Learning with Perceptrons and User Controls

February 6, 2008



Problem Set 3

@ What: Classifying handwritten digits as 3s or 5s.

@ When: Problem set will be posted tomorrow, due February
27.

@ Who: You and your partner (email me if you change
partners.)

@ How: Perceptron learning.
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0 Learning with Perceptrons
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The classification problem.

Data from some domain which can be given meaningful labels.

Data Labels
emails {Spam, NotSpam}
stock charts {Buy, Sell, Hold}
handwritten letters {A,B,C...}

Train a program to assign labels to domain elements.
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Binary classifiers take vectors and return bits.
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Arbitrary data elements are mapped into feature vectors.

Splits classification into two problems:

@ Generating feature vectors—domain specific
@ Classifying feature vectors—general purpose
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Not in this course: Picking Features

Feature Selection
@ Requires lots of trial and error
@ Deep knowledge of application domain helpful
@ Essential to getting good classification results
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A Machine Learning Approach: Train the classifier.
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@ Pick a training example, x, with known label .
@ Call the classifier input x.

@ Let the classifier make a prediction: label p.

@ If ¢ # p, update the classifier using ¢, p, and x.
@ Repeat many, many times.
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Perceptrons are simple classifiers.

@ Perceptrons feature vectors with components in [—1, +1],
@ and label examples with a 1 or a 0.

@ A perceptron maintains a weight, w;, for each feature.

e w; > 0 = feature i correlates with 1 label.
e w; < 0 = feature i correlates with 0 label.
e Large |w;| = feature i is important.
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Making a perceptron prediction (I/II)

To make a prediction about X = (xq, X2..., Xp)
@ For each feature, /, calculate a vote, v; = w;x;.
@ Sum the votes

n
Viotal = Z WiX;i = W - X.
i—1

@ If the tally is positive (Vi > 0) return 1, else return 0.
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Making a perceptron prediction (lI/II)

Another way: p = H(w - x) where
@ p: the prediction
@ w: the weight vector
@ x: the feature vector
@ H: the threshold function,

H(z):{1 z>0

0 otherwise

9/19



Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:
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Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:
@ p = lx. The perceptron did the right thing. We’re done.

@ p # lx. Two sub-cases:

e p=1,¢, =0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
W =W — aX.
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Training a perceptron

Let’s say we know a particular feature vector x should be
labeled ¢x. And our perceptron returns p = H(w - X).

Two main cases:

@ p = lx. The perceptron did the right thing. We’re done.
@ p # £x. Two sub-cases:
e p=1,¢, =0. The vote was too high. Next time we get a
vector like x we should vote lower. Update weights by
W =W — aX.
e p=0,¢, =1. The vote was too low. Next time we get a
vector like x we should vote higher. Update weights by
W =W + aX.

Learning rate « is a “knob” that controls how sensitive the
perceptron is to new information.
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The Perceptron Update Rule

Whew = Woig + (£x — p)ax
where
@ Wi, : the new weight vector
@ w,: the original weight vector
@ x: a training example
@ /y: correct label for training example x

@ p: the perceptron’s prediction for x (obtained when still
using weight vector wy)

@ «: a fixed learning rate

Note term (¢x — p) encodes last slide’s case analysis.
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9 User Controls
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User Controls Summary

@ User controls are programmer build controls that can be
added to the Visual Studio designer.

@ User controls integrate with other elements when
designing forms in VS Viewer.

@ As with rest of Windows.Forms framework, there’s nothing
special about custom controls: everything maps to C#
code.
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Creating a user control with the gui
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Creating a user control with the gui
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Creating a user control with the gui

Build the project. . .
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Creating a user control with the gui
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Creating a user control by hand

using System.Windows.Forms;

class MyHandmadeControl : UserControl { }
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There are no usable controls in this group, Drag
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Drawing in a user control

@ Whenever Windows displays your control, it raises a Paint
event.

@ Calling the control’s .Invalidate() method will also raise a
Paint event. (Useful for forcing redraws.)

@ A user control’'s OnPaint(PaintEventArgs e) virtual method
usually handles paint requests. Override this to do custom
drawing.

@ It's also possible to handle the Paint event directly using a
delegate.
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Handling paint requests: Code example
using System.Windows.Forms;

// Drawing namespace includes Graphics class
// and primitives used by Graphics class
using System.Drawing;

class MyHandmadeControl : UserControl

{

protected override void OnPaint(PaintEventArgs e)

{

/! Graphics object contains methods to

// actually draw

var g = e.Graphics;

g.DrawRectangle (Pens.Blue, 0, 0, 20, 20);
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Handling paint requests: Screenshot

Adding a MyHandmadeControl to a form (using the designer)
yields the following program:

Form1 E@
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Some Drawing and Graphics concepts.

@ Drawing.Pen—OQObjects describing color, etc. of lines and
curves.

@ Drawing.Brush—Obijects describing color, etc. of filled in
regions.

@ Drawing.Font—Objects describing fonts.

@ Graphics.DrawCurve()—Draws a curve using a pen.

@ Graphics.FillRectangle()—Fills a rectangular region using
a brush.
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