;
Console . Out . Wr i teL ine (Temp. Ke lv in) ;

}
}

Output : 273.15 (tha t ’ s the r i g h t answer)

6/33

C# 3.0 has special syntax for declaring simple
properties.

p u b l i c c lass Temperature {

/ / Compiler a u t o m a t i c a l l y generates p r i v a t e
/ / member , ge t te r , and s e t t e r
p u b l i c double Ke lv in { get ; se t ; }

p u b l i c double Fahrenhei t {
get {

r e t u r n Ke lv in ∗ (9 . 0 / 5 . 0) − 459.67;
}
se t {

Ke lv in = (5 . 0 / 9 . 0) ∗ (value + 459 .67) ;
}

}
}

7/33

Access limited properties.

p u b l i c c lass Misc {
i n t myNumber ;

/ / A proper ty w i th a p r i v a t e g e t t e r . Only
/ / members o f Misc can read . DropBox
p u b l i c i n t DropBox {

set {
myNumber = value ;

}
p r i v a t e get {

r e t u r n myNumber ;
}

}

p u b l i c i n t Pr i va teSe t { get ; p r i v a t e set ; }
}

8/33

Read-only and write-only properties

p u b l i c c lass GetSetOnly {
p r i v a t e i n t myX, myY;

/ / A read−only p roper ty : a common pa t t e rn
p u b l i c i n t X { get { r e t u r n myX; } }

/ / Wr i te on ly pa t te rns are considered bad s t y l e
p u b l i c i n t Y { set { myY = value ; } }

}

9/33

Indexers simulate array access to a class.

p u b l i c c lass BinarySearchTree <A> {
p r i v a t e A Lookup (i n t i) { . . . }

p r i v a t e vo id SetAt (i n t i , A data) { . . . }

/ / access might throw ArgumentOutOfRangeException
p u b l i c A t h i s [i n t index] {

get { r e t u r n t h i s . Lookup (index) ; }
se t { t h i s . SetAt (index , value) ; }

}
}

10/33

Technical notes about properties

Properties compile to method calls, not field access
So properties can’t implement fields in interfaces
Properties are optimized to be roughly as fast as field
access

11/33

When should I use a . . .

. . . public member?

Only in trivial situations. Public members are not robust
against design changes.

. . . property?

The getter has no (observable) side effects.
The getter does not throw exceptions.
Both get and set return almost immediately (no long
computations or database queries)

. . . indexer

The indexer implements an array abstraction
The indexer returns almost immediately
The indexer only raises ArugmentOutOfRangeException

. . . method?

Any other time.

12/33

When should I use a . . .

. . . public member?
Only in trivial situations. Public members are not robust
against design changes.
. . . property?

The getter has no (observable) side effects.
The getter does not throw exceptions.
Both get and set return almost immediately (no long
computations or database queries)

. . . indexer

The indexer implements an array abstraction
The indexer returns almost immediately
The indexer only raises ArugmentOutOfRangeException

. . . method?

Any other time.

12/33

When should I use a . . .

. . . public member?
Only in trivial situations. Public members are not robust
against design changes.
. . . property?

The getter has no (observable) side effects.
The getter does not throw exceptions.
Both get and set return almost immediately (no long
computations or database queries)

. . . indexer

The indexer implements an array abstraction
The indexer returns almost immediately
The indexer only raises ArugmentOutOfRangeException

. . . method?

Any other time.

12/33

When should I use a . . .

. . . public member?
Only in trivial situations. Public members are not robust
against design changes.
. . . property?

The getter has no (observable) side effects.
The getter does not throw exceptions.
Both get and set return almost immediately (no long
computations or database queries)

. . . indexer
The indexer implements an array abstraction
The indexer returns almost immediately
The indexer only raises ArugmentOutOfRangeException

. . . method?

Any other time.

12/33

When should I use a . . .

. . . public member?
Only in trivial situations. Public members are not robust
against design changes.
. . . property?

The getter has no (observable) side effects.
The getter does not throw exceptions.
Both get and set return almost immediately (no long
computations or database queries)

. . . indexer
The indexer implements an array abstraction
The indexer returns almost immediately
The indexer only raises ArugmentOutOfRangeException

. . . method? Any other time.

12/33

1 Properties

2 Events and Delegates

3 Gui Programing

13/33

Event Driven Programming

Imagine a game with many actors responding to their
environment.

Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.
Events: Wake up actors when something interesting
happens.

14/33

Event Driven Programming

Imagine a game with many actors responding to their
environment.
Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

Events: Wake up actors when something interesting
happens.

14/33

Event Driven Programming

Imagine a game with many actors responding to their
environment.
Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.
Events: Wake up actors when something interesting
happens.

14/33

We can code events using basic C#. . .

p u b l i c i n t e r f a c e IEventHandler { vo id DoI t () ; }

p u b l i c c lass SesameStreet {
vo id RegisterForCookie (IEventHandler h) { . . . }
vo id CookieEventHappens () { . . . }

}

p u b l i c c lass CookieMonster {
c lass CookieEat ingClass : IEventHandler {

vo id DoI t () { Wr i teL ine ("Nom, Nom") ; }
}

CookieMonster (SesameStreet s) {
s . RegisterForCookie (new CookieEat ingClass ()) ;

}
}

15/33

. . . but the encoding is flawed.

Problems:
A nested class is needed to define each event handler.
Handler has not easy access instance and local variables.
Resulting code is hard to read.

16/33

Delegates: methods as data.

