Properties and Basic Generics

January 30, 2008



0 Properties

1/18



Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/] Set the title
theForm.Text = "My _Window";

2/18



Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/1 Set the title
theForm.Text = "My _Window";

Q. Is theForm.Text really a member?

2/18



Recall last lecture:

// Create a form (i.e. a window)
Form theForm = new Form();

/1 Set the title
theForm.Text = "My _Window";

Q. Is theForm.Text really a member?
A. No. theForm.Text is a property.

2/18



Properties provide special syntax for methods.

@ A property consists of two methods: get and set.

@ Clients call set with assignment notation
e.g. theForm.Text = "My_Window";

@ Clients call get with member read notation
e.g. WriteLine(theForm.Text)

@ Each property access runs a method.

3/18



Property Example (I/11)

public class Temperature{
private double myKelvin;

public double Kelvin{

get{
// Think "public double get()"
return myKelvin;

}

set{
// Think "public void set(double value)"
myKelvin = value;

}

4/18



Property Example (11/111)

public double Fahrenheit{
get{
return myKelvin%(9.0/5.0) — 459.67;
}

set{
myKelvin = (5.0/9.0)«(value + 459.67);
}
}
}

5/18



Property Example (I11/111)

public class Runner{
public static void Main(string[] args)

{

Temperature Temp = new Temperature ();
Temp. Fahrenheit = 32.0;
Console.Out. WriteLine (Temp. Kelvin);

}
}

Output: 273.15 (that’s the right answer)

6/18



C# 3.0 has special syntax for declaring simple
properties.

public class Temperature{

// Compiler automatically generates private
// member, getter, and setter
public double Kelvin { get; set; }

public double Fahrenheit{
get{
return Kelvin*x(9.0/5.0) — 459.67;
}
set{
Kelvin = (5.0/9.0)x(value + 459.67);

}
}
}

7/18



When should l use a . ..

@ ...public member?

@ ...property?

@ ...method?

8/18



When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.

@ ...property?

@ ...method?

8/18



When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.
@ ...property?
e The getter has no (observable) side effects.
e The getter does not throw exceptions.

e Both get and set return almost immediately (no long
computations or database queries)

@ ...method?

8/18



When should l use a . ..

@ ...public member?
Only in trivial situations. Public members are not robust
against design changes.
@ ...property?
e The getter has no (observable) side effects.
e The getter does not throw exceptions.

e Both get and set return almost immediately (no long
computations or database queries)

@ ...method? Any other time.

8/18



Access limited properties.

public class Misc {
int myNumber;

/I A property with a private getter. Only
/1 members of Misc can read .DropBox
public int DropBox {
set{
myNumber = value;
}
private get{
return myNumber;
}
}

public int PrivateSet { get; private set;

}

9/18



Read-only and write-only properties

public class GetSetOnly{
private int myX, myY;

/! A read—only property: a common pattern
public int X { get { return myX; } }

/!l Write only patterns are considered bad style

public int Y { set { myY = value; } }

10/18



Technical notes about properties

@ Properties compile to method calls, not member access
@ So properties can’t implement members in interfaces

@ Properties are optimized to be roughly as fast as member
access

11/18



© Basic Generics

12/18



Generics allow types (e.g. classes and delegates) to
be parameterized by types.

@ Provide extra compile-time type information
@ Provide opportunities for compiler optimizations.

@ Allow the compiler to catch bugs that would otherwise
happen at runtime.

@ Enhance code readability.

@ Reduce need for downcasts (which are expensive and can
throw exceptions).

13/18



Example: a specialized “option” class.

public class IntOption{
private bool isFull; private int contents;

public bool Empty { get {return !lisFull;} }

public int GetValue() {
if (isFull) return contents;

throw new Exception("GetValue_of_ Empty");

}
public IntOption() { isFull = false; }
public IntOption(int x){

isFull = true; contents = x; }

14/18



Example: Using the specialized option class.

public class Runner{
public static IntOption div(int x, int y){
if (y==0)
return new IntOption ();
else
return new IntOption(x / y);

}

public static void Main(string[] args)
{
Console.Qut. WriteLine (div (3 ,4).Empty); //false
Console.Out. WriteLine (div (3,0).Empty); //true
}
}

15/18



Example: A generic option class.

public class GenOption<T>{
private bool isFull; private T contents;

public bool Empty { get {return !lisFull;} }

public T GetValue() {
if (isFull) return contents;

throw new Exception("GetValue_of_ Empty");

}
public GenOption() { isFull = false; }
public GenOption(T x){

isFull = true; contents = x; }

16/18



Example: Using the generic option class.

public class Runner{
public static GenOption<int> div(int x, int y){
if (y==0)
return new GenOption<int >();
else
return new GenOption<int >(x / y);

}

public static void Main(string[] args)
{
Console.Qut. WriteLine (div (3 ,4).Empty); //false
Console.Out. WriteLine (div (3,0).Empty); //true
}
}

17/18



Generics vs. Generics vs. Templates

@ C++ Templates
e Template expansion is static: each template instantiation
creates a new compile-time class.
e Templates can't live in compiled libraries—only headers.
e Templates expansion = Turing complete programming
language(!)
@ Java Generics
Similar semantics to C#
Implemented by type erasure; no runtime support in JVM
Poor support for reflection
Legacy code can break apprent type guarantees for generic
objects.
@ C#Generics
@ CLR (.Net virtual machine) has support for generics
e Generics can be specialized to used native types at runtime
e Type parameters preserved at runtime, and can be queried
by reflection.

18/18



	Properties
	Basic Generics

