Properties, Events and Delegates
Taking the magic out of GUI programming

January 28, 2008

0 Properties

1/33

Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/1 Set the title
theForm.Text = "My _Window";

2/33

Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/1 Set the title
theForm.Text = "My _Window";

Q. Is theForm.Text really a member?

2/33

Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/1 Set the title
theForm.Text = "My _Window";

Q. Is theForm.Text really a member?
A. No. theForm.Text is a property.

2/33

Properties provide special syntax for common
methods.

@ A property consists of two methods: get and set.

@ Clients call set with assignment notation
e.g. theForm.Text = "My_Window";

@ Clients call get with member read notation
e.g. WriteLine(theForm.Text)

@ Each property access runs a method.

3/33

Property Example (I/111)

public class Temperature{
private double myKelvin;

public double Kelvin{

get{
// Think "public double get()"
return myKelvin;

}

set{
// Think "public void set(double value)"
myKelvin = value;

}

4/33

Property Example (11/111)

public double Fahrenheit{
get{
return myKelvin%(9.0/5.0) — 459.67;
}

set{
myKelvin = (5.0/9.0)«(value + 459.67);
}
}
}

5/33

Property Example (I11/111)

public class Runner{
public static void Main(string[] args)

{

Temperature Temp = new Temperature ();
Temp. Fahrenheit = 32.0;
Console.Out. WriteLine (Temp. Kelvin);

}
}

Output: 273.15 (that’s the right answer)

6/33

C# 3.0 has special syntax for declaring simple
properties.

public class Temperature{

// Compiler automatically generates private
// member, getter, and setter
public double Kelvin { get; set; }

public double Fahrenheit{
get{
return Kelvin*x(9.0/5.0) — 459.67;
}
set{
Kelvin = (5.0/9.0)x(value + 459.67);

}
}
}

7/33

Access limited properties.

public class Misc {
int myNumber;

/I A property with a private getter. Only
// members of Misc can read .DropBox
public int DropBox {
set{
myNumber = value;
}
private get{
return myNumber;
}
}

public int PrivateSet { get; private set;

}

8/33

Read-only and write-only properties

public class GetSetOnly{
private int myX, myY;

/!l A read—only property: a common pattern
public int X { get { return myX; } }

/!l Write only patterns are considered bad style
public int Y { set { myY = value; } }

9/33

Indexers simulate array access to a class.

public class BinarySearchTree<A> {

}

private A Lookup(int i) { ... }
private void SetAt(int i, A data) { ... }

//access might throw ArgumentOutOfRangeException
public A this[int index] {

get { return this.Lookup(index); }

set { this.SetAt(index, value); }

}

10/33

Technical notes about properties

@ Properties compile to method calls, not field access
@ So properties can’t implement fields in interfaces

@ Properties are optimized to be roughly as fast as field
access

11/33

When should l use a . ..

... public member?

... property?

@ ...indexer

@ ...method?

12/33

When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.

@ ...property?

@ ...indexer

@ ...method?

12/33

When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.
@ ...property?
e The getter has no (observable) side effects.
e The getter does not throw exceptions.

e Both get and set return almost immediately (no long
computations or database queries)

@ ...indexer

@ ...method?

12/33

When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.
@ ...property?
e The getter has no (observable) side effects.
e The getter does not throw exceptions.
e Both get and set return almost immediately (no long
computations or database queries)
@ ...indexer

e The indexer implements an array abstraction
e The indexer returns almost immediately
e The indexer only raises ArugmentOutOfRangeException

@ ...method?

12/33

When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.
@ ...property?
e The getter has no (observable) side effects.
e The getter does not throw exceptions.
e Both get and set return almost immediately (no long
computations or database queries)
@ ...indexer

e The indexer implements an array abstraction
e The indexer returns almost immediately
e The indexer only raises ArugmentOutOfRangeException

@ ...method? Any other time.

12/33

9 Events and Delegates

13/33

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

14/33

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

@ Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

14/33

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

@ Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

@ Events: Wake up actors when something interesting
happens.

14/33

We can code events using basic C#. ..
public interface IEventHandler{ void Dolt(); }

public class SesameStreet{
void RegisterForCookie (IEventHandler h){...}
void CookieEventHappens (){...}

}

public class CookieMonster{
class CookieEatingClass : IEventHandler{
void Dolt() { WriteLine ("Nom,_Nom"); }

}

CookieMonster (SesameStreet s){
s.RegisterForCookie (new CookieEatingClass ());

}
}

15/33

.but the encoding is flawed.

Problems:
@ A nested class is needed to define each event handler.
@ Handler has not easy access instance and local variables.
@ Resulting code is hard to read.

16/33

Delegates: methods as data.

