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Introducing PS4: RSA encryption

Problem set 4 is about implementing a famous public key
cryptosystem, RSA.

Administrative Details:
Posted by tomorrow.
Due Friday March 7, at Noon.
My office hours will be Thursday March 6th at 2:00.

Disclaimer: Implementing cryptographic protocols is interesting.
But never, never roll your own cryptography in production
software.
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One-way Functions

A function is one-way if it’s
Easy to compute (polynomial time)
Hard to invert (exponential in the average case)

Examples
Exponentiation vs. Discrete Log
Multiplication vs. Factoring
Knapsack Packing

Given a set of numbers 1, 3, 6, 8, 12 find the sum of a subset
Given a target sum, find a subset that adds to it

Trapdoor functions
Easy to invert given some extra information
E.g. factoring p*q given q
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Public Key Cryptography

Sender encrypts using a public key
Receiver decrypts using a private key
Only the private key must be kept secret—Public key can
be distributed at will
Also called asymmetric cryptography
Can be used for digital signatures
Examples: RSA, El Gamal, DSA, various algorithms based
on elliptic curves

Used in SSL, ssh, PGP, ...
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Public Key Terminology and Notation

Public key: K
Private key: k
Encryption algorithm:

E : Public key× plain text → cipher text

Decryption algorithm:

D : Private key× cipher text → plain text

E and D are sometimes the same algorithm.
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Confidential Communication

KA   KB
kA

KA   KB
kB

E(KA, Hi!)

E(KB, Hello)

Alice Bart
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RSA Algorithm

Ron Rivest, Adi Shamir, Leonard Adleman
Proposed in 1979
They won the 2002 Turing award for this work

Has withstood years of cryptanalysis
Not a guarantee of security!
But a strong vote of confidence.
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RSA at a High Level

Public and private key are derived from secret prime
numbers

Keys are typically ≥ 1024 bits
Plaintext message (a sequence of bits)

Treated as a (large!) binary number

Encryption is modular exponentiation
To break the encryption, conjectured that one must be able
to factor large numbers

Not known to be in P (polynomial time algorithms)
Conjectured to be hard in the average case
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Number Theory: Modular Arithmetic

Examples:

10 mod 12 = 10
13 mod 12 = 1

(10 + 13) mod 12 = 23 mod 12 = 11 mod 12 = 11

a ≡ b (mod n) iff a = b + kn (for some integer k)
Example:

23 ≡ 11 (mod 12)
Read “23 is congruent to 11 modulo 12”

The residue of a number modulo n is a number in the
range {0 . . . n − 1}
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Number Theory: More Modular Arithmetic

For any integer n, the set of integers mod n form a ring.
Addition +
Additive unit 0
Multiplication ·
Multiplicative unit 1

Usual laws of arithmetic hold for modular arithmetic:
Commutativity, associativity, distributivity of · over +

Inverses exist: forall all n 6= 0 there exits an n−1, such that
n · n−1 = 1

Suppose p = 5, then the ring is 0,1,2,3,4
2−1 = 3 because 2 · 3 ≡ 1 (mod 5)
4−1 = 4 because 4 · 4 ≡ 1 (mod 5)
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Number Theory: Prime and Relatively Prime Numbers

A prime number is an integer > 1 whose only factors are 1
and itself.

Two integers are relatively prime if their only common
factor (i.e. divisor) is 1

gcd: greatest common divisor
gcd(15, 12) = 3, so they’re not relatively prime
gcd(15, 8) = 1, so they are relatively prime

Easy to compute GCD using Euclid’s Algorithm
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RSA Key Generation

Choose large, distinct primes p and q.
Should be roughly equal length (in bits)
More on how to do this later.

Let n = p · q
Choose a random encryption exponent e

With requirement: e and (p − 1) · (q − 1) are relatively
prime.
Can check using GCD

Derive the decryption exponent d
d ≡ e−1 (mod ((p − 1) · (q − 1)))
More on how to do this later.

