Learning with Perceptrons and User Controls

February 6, 2008

Problem Set 3

@ What: Classifying handwritten digits as 3s or 5s.

@ When: Problem set will be posted tomorrow, due February
27.

@ Who: You and your partner (email me if you change
partners.)

@ How: Perceptron learning.

119

0 Learning with Perceptrons

2/19

The classification problem.

Data from some domain which can be given meaningful labels.

Data Labels
emails {Spam, NotSpam}
stock charts {Buy, Sell, Hold}
handwritten letters {A,B,C...}

Train a program to assign labels to domain elements.

3/19

Binary classifiers take vectors and return bits.

EEEEN
—> [[[[I] ©——> | Classifier

(LLLT]

Feature
Vectors

—> {0,1}

Prediction

Arbitrary data elements are mapped into feature vectors.

Splits classification into two problems:

@ Generating feature vectors—domain specific
@ Classifying feature vectors—general purpose

4/19

Not in this course: Picking Features

Feature Selection
@ Requires lots of trial and error
@ Deep knowledge of application domain helpful
@ Essential to getting good classification results

5/19

A Machine Learning Approach: Train the classifier.

o(LI1]]
——>0[[[[[] ©——>|Classifier | ——>({)e{0,1}
Prediction
Labeled
Feature Vectors Update Rule

@ Pick a training example, x, with known label .
@ Call the classifier input x.

@ Let the classifier make a prediction: label p.

@ If ¢ # p, update the classifier using ¢, p, and x.
@ Repeat many, many times.

6/19

Perceptrons are simple classifiers.

@ Perceptrons feature vectors with components in [—1, +1],
@ and label examples with a 1 or a 0.

@ A perceptron maintains a weight, w;, for each feature.

e w; > 0 = feature i correlates with 1 label.
e w; < 0 = feature i correlates with 0 label.
e Large |w;| = feature i is important.

7/19

Making a perceptron prediction (I/II)

To make a prediction about X = (xq, X2..., Xp)
@ For each feature, /, calculate a vote, v; = w;x;.
@ Sum the votes

n
Viotal = Z WiX;i = W - X.
i—1

@ If the tally is positive (Vi > 0) return 1, else return 0.

8/19

Making a perceptron prediction (lI/II)

Another way: p = H(w - x) where
@ p: the prediction
@ w: the weight vector
@ x: the feature vector
@ H: the threshold function,

H(z):{1 z>0

0 otherwise

9/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:

@ p = lx. The perceptron did the right thing. We’re done.

@ p # lx. Two sub-cases:

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:
@ p = lx. The perceptron did the right thing. We’re done.

@ p # lx. Two sub-cases:

e p=1,¢, =0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
W =W — aX.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:

@ p = lx. The perceptron did the right thing. We’re done.
@ p # £x. Two sub-cases:
e p=1,¢, =0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
W =W — aX.
e p=0,¢, =1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
W =W + aX.

10/19

Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:

@ p = lx. The perceptron did the right thing. We’re done.
@ p # £x. Two sub-cases:
e p=1,¢, =0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
W =W — aX.
e p=0,¢, =1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
W =W + aX.

Learning rate « is a “knob” that controls how sensitive the
perceptron is to new information.

10/19

The Perceptron Update Rule

Whew = Woig + (£x — p)ax
where
@ Wi, : the new weight vector
@ w,: the original weight vector
@ x: a training example
@ /y: correct label for training example x

@ p: the perceptron’s prediction for x (obtained when still
using weight vector wy)

@ «: a fixed learning rate

Note term (¢x — p) encodes last slide’s case analysis.

11/19

9 User Controls

12/19

User Controls Summary

@ User controls are programmer build controls that can be
added to the Visual Studio designer.

@ User controls integrate with other elements when
designing forms in VS Viewer.

@ As with rest of Windows.Forms framework, there’s nothing
special about custom controls: everything maps to C#
code.

13/19

Creating a user control with the gui

..EPJEI?I

HHHM

Euild
Rebuild
Publish. ..
Add

Add Reference. ..

Add Service Reference...

Set as StartUp Project
Debug

Renarme

Properties

b i
]
5

i@
4

Mew Item...
Existing Ikem. ..
Mew Folder
Windows Form, ..
User Contral...

Class...

14/19

Creating a user control with the gui

Add New Item - CustomControlDemo
Templates:
visual Studio installed templates A
= a, ch ot ot %JJ cH]
AboutBox Application Application Assembly Class CodeFie DataSet Debugger
Confiqurati... Manfest Fle Informai Visualizer
It} =
W @B W B & |
Interface UMQtoS0L local MOIParent ResowcesFile Servicebased SettingsFle Text Fie J
Classes Database Form Database
B < E
User Control User Control windows Form &ML Flle
o
Areusable Windows Forms control
Name: | MyControles

14/19

Creating a user control with the gui

Build the project. . .

14/19

Creating a user control with the gui

]
File Edit Wiew Project Buld Debug Data Format Tools Vindow
- @ &S - &

a2 & 5| oo al

L | 2 uE
Toolbox > 0 x

Help

Start Page | MyCaontral.cs [Design] - Formil.cs [Design]”
= UserControlDemo Components

Pointer |
g MyCantrol |
All Windows Forms
Common Controls
Containers
Menus & Toolbars
Data
Components

Printing

Dialogs

1= WPF Interoperability
& Pointer

[ElementHost

= General

There are no usable controls in this group, Drag
an item onto khis kext ko add it ko the koolbos.

14/19

Creating a user control by hand

using System.Windows.Forms;

class MyHandmadeControl : UserControl { }

File Edit Wew Project Buld Debug Data Format Tools Window Help

- T e 4L 9 - -5
N (S| Wy i 14 m

Toolbox 1 X StartPage MyHandmadeControl.cs - Forml.cs [Desigi
=/ UserControlDemo Components
& Poirter

G Mycontrol

568 MyHandmadeconiral

All Windows Forms

EOMGIGHIEGnto MyHandmadeCantrol ||
ontainers Version 1.0.0.0
Menus & Toolbars ‘MET Component
ata & o

omponents

ting

ialogs

=/ WPF Interoperability -
I Pointer e 2 o
2] ElementHost

[= General

There are no usable controls in this group, Drag

15/19

Drawing in a user control

@ Whenever Windows displays your control, it raises a Paint
event.

@ Calling the control’s .Invalidate() method will also raise a
Paint event. (Useful for forcing redraws.)

@ A user control’'s OnPaint(PaintEventArgs e) virtual method
usually handles paint requests. Override this to do custom
drawing.

@ It's also possible to handle the Paint event directly using a
delegate.

16/19

Handling paint requests: Code example
using System.Windows.Forms;

// Drawing namespace includes Graphics class
// and primitives used by Graphics class
using System.Drawing;

class MyHandmadeControl : UserControl

{

protected override void OnPaint(PaintEventArgs e)

{

/! Graphics object contains methods to

// actually draw

var g = e.Graphics;

g.DrawRectangle (Pens.Blue, 0, 0, 20, 20);

17/19

Handling paint requests: Screenshot

Adding a MyHandmadeControl to a form (using the designer)
yields the following program:

Form1 E@

18/19

Some Drawing and Graphics concepts.

@ Drawing.Pen—OQObjects describing color, etc. of lines and
curves.

@ Drawing.Brush—Obijects describing color, etc. of filled in
regions.

@ Drawing.Font—Objects describing fonts.

@ Graphics.DrawCurve()—Draws a curve using a pen.

@ Graphics.FillRectangle()—Fills a rectangular region using
a brush.

19/19

	Learning with Perceptrons
	User Controls

