
Events and Delegates & Gui Programming

January 23, 2008

1 Events and Delegates

2 Gui Programing

1/23

Event Driven Programming

Imagine a game with many actors responding to their
environment.

Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.
Events: Wake up actors when something interesting
happens.

2/23

Event Driven Programming

Imagine a game with many actors responding to their
environment.
Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

Events: Wake up actors when something interesting
happens.

2/23

Event Driven Programming

Imagine a game with many actors responding to their
environment.
Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.
Events: Wake up actors when something interesting
happens.

2/23

We can code events using basic C#. . .

p u b l i c i n t e r f a c e IEventHandler { vo id DoI t () ; }

p u b l i c c lass SesameStreet {
vo id RegisterForCookie (IEventHandler h) { . . . }
vo id CookieEventHappens () { . . . }

}

p u b l i c c lass CookieMonster {
c lass CookieEat ingClass : IEventHandler {

vo id DoI t () { Wr i teL ine ("Nom, Nom") ; }
}

CookieMonster (SesameStreet s) {
s . RegisterForCookie (new CookieEat ingClass ()) ;

}
}

3/23

. . . but the encoding is flawed.

Problems:
A nested class is needed to define each event handler.
Handler has not easy access instance and local variables.
Resulting code is hard to read.

4/23

Delegates: methods as data.

/ / Declare a new delegate type . A binOp i s a
/ / method t h a t takes two i n t s and re tu rns an i n t .
p u b l i c delegate i n t binOp (i n t x , i n t y) ;

p u b l i c c lass Demo{

s t a t i c vo id Main (s t r i n g [] args) {
/ / m i s s to res a binOp
binOp m = Math . Min ;

/ / C a l l i n g m c a l l s the s tored method ,
/ / Math . Min . Output i s " 3 " .
Console . Wr i teL ine (m(3 , 4)) ;

}
}

5/23

Multicasting: A delegate can call several methods. (I)

p u b l i c delegate vo id P r i n t e r (s t r i n g s) ;

p u b l i c c lass PromptPr in ter {
p r i v a t e s t r i n g prompt ;
p u b l i c PromptPr in ter (s t r i n g p) { prompt=p ; }
p u b l i c vo id P r i n t (s t r i n g s) {

Console . Wr i teL ine (prompt + s) ; }
}

6/23

Multicasting: A delegate can call several methods. (II)

p u b l i c c lass Demo{
s t a t i c P r i n t e r myPr in ter ;

s t a t i c vo id Main (s t r i n g [] args) {
PromptPr in ter p1 = new PromptPr in ter (">>") ;
PromptPr in ter p2 = new PromptPr in ter (" # ") ;
myPr in ter = p1 . P r i n t ;
myPr in ter += p2 . P r i n t ;
myPr in ter (" foo ") ;

}
}

Output is "»foo" "#foo"
Multicasting only makes sense for methods returning void.
Operators =, +, -, +=, -= attach and detach delegates.

7/23

Anonymous delegates further streamline event code.

p u b l i c delegate i n t binOp (i n t x , i n t y) ;
. . .

/ / C# 2.0 "Anonymous Delegate " Syntax :
binOp sum =

delegate (i n t x , i n t y) {
r e t u r n x + y ; } ;

/ / C# 3.0 "Lambda" Syntax
/ / (p lus type in fe rence) :
binOp sum = ((x , y) => x + y) ;

8/23

How does it work?

C# compile translates delegate types into classes which
inherit from System.MulticastDelegate.
Delegate values are compiled to class instances.
For multicasting, + operator builds a list of delegates
objects.

9/23

Events are delegates with standard method
signatures.

p u b l i c delegate HandlerType (ob jec t c a l l e r ,
EventArgs e) ;

c lass foo {
p u b l i c event HandlerType myEvent

}

Member eventName can be updated (+, +=, . . .) as public.
But, eventName can only be invoked by foo.
By convention, foo should pass itself as caller.

10/23

Updating the cookie example (I)

c lass CookieEventArgs : System . EventArgs { } ;

c lass SesameStreet {

delegate vo id CookieDelegate (ob jec t o ,
CookieEventArgs c) ;

event CookieDelegate CookieEvent ;
vo id DoCookie () {

CookieEvent (t h i s , new CookieEventArgs ()) ; }
}

11/23

Updating the cookie example (II)

c lass CookieMonster {

CookieMonster (SesameStreet s) {
s . CookieEvent +=

((ob jec t o , CookieEventArgs c) =>
System . Console . Wr i teL ine ("Nom, Nom")) ;

}
}

12/23

Updating the cookie example (III)

p u b l i c c lass Runner {
s t a t i c vo id Main (s t r i n g [] args)
{

SesameStreet ss = new SesameStreet () ;
CookieMonster cm = new CookieMonster (ss) ;
ss . DoCookie () ;
ss . DoCookie () ;
ss . DoCookie () ;

}
}
/∗ Output : Nom, Nom

Nom, Nom
Nom, Nom ∗ /

13/23

1 Events and Delegates

2 Gui Programing

14/23

Gui programs are not special.

Execution starts at Main
Events model used to get inputs from controls
Fancy designers just a convenient way to generate code
(One caveat coming up)

15/23

A Simple Gui Program (I)

using System . Windows . Forms ;

/ / S implest GUI program .
/ / Compile as a " Windows A p p l i c a t i o n "
c lass Program
{

s t a t i c vo id Main (s t r i n g [] args)
{

MessageBox . Show(" He l lo Gui Programming ") ;
}

}

16/23

A Simple Gui Program (II)

17/23

A Simple Gui Program (III)

The caveat: I had to change the project’s output type to
“Windows Application”. This stops the program from popping
up a command prompt.

18/23

Event Driven Gui Programming

All screen elements are represent by objects.
Interesting user activities trigger events.
Handling these event lets your program update it’s state.

Windows are instances of System.Windows.Forms.Form
Buttons are instances of System.Windows.Controls.Button

19/23

Finally: A Gui That Does Something! (I)

s t a t i c vo id Main () {
RandColorPicker cp = new RandColorPicker () ;

Form theForm = new Form () ;
theForm . Text = "My Window" ;

/ / Event handlers here
theForm . MouseClick +=

((x , y) => theForm . BackColor = cp . GetRand ()) ;
theForm . MouseEnter +=

(delegate (ob jec t x , EventArgs y) {
theForm . BackColor = cp . GetRand () ; }) ;

theForm . ShowDialog () ;
}

20/23

Finally: A Gui That Does Something! (II)

21/23

Finally: A Gui That Does Something! (II)

21/23

Finally: A Gui That Does Something! (II)

21/23

Visual Studio’s form designer helps build Guis.

Drag and drop controls onto forms.
Designer can set properties of controls.
Designer can automatically generate stub code for event
handlers.

22/23

Homework

Problem Set 1: Due before class today(!)
Problem Set 2

Will be posted by the end of the day tomorrow
PS 2 will be with partners. Email me by Friday. If you have
a partner, tell me who. If you don’t, let me know and I’ll pair
people up. There may need to be one group of three.
Due February 6.
Start early.

23/23

	Events and Delegates
	Gui Programing