/I Declare a new delegate type. A binOp is a
// method that takes two ints and returns an int.
public delegate int binOp(int x, int y);

public class Demo{
static void Main(string[] args){
/I m is stores a binOp
binOp m = Math.Min;
/!l Calling m calls the stored method,

// Math.Min. Output is "3".
Console. WriteLine (m(3,4));

17/33

Multicasting: A delegate can call several methods. (I)

public delegate void Printer(string s);

public class PromptPrinter{
private string prompt;
public PromptPrinter(string p){ prompt=p; }
public void Print(string s){
Console. WriteLine (prompt + s);}

18/33

Multicasting: A delegate can call several methods. (ll)

public class Demo{
static Printer myPrinter;

static void Main(string[] args){
PromptPrinter p1 = new PromptPrinter(">>");
PromptPrinter p2 = new PromptPrinter("#");
myPrinter = p1.Print;
myPrinter += p2. Print;
myPrinter("foo");

@ Output is ">>foo" "#foo"
@ Multicasting only makes sense for methods returning void.
@ Operators =, +, -, +=, -= attach and detach delegates.

19/33

Anonymous delegates further streamline event code.

public delegate int binOp(int x, int y);

/I C# 2.0 "Anonymous Delegate" Syntax:
binOp sum =
delegate(int x, int y) {
return x + vy; };

/I C# 3.0 "Lambda" Syntax

/! (plus type inference):
binOp sum = ((x, y) => X + Yy);

20/33

How does it work?

@ C# compilation translates delegate types into classes
which inherit from System.MulticastDelegate.

@ Delegate values are compiled to class instances.

@ For multicasting, + operator builds a list of delegates
objects.

21/33

Events are delegates of a standardized type.

public delegate HandlerType(object caller,
EventArgs e);

class foo{
public event HandlerType myEvent

}

@ Field myEvent can be updated (+=, -=) as public.
@ But, the delegate stored in myEvent can only be invoked by
foo

e compiler actually makes myEvent private

@ public methods foo.add_myEvent and foo.remove_myEvent
manipulate myEvent field

e Operator syntax (+=, -=) is used to call above methods.

@ By convention, foo should pass itself as caller.

22/33

Updating the cookie example (1)

class CookieEventArgs : System.EventArgs { };
class SesameStreet{

delegate void CookieDelegate(object o,
CookieEventArgs c);
event CookieDelegate CookieEvent;
void DoCookie() {
CookieEvent(this , new CookieEventArgs ());}

23/33

Updating the cookie example (I1)

class CookieMonster{

CookieMonster (SesameStreet s){
s.CookieEvent +=
((object o, CookieEventArgs c) =>
System. Console. WriteLine ("Nom, _Nom"));

24/33

Updating the cookie example (l11)

public class Runner{

static void Main(string[] args)

{
SesameStreet ss = new SesameStreet ();
CookieMonster cm = new CookieMonster (
ss.DoCookie () ;
ss.DoCookie ();
ss.DoCookie ();

}
}
/+ Qutput: Nom, Nom
Nom, Nom
Nom, Nom */

@ Q) How would this change if declared DoCookie as an
event?

$S);

25/33

e Gui Programing

26/33

Gui programs are not special.

@ Execution starts at Main

@ Events model used to get inputs from controls

@ Fancy designers just a convenient way to generate code
@ (One caveat coming up)

27/33

A Simple Gui Program (l)

using System.Windows.Forms;

// Simplest GUI program.
/! Compile as a "Windows Application"
class Program

{

static void Main(string[] args)

{
}

MessageBox.Show("Hello_Gui_Programming");

28/33

A Simple Gui Program (ll)

29/33

A Simple Gui Program (l11)

The caveat: | had to change the project’s output type to
“Windows Application”. This stops the program from popping
up a command prompt.

File Edit

Reference Paths

Visw Project Buld Debug Data Tools Window Help
RN N = ! I & 1 %]
b= BasicGui* - program.ce | Program.cs
g
=R
=
2 Application™®
. PR Assembly name; Defaulk namespace:
Build Project1 Project
Build Events Target Framewark:
WMET Framework 3.5
Debug
Startup object:
Resources (Mot set)
Settings Resources

Specify how application resources will be managed:

() Icon and manifest

Signing A manifest determines specific settings for an application, To embed a custam manifest, first add

it to your project and then select it from the list below,
Security Tcon:

(Default Tcon) ¥ [.]O3
Publish

Manifest:

Embed manifest with default settings -

) Resource File:

30/33

Event Driven Gui Programming

@ All screen elements are represent by objects.
@ Interesting user activities trigger events.
@ Handling these event lets your program update it’s state.

@ Windows are instances of System.Windows.Forms.Form
@ Buttons are instances of System.Windows.Controls.Button

31/33

Finally: A Gui That Does Something! (I)

static void Main() {
RandColorPicker cp = new RandColorPicker ();

Form theForm new Form();
theForm.Text = "My_Window";

// Event handlers here
theForm . MouseClick +=
((x,y) => theForm.BackColor = cp.GetRand());
theForm . MouseEnter +=
(delegate(object x, EventArgs y) {
theForm.BackColor = cp.GetRand (); });

theForm.ShowDialog () ;

32/33

Finally: A Gui That Does Something! (ll)

B My Window

33/33

Finally: A Gui That Does Something! (II)
My Window M=

33/33

Finally: A Gui That Does Something! (II)
My Window M=

33/33

	Properties
	Events and Delegates
	Gui Programing