Public key: K = (e, n), the pair of e and n
Private key: k = (d , n)

Discard primes p and q (they’re not needed anymore)
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RSA Encryption and Decryption

Message: m
Assume m < n

If not, break up message into smaller chunks
Good choice: largest power of 2 smaller than n

Encryption: E((e, n), m) = me mod n
Decryption: D((d , n), c) = cd mod n
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Example RSA Calculation

Choose p = 47, q = 71
n = p · q = 3337
(p − 1) · (q − 1) = 3220
Choose e relatively prime with 3220: e = 79

Public key is (79, 3337)
Find d = 79−1 mod 3220 = 1019

Private key is (1019, 3337)
Plain text: m = 688232687966683

Break into chunks < 3337
688 232 687 966 683

Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570
Decrypt:

D((1019, 3337), 1570) = 15701019 mod 3337 = 688
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A lot so far. . .

Still to come:
Proof that E and D are inverses.
Calculating modular inverses.
Generating prime numbers.
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Euler’s totient function: φ(n)

φ(n) is the number of positive integers less than n that are
relatively prime to n.

Relatively prime to 12 and less than 12: {1, 5, 7, 11}
φ(12) = 4

When p is prime, φ(p) = (p − 1).
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Euler’s totient function (cont. . . )

When p and q are distinct primes,

φ(p · q) = (p − 1)(q − 1).

p · q − 1 numbers < p · q
Factors of p · q less than p · q:

{1 · p, 2 · p, . . . (q − 1) · p}—have q − 1 of these
{1 · q, 2 · q, . . . (p − 1) · q}—have p − 1 of these
All other numbers < p · q are relatively prime.

So

φ(p · 1) = (p · q − 1)− (q − 1)− (p − 1)

= p · q − p − q + 1
= (p − 1)(q − 1)
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Fermat’s Little Theorem

Generalized by Euler.

Theorem: If p is prime, then ap ≡ a (mod p).

Corollary: If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Utility: This makes it easy to find modular inverses.

a−1 mod n = aφ(n)−1 mod n
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Chinese Remainder Theorem
(Or enough of it for our purposes.)

Suppose
p and q are relatively prime
a ≡ b (mod p)
a ≡ b (mod q)

Then: a ≡ b (mod p · q)

Proof:
p divides (a− b) because (a mod p) = (b mod p).
q divides (a− b)
Since p, q are relatively prime, p · q divides (a− b)
Equivalently: a ≡ b (mod p · q)
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Encryption and Decryption are Inverses

Let c = E((e, n), m)

D(c, m)) = (me mod n)d mod n definitions of c, D

= me·d mod n arithmetic

= mk ·(p−1)·(q−1)+1 mod n d inverts e †

= m ·mk ·(p−1)·(q−1) mod n arithmetic
= m · 1 mod n C. R. theorem
= m mod n
= m m < n

† e · d ≡ 1 (mod (p − 1) · (q − 1))
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Filling in the details

We used the Chinese Remainder theorem to get:

mk ·(p−1)·(q−1) ≡ 1 (mod n)

How?

mp−1 ≡ 1 (mod p) by Fermat’s Little Theorem.
(mp−1)(q−1)·k ≡ 1 (mod p) by arithmetic.
m(p−1)·(q−1)·k ≡ 1 (mod p) by more arithmetic.

Likewise m(p−1)·(q−1)·k ≡ 1 (mod q).

Directly applying the Chinese Remainder Theorem:

m(p−1)·(q−1)·k ≡ 1 (mod p · q)
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How to Generate Prime Numbers

Many strategies, but Rabin-Miller primality test is often
used in practice.
Efficiently randomized algorithm that, with probability 3/4,
correctly identifies a number as prime.

Iterate the Rabin-Miller primality test t times.
Probability that a composite number will slip through the
test is (1/4)t

These are worst-case assumptions.

In practice (takes several seconds to find a 512 bit prime):
1. Generate a random n-bit number, p
2. Set the high and low bits to 1 (to ensure it is the right

number of bits and odd)
3. Check that p isn’t divisible by any “small” primes

3,5,7,...,<2000
4. Perform the Rabin-Miller test at least 5 times.
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Rabin-Miller Primality Test

Is n prime?
Pick r and s such that s is odd and n = (2r ) · s + 1
Pick random integer a, where a ∈ {1, . . . n − 1}.
If both

as 6≡ 1 (mod n)

and for all j in {0, . . . r − 1}, a(2j )·s 6≡ −1 (mod n)

Then return composite
Else return probably prime
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