Events and Delegates & Gui Programming

January 23, 2008

Q Events and Delegates

1/23

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

2/23

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

@ Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

2/23

Event Driven Programming

@ Imagine a game with many actors responding to their
environment.

@ Polling: Every so often, each actor looks at state of
environment and takes appropriate actions.

@ Events: Wake up actors when something interesting
happens.

2/23

We can code events using basic C#. ..
public interface IEventHandler{ void Dolt(); }

public class SesameStreet{
void RegisterForCookie (IEventHandler h){...}
void CookieEventHappens (){...}

}

public class CookieMonster{
class CookieEatingClass : IEventHandler{
void Dolt() { WriteLine ("Nom,_Nom"); }

}

CookieMonster (SesameStreet s){
s.RegisterForCookie (new CookieEatingClass ());

}
}

3/23

.but the encoding is flawed.

Problems:
@ A nested class is needed to define each event handler.
@ Handler has not easy access instance and local variables.
@ Resulting code is hard to read.

4/23

Delegates: methods as data.

/I Declare a new delegate type. A binOp is a
// method that takes two ints and returns an int.
public delegate int binOp(int x, int y);

public class Demo{
static void Main(string[] args){
/I m is stores a binOp
binOp m = Math.Min;
/!l Calling m calls the stored method,

// Math.Min. Output is "3".
Console. WriteLine (m(3,4));

5/23

Multicasting: A delegate can call several methods. (I)

public delegate void Printer(string s);

public class PromptPrinter{
private string prompt;
public PromptPrinter(string p){ prompt=p; }
public void Print(string s){
Console. WriteLine (prompt + s);}

6/23

Multicasting: A delegate can call several methods. (ll)

public class Demo{
static Printer myPrinter;

static void Main(string[] args){
PromptPrinter p1 = new PromptPrinter(">>");
PromptPrinter p2 = new PromptPrinter("#");
myPrinter = p1.Print;
myPrinter += p2.Print;
myPrinter("foo");

@ Output is "»foo" "#foo"
@ Multicasting only makes sense for methods returning void.
@ Operators =, +, -, +=, -= attach and detach delegates.

7/23

Anonymous delegates further streamline event code.

public delegate int binOp(int x, int y);

/I C# 2.0 "Anonymous Delegate" Syntax:
binOp sum =
delegate(int x, int y) {
return x + vy; };

/I C# 3.0 "Lambda" Syntax

/! (plus type inference):
binOp sum = ((x, y) => X + Yy);

8/23

How does it work?

@ C# compile translates delegate types into classes which
inherit from System.MulticastDelegate.

@ Delegate values are compiled to class instances.

@ For multicasting, + operator builds a list of delegates
objects.

9/23

Events are delegates with standard method
signatures.

public delegate HandlerType(object caller,
EventArgs e);

class foo{
public event HandlerType myEvent

}

@ Member eventName can be updated (+, +=, ...) as public.
@ But, eventName can only be invoked by foo.
@ By convention, foo should pass itself as caller.

10/23

Updating the cookie example (1)

class CookieEventArgs : System.EventArgs { };
class SesameStreet{

delegate void CookieDelegate(object o,
CookieEventArgs c);
event CookieDelegate CookieEvent;
void DoCookie() {
CookieEvent(this , new CookieEventArgs ());}

11/23

Updating the cookie example (I1)

class CookieMonster{

CookieMonster (SesameStreet s){
s.CookieEvent +=
((object o, CookieEventArgs c) =>
System. Console. WriteLine ("Nom, _Nom"));

12/23

Updating the cookie example (111)

public class Runner{

static void Main(string[] args)

{
SesameStreet ss = new SesameStreet ();
CookieMonster cm = new CookieMonster(ss);
ss.DoCookie ();
ss.DoCookie () ;
ss.DoCookie ();

}

}
/+ Qutput: Nom, Nom
Nom, Nom
Nom, Nom %/

13/23

9 Gui Programing

14/23

Gui programs are not special.

@ Execution starts at Main

@ Events model used to get inputs from controls

@ Fancy designers just a convenient way to generate code
@ (One caveat coming up)

15/23

A Simple Gui Program (l)

using System.Windows.Forms;

/I Simplest GUI program.
/1 Compile as a "Windows Application"
class Program

{

static void Main(string[] args)

{
}

MessageBox.Show("Hello_Gui_Programming");

16/23

A Simple Gui Program (ll)

17/23

A Simple Gui Program (l11)

The caveat: | had to change the project’s output type to
“Windows Application”. This stops the program from popping
up a command prompt.

File Edit

Reference Paths

Visw Project Buld Debug Data Tools Window Help
RN N = ! I & 1 %]
b= BasicGui* - program.ce | Program.cs
g
=R
=
2 Application™®
. PR Assembly name; Defaulk namespace:
Build Project1 Project
Build Events Target Framewark:
WMET Framework 3.5
Debug
Startup object:
Resources (Mot set)
Settings Resources

Specify how application resources will be managed:

() Icon and manifest

Signing A manifest determines specific settings for an application, To embed a custam manifest, first add

it to your project and then select it from the list below,
Security Tcon:

(Default Tcon) ¥ [.]O3
Publish

Manifest:

Embed manifest with default settings -

) Resource File:

18/23

Event Driven Gui Programming

@ All screen elements are represent by objects.
@ Interesting user activities trigger events.
@ Handling these event lets your program update it’s state.

@ Windows are instances of System.Windows.Forms.Form
@ Buttons are instances of System.Windows.Controls.Button

19/23

Finally: A Gui That Does Something! (I)

static void Main() {
RandColorPicker cp = new RandColorPicker ();

Form theForm new Form();
theForm.Text = "My_Window";

// Event handlers here
theForm . MouseClick +=
((x,y) => theForm.BackColor = cp.GetRand());
theForm . MouseEnter +=
(delegate(object x, EventArgs y) {
theForm.BackColor = cp.GetRand (); 1});

theForm . ShowDialog () ;

20/23

Finally: A Gui That Does Something! (ll)

B My Window

21/23

Finally: A Gui That Does Something! (II)
My Window M=

21/23

Finally: A Gui That Does Something! (II)
My Window M=

21/23

Visual Studio’s form designer helps build Guis.

@ Drag and drop controls onto forms.
@ Designer can set properties of controls.

@ Designer can automatically generate stub code for event
handlers.

2 wWindowsFormsApplication? - Microsoft Visual C# 2008 Express Edition

@ 4am9-

»

Projct Buld Debug Dats Format Toos Window He

Edit Control
Properties

Generate

Event Handlers

- x

Properties ~Ex
buttont System.Windons Forms Suton ~

vvvvv

5,61
Lodked False

B Margn 33,33

B Maxnnsee 0,0

B Mainonsze 0,0
Modfiers Private

B Paddng 00,00
RghtToLeft o

B sz 5,23
Tabindex)
Tabsiop Tru
T30
Teit buttont

Textaln ViddeCenter !

Text
The text associated with the contrl,

o 75x23

22/23

Homework

@ Problem Set 1: Due before class today(!)
@ Problem Set 2

e Will be posted by the end of the day tomorrow

e PS 2 will be with partners. Email me by Friday. If you have
a partner, tell me who. If you don't, let me know and I'll pair
people up. There may need to be one group of three.

@ Due February 6.

o Start early.

23/23

	Events and Delegates
	Gui Programing