/ / Declare a new delegate type . A binOp i s a
/ / method t h a t takes two i n t s and re tu rns an i n t .
p u b l i c delegate i n t binOp (i n t x , i n t y) ;

p u b l i c c lass Demo{

s t a t i c vo id Main (s t r i n g [] args) {
/ / m i s s to res a binOp
binOp m = Math . Min ;

/ / C a l l i n g m c a l l s the s tored method ,
/ / Math . Min . Output i s " 3 " .
Console . Wr i teL ine (m(3 , 4)) ;

}
}

17/33

Multicasting: A delegate can call several methods. (I)

p u b l i c delegate vo id P r i n t e r (s t r i n g s) ;

p u b l i c c lass PromptPr in ter {
p r i v a t e s t r i n g prompt ;
p u b l i c PromptPr in ter (s t r i n g p) { prompt=p ; }
p u b l i c vo id P r i n t (s t r i n g s) {

Console . Wr i teL ine (prompt + s) ; }
}

18/33

Multicasting: A delegate can call several methods. (II)

p u b l i c c lass Demo{
s t a t i c P r i n t e r myPr in ter ;

s t a t i c vo id Main (s t r i n g [] args) {
PromptPr in ter p1 = new PromptPr in ter (">>") ;
PromptPr in ter p2 = new PromptPr in ter (" # ") ;
myPr in ter = p1 . P r i n t ;
myPr in ter += p2 . P r i n t ;
myPr in ter (" foo ") ;

}
}

Output is ">>foo" "#foo"
Multicasting only makes sense for methods returning void.
Operators =, +, -, +=, -= attach and detach delegates.

19/33

Anonymous delegates further streamline event code.

p u b l i c delegate i n t binOp (i n t x , i n t y) ;
. . .

/ / C# 2.0 "Anonymous Delegate " Syntax :
binOp sum =

delegate (i n t x , i n t y) {
r e t u r n x + y ; } ;

/ / C# 3.0 "Lambda" Syntax
/ / (p lus type in fe rence) :
binOp sum = ((x , y) => x + y) ;

20/33

How does it work?

C# compilation translates delegate types into classes
which inherit from System.MulticastDelegate.
Delegate values are compiled to class instances.
For multicasting, + operator builds a list of delegates
objects.

21/33

Events are delegates of a standardized type.

p u b l i c delegate HandlerType (ob jec t c a l l e r ,
EventArgs e) ;

c lass foo {
p u b l i c event HandlerType myEvent

}

Field myEvent can be updated (+=, -=) as public.
But, the delegate stored in myEvent can only be invoked by
foo

compiler actually makes myEvent private
public methods foo.add_myEvent and foo.remove_myEvent
manipulate myEvent field
Operator syntax (+=, -=) is used to call above methods.

By convention, foo should pass itself as caller.

22/33

Updating the cookie example (I)

c lass CookieEventArgs : System . EventArgs { } ;

c lass SesameStreet {

delegate vo id CookieDelegate (ob jec t o ,
CookieEventArgs c) ;

event CookieDelegate CookieEvent ;
vo id DoCookie () {

CookieEvent (t h i s , new CookieEventArgs ()) ; }
}

23/33

Updating the cookie example (II)

c lass CookieMonster {

CookieMonster (SesameStreet s) {
s . CookieEvent +=

((ob jec t o , CookieEventArgs c) =>
System . Console . Wr i teL ine ("Nom, Nom")) ;

}
}

24/33

Updating the cookie example (III)

p u b l i c c lass Runner {
s t a t i c vo id Main (s t r i n g [] args)
{

SesameStreet ss = new SesameStreet () ;
CookieMonster cm = new CookieMonster (ss) ;
ss . DoCookie () ;
ss . DoCookie () ;
ss . DoCookie () ;

}
}
/∗ Output : Nom, Nom

Nom, Nom
Nom, Nom ∗ /

Q) How would this change if declared DoCookie as an
event?

25/33

1 Properties

2 Events and Delegates

3 Gui Programing

26/33

Gui programs are not special.

Execution starts at Main
Events model used to get inputs from controls
Fancy designers just a convenient way to generate code
(One caveat coming up)

27/33

A Simple Gui Program (I)

using System . Windows . Forms ;

/ / S implest GUI program .
/ / Compile as a " Windows A p p l i c a t i o n "
c lass Program
{

s t a t i c vo id Main (s t r i n g [] args)
{

MessageBox . Show(" He l lo Gui Programming ") ;
}

}

28/33

A Simple Gui Program (II)

29/33

A Simple Gui Program (III)

The caveat: I had to change the project’s output type to
“Windows Application”. This stops the program from popping
up a command prompt.

30/33

Event Driven Gui Programming

All screen elements are represent by objects.
Interesting user activities trigger events.
Handling these event lets your program update it’s state.

Windows are instances of System.Windows.Forms.Form
Buttons are instances of System.Windows.Controls.Button

31/33

Finally: A Gui That Does Something! (I)

s t a t i c vo id Main () {
RandColorPicker cp = new RandColorPicker () ;

Form theForm = new Form () ;
theForm . Text = "My Window" ;

/ / Event handlers here
theForm . MouseClick +=

((x , y) => theForm . BackColor = cp . GetRand ()) ;
theForm . MouseEnter +=

(delegate (ob jec t x , EventArgs y) {
theForm . BackColor = cp . GetRand () ; }) ;

theForm . ShowDialog () ;
}

32/33

Finally: A Gui That Does Something! (II)

33/33

Finally: A Gui That Does Something! (II)

33/33

Finally: A Gui That Does Something! (II)

33/33

	Properties
	Events and Delegates
	Gui Programing

