
Object Oriented Programming in C#

February 13, 2008

1 The C# object model

2 Implementing an object oriented language

1/27

Goals of the C# object system.

polymorphism the ability to write code which operates on many
types—realized by inheritance, interfaces, and
overloading

encapsulation the ability to make separate a class’s behavior
from its implementation details—realized with
access modifiers

extensibility the ability to extend class functionality—realized
with inheritance and virtual methods.

2/27

Terminology

Field: a variable declared in a class.
Method: a procedure associated with a class.
Member: a field or method.

Instance of <class>: an object of type <class>

3/27

Inheritance

All classes inherit from a base class (default is
System.Object).
Derived classes automatically include the members of their
base classes.
Child classes extend base classes by adding new
members, and overriding virtual methods.

Can treat an instance of a derived class as an instance of
its base class.

4/27

Basic inheritance example

using System ;

c lass BaseSimple {
p u b l i c vo id P r i n t () {

Console . Out . Wr i teL ine (" BaseSimple ") ; }
}

c lass Chi ldSimple : BaseSimple { }

c lass Runner {
p u b l i c s t a t i c vo id Main (s t r i n g [] s) {

(new BaseSimple ()) . P r i n t () ; / / " BaseSimple "
(new Chi ldSimple ()) . P r i n t () ; / / " BaseSimple "

}
}

5/27

Static Dispatch: New overloaded methods are called
using an object’s compile-time type.

c lass BaseNew{
p u b l i c vo id P r i n t () {

Console . Out . Wr i teL ine ("BaseNew") ; } }

c lass ChildNew : BaseNew {
new p u b l i c vo id P r i n t () {

Console . Out . Wr i teL ine (" ChildNew ") ; } }

c lass Runner {
p u b l i c s t a t i c vo id Main (s t r i n g [] s) {

ChildNew c = new ChildNew () ;
BaseNew b = c ;

c . P r i n t () ; / / " ChildNew "
b . P r i n t () ; / / "BaseNew"

} } 6/27

Dynamic Dispatch: Virtual methods called using an
object’s run-time type.

c lass BaseVi r t {
p u b l i c v i r t u a l vo id P r i n t () {

Console . Out . Wr i teL ine (" BaseVi r t ") ; } }

c lass C h i l d V i r t : BaseVi r t {
p u b l i c ove r r i de vo id P r i n t () {

Console . Out . Wr i teL ine (" C h i l d V i r t ") ; } }

c lass Runner {
p u b l i c s t a t i c vo id Main (s t r i n g [] s) {

C h i l d V i r t c = new C h i l d V i r t () ;
BaseVi r t b = c ;

c . P r i n t () ; / / " C h i l d V i r t "
b . P r i n t () ; / / " C h i l d V i r t "

} } 7/27

Overriding Rules

Base classes may mark methods with virtual . Such
methods are virtual and may be overridden by derived
classes.
Derived classes must mark methods with override to
override them.
Derived classes can mark methods with sealed prevent
subclasses from overriding the methods.

By default methods are sealed.
A derived class can seal a virtual method to stop further
overriding.

Compiler with raise an error if there’s a chance of
ambiguity.

8/27

Calling base class methods with base

Sometimes we need to call a base class’s methods explicitly.

c lass C h i l d V i r t : BaseVi r t {
p u b l i c ove r r i de vo id P r i n t () {

Console . Out . Wr i teL ine (" C h i l d V i r t says Hi ! ")
Console . Out . Wr i teL ine (" Base v i r t says : ") ;
/ / c a l l s base method
base . P r i n t () ;
}

/ / c a l l s base cons t ruc to r
p u b l i c C h i l d V i r t (i n t x) : base (x) { }

}

Without the base keyword, there would be no way to access
such methods!

9/27

Class Modifiers and Static Members

Class modifiers
Marking a class abstract means it can’t be instantiated,
only derived from.
Marking a class sealed means it can’t be derived from, only
instantiated.
Marking a class static means a class is both sealed and
abstract. (Can only contain static members.)

Static members
One copy of member per class (as opposed to per
instance).
Can be initialized with a zero-argument static constructor.

10/27

Static class example

using System . C o l l e c t i o n s . Generic ;

p u b l i c s t a t i c c lass Logger {
p r i v a t e s t a t i c L i s t < s t r i n g > myList ;

s t a t i c Logger () { myList = new L i s t < s t r i n g > () ; }

p u b l i c s t a t i c vo id Append (s t r i n g s) {
myList . Add (s) ; }

}

11/27

Interfaces declare contracts that a class must follow.

Interfaces list methods which much a appear in a class.

Methods may use interface names for argument and result
types (bounded polymorphism).

Classes can implement interfaces in two ways
Implicitly (the normal way), interface methods added
directly to class and accessed as usual.
Explicitly, interface members are declared with special
syntax and accessed through casts. Useful in the case
where two interfaces declare methods with the same name.

