Implementing Object Oriented Languages
(A sketch)

February 18, 2008



Methods

@ C#: Methods, generics, objects, interfaces. . .
@ Machine code:

e operators: add, subtract, xor. . .

e conditionals: if

@ jump

o take CIS 371 for more details.
@ Common Intermediate Language

@ object oriented byte code

e .Net equivalent to Java byte code

o closer to C# than machine code

How do we compile an object oriented program to machine
code?

1/11



Functions and Methods

Functions

Methods

take arguments, compute, and return a result.
have access to arguments and global
variables.

always “means the same thing” (static
dispatch).

easy to implement in machine code.

take arguments, compute, and return a result.
has access to arguments, global variables,
and object members.

have context dependent meanings (dynamic
dispatch).

are be implemented in terms of functions.

2/11



From functions to methods

Translating methods to functions requires emulating two key
method behaviors

@ Access to object members:

@ Dynamic dispatch:

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

3/11



From functions to methods

Translating methods to functions requires emulating two key
method behaviors

@ Access to object members:
Represent methods as a functions that takes special
argument, this, that contains an object reference.

@ Dynamic dispatch:

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

3/11



From functions to methods

Translating methods to functions requires emulating two key
method behaviors

@ Access to object members:
Represent methods as a functions that takes special
argument, this, that contains an object reference.

@ Dynamic dispatch:
Lookup the right function to call in a table (the viable) at
runtime.

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

3/11



Example: Adding a this argument

class Counter{

int C=0;

void inc(int x) {C += x;}

void incTwice(int x) {inc(x); inc(x)}
}

~

simpleClass Counter{ int C; }

function void Counter_inc(Counter this, int x){
this.C += x;}

function void Counter_incTwice (Counter this ,int x){
call Counter_inc(this, x);
call Counter_inc(this, x)}

function void Counter_ctor(Counter this) {
C = 0;

call Object_ctr(); } 411



Example: Using the Counter class

Counter ¢ = new Counter();
c.inc();

>
¢ = allocate(sizeof Counter);

call Counter_ctor(c);
call Counter_inc(c);

5/11



Example: Virtual methods through v-tables

class Counter{
int C;
virtual void inc(int x) {C += x;} }

class FastCounter: Counter{
override void inc(int x) {C += 2xx;} }

class Runner{
static void Main(string[] args)

{
Counter ¢ = new FastCounter();
/! Should call FastCounter method and get 6
c.inc(3);

}

6/11



Example: Virtual methods through v-tables

class Counter{
int C=0;
virtual void inc(int x) {C += x;}

}

~

simpleClass Counter{
int C;
/! compiler remembers 0 —> Counter_inc
function[] vtable = {Counter_inc};

}

function void Counter_inc(Counter this, int x){
this.C += x;}

711



Example: Virtual methods through v-tables

class FastCounter: Counter{
override void inc(int x) {C += 2xx;} }

~

simpleClass FastCounter{
/! copied from base class
int C;
/! compiler remembers 0 —> FastCounter_inc
function[] vtable = {FastCounter_inc};

}

function void FastCounter_inc(Counter this, int x){
C += 2xx;}

8/11



Example: Virtual methods through v-tables

static void Main(string[] args)

{

Counter ¢ = new FastCounter();

c.inc(3);

}

// static methods can compile to functions w/o this
function void Runner_Main(string [] args){

/! call FastCounter’'s default constructor

c = allocate(sizeof FastCounter);

call FastCounter_ctor(c);

// do the virtual call
function f = c.vtable[0];
call f (c, 3)

} 9/11



Questions

Suppose Counter contained the following (non-virtual) method.
void incTwice(int x) {inc(x); inc(x)}

How does this compile? What determines whether this
eventually calls Counter_inc or FastCounter_inc?

10/11



Other features

Interfaces Each interface gets an interface table—analogous
to a vtable.

Reflection Each object keeps a reference to metadata
describing its own class. This is used reflection
and checking casts.

11/11



