
Documentation and Functional Specification

February 20, 2008

1 XML Documentation in C#

2 Functional Specification

1/18

Inline XML Documentation

Visual Studio/Mono can generate XML documentation
from comments in source files.
Generated XML can be turned into web pages, or used by
other tools
Support for custom tags is potentially useful for third party
tools.

2/18

Example: Inline XML Documentation

namespace Geometry
{

/ / / <summary>
/ / / This t e x t exp la ins the <c>Point </ c> c lass .
/ / / </summary>
c lass Po in t
{

p u b l i c i n t x ;
p u b l i c i n t y ;

/ / / <summary>
/ / / Moves the po in t
/ / / </summary>
/ / / <param name="dx">Amount to move</param>
p u b l i c vo id moveX(i n t dx) { x+=dx ; }

}
} 3/18

Example: Generated XML

<?xml vers ion=" 1.0 " ?>
<doc>

<assembly>
<name> p o i n t F i l e < / name>

< / assembly>
<members>

<member name=" T:Geometry . Po in t ">
<summary>
This t e x t exp la ins the <c>Po in t< / c> c lass .
< / summary>

< / member>
<member name=" M:Geometry . Po in t . moveX(System . In t32) ">

<summary>
Moves the po in t
< / summary>
<param name=" dx ">Amount to move< / param>

< / member>
< / members>

< / doc> 4/18

Basics of XML Comments

All XML comments must be on /// lines
XML comments must proceed either

Type declarations: classes, delegates, interfaces
Member declarations: fields, events, properties, and
methods

Members without xml comments are omitted from the
documentation
XML comments can’t be used

in method bodies
on namespaces . . .

5/18

Standard Tags

<summary> General information about a
member</summary>
<value> Describes property value</summary>
<param name="x">Description of method parameter
x</param>
<returns>Description of method results</param>
<exception cref="name">Describes an exception that may
be thrown</exception>
<seealso cref="name">A cross reference</seealso>. . .

6/18

Visual studio has special support for some tags.

<summary>— text shown by Intellisense
<param>— compiler checks parameter names are correct
<exception>— compiler checks that the exception type
exists

7/18

Member name decoration

All members names are decorated with their full names, types
of their arguments, and a one-character label.

Recall:

p u b l i c vo id moveX(i n t dx) { x+=dx ; }

<member name=" M:Geometry . Po in t . moveX(System . In t32) ">

8/18

XML Documentation Character Labels

Label Meaning
T Type: class, interface, struct, enum, delegate
F Field
P Property
M Method
E Event
N Namespace (C# can’t document names-

paces, but can reference them.)
! Error

9/18

Summary: Inline XML Documentation

Benefits:

Code and documentation in one place—kept is sync
Standard tags facilitate tool use

Drawbacks:

Documentation can overwhelm code in source files
Hard to internationalize documentation—should translation
team need to edit source files?

Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

No required documentation system in this class.

10/18

Summary: Inline XML Documentation

Benefits:
Code and documentation in one place—kept is sync
Standard tags facilitate tool use

Drawbacks:

Documentation can overwhelm code in source files
Hard to internationalize documentation—should translation
team need to edit source files?

Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

No required documentation system in this class.

10/18

Summary: Inline XML Documentation

Benefits:
Code and documentation in one place—kept is sync
Standard tags facilitate tool use

Drawbacks:
Documentation can overwhelm code in source files
Hard to internationalize documentation—should translation
team need to edit source files?

Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

No required documentation system in this class.

10/18

Summary: Inline XML Documentation

Benefits:
Code and documentation in one place—kept is sync
Standard tags facilitate tool use

Drawbacks:
Documentation can overwhelm code in source files
Hard to internationalize documentation—should translation
team need to edit source files?

Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

No required documentation system in this class.

10/18

Summary: Inline XML Documentation

Benefits:
Code and documentation in one place—kept is sync
Standard tags facilitate tool use

Drawbacks:
Documentation can overwhelm code in source files
Hard to internationalize documentation—should translation
team need to edit source files?

Alternative programs (e.g. monodoc) try to provide the
best of both worlds.

No required documentation system in this class.

10/18

1 XML Documentation in C#

2 Functional Specification

11/18

Useful documentation

Documentation should fully specify what code does.
Questions documentation should answer:

What state does an object model?
What are method pre- and post-conditions?
What can cause exceptions, and which exceptions?
What assumptions and invariants are used by the
implementation?

Our approach: Document a program’s behavior using
well-defined clauses that discuss different aspects of
specification.

12/18

Functional specification and abstraction.

Implementation should be hidden from clients.
Maintainers need all the details.

Principle: Document public things using an abstract
specification state to describe program behavior.
Principle: Document private things using both the
specification and concrete state of program.

13/18

Documenting classes and interfaces.

Classes and interfaces should be described generally, and
define the associate specification state.

Example

/ / Ins tances of Po in t represent
/ / the geometr ic ob jec t .
/ / State : A po in t p i n R^2
c lass Po in t { . . . }

14/18

Documenting private fields

Private members define the concrete state of a class.
Document their invariants, and define an abstraction function
defining how concrete and abstract states are related.

/ / Polar rad ius o f the po in t .
/ / I n v a r i a n t : r >= 0.
p r i v a t e double r ;

/ / Polar angle o f the po in t .
/ / I n v a r i a n t : 0 <= the ta < 0
p r i v a t e double the ta ;

/ / Abs t rac t i on Funct ion :
/ / State p = (r ∗cos (the ta) , r ∗ s in (the ta))

15/18

Documenting public members

Public members should be described in terms of the abstract
state.

/ / t h i s .X i s p ’ s X component
p u b l i c double X{ get { r ∗ s in (the ta) ; }

se t { . . . } }

16/18

Documenting methods

Write method specifications that describe the pre- and
post-conditions of the method, including possible side-effects
and exceptions.

/ / d is tance (q) re tu rns the d is tance
/ / between p and q .
double d is tance (Po in t q)

/ / r o t a t e (d) e f f e c t s t h i s by r o t a t i n g p about
/ / the o r i g i n by d rad ians
/ / Requires : −p i < d <= p i
vo id r o t a t e (double d) .

17/18

Specification clauses

State Abstract state of a class.
Abstraction Function Relates abstract and concrete states.

Invariants Constraints on public or private fields or members.
Invariants must hold after any constructors
executes.

Checks Method pre-condition. Method promises to throw
an exception when violated.

Requires Method pre-condition. Method may or may not
throw an exception when violated.

Throws Method post-condition. Explains a possible thrown
exception.

Returns Method post-condition describing ordinary return
values.

18/18

	XML Documentation in C#
	Functional Specification

