Documentation and Functional Specification

February 20, 2008

Q XML Documentation in C#

1/18

Inline XML Documentation

@ Visual Studio/Mono can generate XML documentation
from comments in source files.

@ Generated XML can be turned into web pages, or used by
other tools

@ Support for custom tags is potentially useful for third party
tools.

2/18

Example: Inline XML Documentation

namespace Geometry
{
/1] <summary>
/!l This text explains the <c>Point</c> class.
/1] </summary>
class Point
{
public int x;
public int y;

/1] <summary>

/'l Moves the point

/1] </summary>

/1] <param name="dx">Amount to move</param>
public void moveX(int dx){ x+=dx; }

} 3/18

Example: Generated XML

<?xml version="1.0"?>
<doc>
<assembly>
<name>pointFile</name>
</assembly>
<members>
<member name="T:Geometry.Point">
<summary>
This text explains the <c>Point</c> class.
</summary>
</member>
<member name="M:Geometry. Point.moveX(System.|nt32)">
<summary>
Moves the point
</summary>
<param name="dx">Amount to move</param>
</member>
</members>
</doc> 4/18

Basics of XML Comments

@ All XML comments must be on /// lines
@ XML comments must proceed either
e Type declarations: classes, delegates, interfaces
e Member declarations: fields, events, properties, and
methods
@ Members without xml comments are omitted from the
documentation
@ XML comments can'’t be used

@ in method bodies
@ On namespaces ...

5/18

Standard Tags

@ <summary> General information about a
member</summary>

@ <value> Describes property value</summary>

@ <param name="x">Description of method parameter
x</param>

@ <returns>Description of method results</param>

@ <exception cref="name">Describes an exception that may
be thrown</exception>

@ <seealso cref="name">A cross reference</seealso>. ..

6/18

Visual studio has special support for some tags.

@ <summary>— text shown by Intellisense
@ <param>— compiler checks parameter names are correct

@ <exception>— compiler checks that the exception type
exists

7/18

Member name decoration

All members names are decorated with their full names, types
of their arguments, and a one-character label.

Recall:

public void moveX(int dx){ x+=dx; }
A

<member name="M:Geometry. Point.moveX(System.Int32)">

8/18

XML Documentation Character Labels

| Label | Meaning

T Type: class, interface, struct, enum, delegate
F Field

P Property

M Method

E Event

N

Namespace (C# can't document names-
paces, but can reference them.)

Error

9/18

Summary: Inline XML Documentation

@ Benefits:

@ Drawbacks:

10/18

Summary: Inline XML Documentation

@ Benefits:

o Code and documentation in one place—kept is sync
e Standard tags facilitate tool use

@ Drawbacks:

10/18

Summary: Inline XML Documentation

@ Benefits:

o Code and documentation in one place—kept is sync
e Standard tags facilitate tool use

@ Drawbacks:

e Documentation can overwhelm code in source files
e Hard to internationalize documentation—should translation
team need to edit source files?

10/18

Summary: Inline XML Documentation

@ Benefits:

o Code and documentation in one place—kept is sync
e Standard tags facilitate tool use

@ Drawbacks:

e Documentation can overwhelm code in source files
e Hard to internationalize documentation—should translation
team need to edit source files?

@ Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

10/18

Summary: Inline XML Documentation

@ Benefits:

o Code and documentation in one place—kept is sync
e Standard tags facilitate tool use

@ Drawbacks:

e Documentation can overwhelm code in source files
e Hard to internationalize documentation—should translation
team need to edit source files?

@ Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

@ No required documentation system in this class.

10/18

e Functional Specification

11/18

Useful documentation

Documentation should fully specify what code does.
Questions documentation should answer:

@ What state does an object model?
@ What are method pre- and post-conditions?
@ What can cause exceptions, and which exceptions?

@ What assumptions and invariants are used by the
implementation?
Our approach: Document a program’s behavior using
well-defined clauses that discuss different aspects of
specification.

12/18

Functional specification and abstraction.

@ Implementation should be hidden from clients.
@ Maintainers need all the details.

@ Principle: Document public things using an abstract
specification state to describe program behavior.

@ Principle: Document private things using both the
specification and concrete state of program.

13/18

Documenting classes and interfaces.

Classes and interfaces should be described generally, and
define the associate specification state.

Example

// Instances of Point represent
/' the geometric object.

// State: A point p in R"2
class Point{ ... }

14/18

Documenting private fields

Private members define the concrete state of a class.
Document their invariants, and define an abstraction function
defining how concrete and abstract states are related.

/! Polar radius of the point.
// Invariant: r >= 0.
private double r;

// Polar angle of the point.
// Invariant: 0 <= theta < 0
private double theta;

// Abstraction Function:
/l State p = (rxcos(theta), rxsin(theta))

15/18

Documenting public members

Public members should be described in terms of the abstract
state.

/1 this.X is p’s X component
public double X{ get {r % sin(theta);}
set {...} }

16/18

Documenting methods

Write method specifications that describe the pre- and
post-conditions of the method, including possible side-effects
and exceptions.

/! distance(q) returns the distance
/1 between p and q.
double distance (Point q)

// rotate(d) effects this by rotating p about
/] the origin by d radians

/! Requires: —pi < d <= pi

void rotate (double d).

17/18

Specification clauses

State Abstract state of a class.
Abstraction Function Relates abstract and concrete states.

Invariants Constraints on public or private fields or members.
Invariants must hold after any constructors
executes.

Checks Method pre-condition. Method promises to throw
an exception when violated.

Requires Method pre-condition. Method may or may not
throw an exception when violated.

Throws Method post-condition. Explains a possible thrown
exception.

Returns Method post-condition describing ordinary return
values.

18/18

	XML Documentation in C#
	Functional Specification

