
Learning with Perceptrons; User Controls

February 11, 2009

Problem Set 3

What: Classifying handwritten digits as 3s or 5s.
When: Problem set will be posted tomorrow, due February
24.
Who: You and a partner.
How: Perceptron learning.

1/19

1 Learning with Perceptrons

2 User Controls

2/19

The classification problem.

Setup
Data from some domain which can be given meaningful labels.

Data Labels
emails {Spam, NotSpam}

stock charts {Buy, Sell, Hold}
handwritten letters {A, B, C . . . }

Goal
Train a program to assign labels to domain elements.

3/19

Binary classifiers take vectors and return bits.

Data Classifier { 0, 1 }

Feature
Vectors

Prediction

Arbitrary data elements are mapped into feature vectors.
Splits classification into two problems:

Generating feature vectors—domain specific
Classifying feature vectors—general purpose

4/19

Not in this course: Picking Features

Feature Selection
Requires lots of trial and error
Deep knowledge of application domain helpful
Essential to getting good classification results

5/19

A Machine Learning Approach: Train the classifier.

Data Classifier ∈ { 0, 1 }

Labeled
Feature Vectors

Prediction

0
0

1

l

Update Rule

Pick a training example, x, with known label `.
Call the classifier input x.
Let the classifier make a prediction: label p.
If ` 6= p, update the classifier using `,p, and x.
Repeat many, many times.

6/19

Perceptrons are simple classifiers.

Perceptrons feature vectors with components in [−1,+1],
and label examples with a 1 or a 0.
A perceptron maintains a weight, wi , for each feature.

wi > 0⇒ feature i correlates with 1 label.
wi < 0⇒ feature i correlates with 0 label.
Large |wi | ⇒ feature i is important.

7/19

Making a perceptron prediction (I/II)

To make a prediction about x = 〈x1, x2 . . . , xn〉
For each feature, i , calculate a vote, vi = wixi .
Sum the votes

vtotal =
n∑

i=1

wixi = w · x.

If the tally is positive (vtotal > 0) return 1, else return 0.

8/19

Making a perceptron prediction (II/II)

Another way: p = H(w · x) where
p: the prediction
w: the weight vector
x: the feature vector
H: the threshold function,

H(z) =

{
1 z > 0
0 otherwise

9/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled `x . And our perceptron returns p = H(w · x).

Two main cases:

p = `x . The perceptron did the right thing. We’re done.

p 6= `x . Two sub-cases:

p = 1, `x = 0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
w = w− αx.
p = 0, `x = 1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
w = w + αx.

Learning rate α is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled `x . And our perceptron returns p = H(w · x).

Two main cases:
p = `x . The perceptron did the right thing. We’re done.
p 6= `x . Two sub-cases:

p = 1, `x = 0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
w = w− αx.
p = 0, `x = 1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
w = w + αx.

Learning rate α is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled `x . And our perceptron returns p = H(w · x).

Two main cases:
p = `x . The perceptron did the right thing. We’re done.
p 6= `x . Two sub-cases:

p = 1, `x = 0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
w = w− αx.

p = 0, `x = 1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
w = w + αx.

Learning rate α is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled `x . And our perceptron returns p = H(w · x).

Two main cases:
p = `x . The perceptron did the right thing. We’re done.
p 6= `x . Two sub-cases:

p = 1, `x = 0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
w = w− αx.
p = 0, `x = 1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
w = w + αx.

Learning rate α is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled `x . And our perceptron returns p = H(w · x).

Two main cases:
p = `x . The perceptron did the right thing. We’re done.
p 6= `x . Two sub-cases:

p = 1, `x = 0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
w = w− αx.
p = 0, `x = 1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
w = w + αx.

Learning rate α is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

The Perceptron Update Rule

wnew = wold + (`x − p)αx

where
wnew : the new weight vector
wold : the original weight vector
x: a training example
`x : correct label for training example x
p: the perceptron’s prediction for x (obtained when still
using weight vector wold)
α: a fixed learning rate

Note term (`x − p) encodes last slide’s case analysis.

11/19

1 Learning with Perceptrons

2 User Controls

12/19

User Controls Summary

User controls are programmer build controls that can be
added to the Visual Studio designer.
User controls integrate with other elements when
designing forms in VS Viewer.
As with rest of Windows.Forms framework, there’s nothing
special about custom controls: everything maps to C#
code.

13/19

Creating a user control with the gui

14/19

Creating a user control with the gui

14/19

Creating a user control with the gui

Build the project. . .

14/19

Creating a user control with the gui

14/19

Creating a user control by hand

using System . Windows . Forms ;

c lass MyHandmadeControl : UserContro l { }

15/19

Drawing in a user control

Whenever Windows displays your control, it raises a Paint
event.
Calling the control’s .Invalidate() method will also raise a
Paint event. (Useful for forcing redraws.)
A user control’s OnPaint(PaintEventArgs e) virtual method
usually handles paint requests. Override this to do custom
drawing.
It’s also possible to handle the Paint event directly using a
delegate.

16/19

Handling paint requests: Code example

using System . Windows . Forms ;

/ / Drawing namespace inc ludes Graphics c lass
/ / and p r i m i t i v e s used by Graphics c lass
using System . Drawing ;

c lass MyHandmadeControl : UserContro l
{

p ro tec ted ove r r i de vo id OnPaint (PaintEventArgs e)
{

/ / Graphics ob jec t conta ins methods to
/ / a c t u a l l y draw
var g = e . Graphics ;
g . DrawRectangle (Pens . Blue , 0 , 0 , 20 , 20) ;

}
}

17/19

Handling paint requests: Screenshot

Adding a MyHandmadeControl to a form (using the designer)
yields the following program:

18/19

Some Drawing and Graphics concepts.

Drawing.Pen—Objects describing color, etc. of lines and
curves.
Drawing.Brush—Objects describing color, etc. of filled in
regions.
Drawing.Font—Objects describing fonts.

...

Graphics.DrawCurve()–Draws a curve using a pen.
Graphics.FillRectangle()—Fills a rectangular region using
a brush.

...

19/19

	Learning with Perceptrons
	User Controls

