Introduction to the C# object model

January 14, 2008

Goals of the C# object system.

polymorphism the ability to write code which operates on many
types—realized by inheritance, interfaces, and
overloading

encapsulation the ability to make separate a class’s behavior
from its implementation details—realized with
access modifiers

extensibility the ability to extend class functionality—realized
with inheritance and virtual methods.

1/16

Terminology

@ Field: a variable declared in a class.
@ Method: a procedure associated with a class.
@ Member: a field or method.

@ Instance of <class>: an object of type <class>

2/16

Inheritance

@ All classes inherit from a base class (default is
System.Object).

@ Derived classes automatically include the members of their
base classes (e.g. ToString() from System.Object).

@ Child classes extend base classes by adding new
members, and overriding virtual methods.

@ Can treat an instance of a derived class as an instance of
its base class.

3/16

Basic inheritance example
using System;

class BaseSimple({
public void Print(){
Console.Out. WriteLine ("BaseSimple");}

}

class ChildSimple : BaseSimple { }

class Runner{
public static void Main(string[] s){
(new BaseSimple ()). Print(); // "BaseSimple"
(new ChildSimple ()). Print(); // "BaseSimple"

4/16

Static Dispatch: New overloaded methods are called
using an object’s compile-time type.

class BaseNew({
public void Print (){
Console.Out. WriteLine ("BaseNew");} }

class ChildNew : BaseNew {
new public void Print (){
Console.Out. WriteLine ("ChildNew");} }

class Runner{
public static void Main(string[] s){
ChildNew ¢ = new ChildNew ();
BaseNew b = c;

c.Print(); // "ChildNew"

b.Print(); // "BaseNew"
5/16

Dynamic Dispatch: Virtual methods called using an
object’s run-time type.

class BaseVirt{
public virtual void Print (){
Console.Out. WriteLine ("BaseVirt");} }

class ChildVirt : BaseVirt {
public override void Print (){
Console.Out. WriteLine (" ChildVirt");} }

class Runner{
public static void Main(string[] s){
ChildVirt ¢ = new ChildVirt();

BaseVirt b = c;

c.Print(); // "ChildVirt"
b.Print(); // "ChildVirt"

6/16

Overriding Rules

@ Base classes may mark methods with virtual . Such
methods are virtual and may be overridden by derived
classes.

@ Derived classes must mark methods with override to
override them.

@ Derived classes can mark methods with sealed prevent
subclasses from overriding the methods.

e By default methods are sealed.
e A derived class can seal a virtual method to stop further
overriding.

@ Compiler with raise an error if there’s a chance of
ambiguity.

7/16

Calling base class methods with base

Sometimes we need to call a base class’s methods explicitly.

class ChildVirt : BaseVirt {
public override void Print (){
Console .Out. WriteLine (" ChildVirt_says_Hi!")
Console.Out. WriteLine ("Base_ virt_says:");
// calls base method
base. Print ();

}

// calls base constructor
public ChildVirt(int x): base(x) {}
!

Without the base keyword, there would be no way to access
such methods!

8/16

Class Modifiers and Static Members

@ Static members
@ One copy of member per class (as opposed to per
instance).
e Example: Foo.NumberOfFoos

@ Class modifiers

e Marking a class abstract means it can’t be instantiated,
only derived from.

e Marking a class sealed means it can’t be derived from, only
instantiated.

e Marking a class static means a class is both sealed and
abstract. (Can only contain static members, and can be
initialized with a zero-argument static constructor.)

9/16

Static class example

using System. Collections.Generic;

public static class Logger{
private static List<string> mylList;

static Logger() { myList = new List<string >(); }
public static void Append(string s) {

myList.Add(s); }
}

10/16

Interfaces declare contracts that a class must follow.

@ Interfaces list methods which much a appear in a class.

@ Methods may use interface names for argument and result
types (bounded polymorphism).

@ Classes can implement interfaces in two ways
o Implicitly (the normal way), interface methods added
directly to class and accessed as usual.
e Explicitly, interface members are declared with special
syntax and accessed through casts. Useful in the case
where two interfaces declare methods with the same name.

11/16

Example: Implicit Interface Implementation

interface IWindow {
void Draw ();

}

public class Display: IWindow {
// Implicit Interface Implementation
public void Draw(){ Console.Out.WriteLine ("A");

}

class Runner{
static void Main(string[] args){
Display ¢ = new Display ();
d.Draw(); // "A"
}ol

12/16

Multiple interfaces can conflict.

interface IWindow ({
/1 Implementations should print to the screen
void Draw ();

}

interface ICowboy ({
/! Implementations should get out a gun
void Draw ();

}

/1 Trouble!
public class WesternGame: IWindow, ICowboy {...}

13/16

Example: Explicit Interface Implementation

class WesternGame: IWindow, [Cowboy ({
/I Explicit Interface Implementations
void IWindow.Draw () {
Console.Out. WriteLine ("Drawing_Picture"); }
void ICowboy.Draw (){
Console.Out. WriteLine ("Drawing_Six_Shooter");

}

class Runner{
static void Main(string[] args){
WesternGame w = new WesternGame () ;

/] Error: w.Draw();
((ICowboy) w).Draw(); // "Drawing Picture"
((IWindow) w).Draw(); // "Drawing Six Shooter"

I3

14/16

Casting

string x = (string) someObject

@ Up-casts:
e Convert instances of a child class to a parent class or
interface.
o Always succeeds.
@ Down-casts:
e Convert instances of a parent class to a child class.
e May fail and throw InvalidCastException
e Use as or is to check if a cast is safe.
@ Generics provide an elegant way to write (for example)
collection classes without casting.

15/16

Access modifiers protect class implementation details.

Access modifiers may be attached to class, field, and method declarations.

| Modifier | Meaning |
public No visibility restrictions.
protected’ Visible to classes derived from
the defining class
internal? Visible anywhere in the same as-
sembly.

protected internal” | Visible according to protected.
Also, member visible according
to internal.

private’ Visible only within defining class

'Only applicable to elements defined in a class (i.e. not to classes defined
only in a namespace).
2internal is the default access modifier.
16/16