12/27

Example: Implicit Interface Implementation

i n t e r f a c e IWindow {
vo id Draw () ;

}

p u b l i c c lass Disp lay : IWindow {
/ / I m p l i c i t I n t e r f a c e Implementat ion
p u b l i c vo id Draw () { Console . Out . Wr i teL ine ("A") ; }

}

c lass Runner {
s t a t i c vo id Main (s t r i n g [] args) {

Disp lay c = new Disp lay () ;
d . Draw () ; / / "A"

} }

13/27

Multiple interfaces can conflict.

i n t e r f a c e IWindow {
/ / Implementat ions should p r i n t to the screen
void Draw () ;

}

i n t e r f a c e ICowboy {
/ / Implementat ions should get out a gun
void Draw () ;

}

/ / Trouble !
p u b l i c c lass WesternGame : IWindow , ICowboy { . . . }

14/27

Example: Explicit Interface Implementation

c lass WesternGame : IWindow , ICowboy {
/ / E x p l i c i t I n t e r f a c e Implementat ions
vo id IWindow . Draw () {

Console . Out . Wr i teL ine (" Drawing P ic tu re ") ; }
vo id ICowboy . Draw () {

Console . Out . Wr i teL ine (" Drawing Six Shooter ") ; }
}

c lass Runner {
s t a t i c vo id Main (s t r i n g [] args) {

WesternGame w = new WesternGame () ;

/ / E r ro r : w. Draw () ;
((ICowboy) w) . Draw () ; / / " Drawing P ic tu re "
((IWindow) w) . Draw () ; / / " Drawing Six Shooter "

} }
15/27

Casting

string x = (string) someObject

Up-casts:
Convert instances of a child class to a parent class or
interface.
Always succeeds.

Down-casts:
Convert instances of a parent class to a child class.
May fail and throw InvalidCastException
Use as or is to check if a cast is safe.

Generics provide an elegant way to write (for example)
collection classes without casting.

16/27

Access modifiers protect class implementation details.
Access modifiers may be attached to class, field, and method declarations.

Modifier Meaning
public No visibility restrictions.

protected1 Visible to classes derived from
the defining class

internal2 Visible anywhere in the same as-
sembly.

protected internal1 Visible according to protected.
Also, member visible according
to internal.

private1 Visible only within defining class

1Only applicable to elements defined in a class (i.e. not to classes defined
only in a namespace).

2internal is the default access modifier.
17/27

1 The C# object model

2 Implementing an object oriented language

18/27

Methods

C#: Methods, generics, objects, interfaces. . .
Machine code:

operators: add, subtract, xor. . .
conditionals: if
jump
take CIS 371 for more details.

Common Intermediate Language
object oriented byte code
.Net equivalent to Java byte code
closer to C# than machine code

How do we compile an object oriented program to machine
code?

19/27

Functions and Methods

Functions
take arguments, compute, and return a result.
have access to arguments and global
variables.
always “means the same thing” (static
dispatch).
easy to implement in machine code.

Methods
take arguments, compute, and return a result.
has access to arguments, global variables,
and object members.
have context dependent meanings (dynamic
dispatch).
are be implemented in terms of functions.

20/27

From functions to methods

Translating methods to functions requires emulating two key
method behaviors

Access to object members:

Represent methods as a functions that takes special
argument, this, that contains an object reference.

Dynamic dispatch:

Lookup the right function to call in a table (the vtable) at
runtime.

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

21/27

From functions to methods

Translating methods to functions requires emulating two key
method behaviors

Access to object members:
Represent methods as a functions that takes special
argument, this, that contains an object reference.

Dynamic dispatch:

Lookup the right function to call in a table (the vtable) at
runtime.

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

21/27

From functions to methods

Translating methods to functions requires emulating two key
method behaviors

Access to object members:
Represent methods as a functions that takes special
argument, this, that contains an object reference.

Dynamic dispatch:
Lookup the right function to call in a table (the vtable) at
runtime.

Will also need simpleClasses (or records) which contain
multiple fields but no methods.

21/27

Example: Adding a this argument

c lass Counter {
i n t C;
vo id inc (i n t x) {C += x ; }
vo id incTwice (i n t x) { i nc (x) ; i nc (x) }

}

simpleClass Counter { i n t C; }

f u n c t i o n vo id Counter_inc (Counter t h i s , i n t x) {
t h i s .C += x ; }

f u n c t i o n vo id Counter_incTwice (Counter t h i s , i n t x) {
c a l l Counter_inc (t h i s , x) ;
c a l l Counter_inc (t h i s , x) }

22/27

Example: Virtual methods through v-tables

c lass Counter {
i n t C;
v i r t u a l vo id inc (i n t x) {C += x ; } }

c lass FastCounter : Counter {
ove r r i de vo id inc (i n t x) {C += 2∗x ; } }

c lass Runner {
s t a t i c vo id Main (s t r i n g [] args)
{

Counter c = new FastCounter () ;

/ / Should c a l l FastCounter method and get 6
c . i nc (3) ;

}
}

23/27

Example: Virtual methods through v-tables

c lass Counter {
i n t C;
v i r t u a l vo id inc (i n t x) {C += x ; }

}

simpleClass Counter {

i n t C;
/ / compi ler remembers 0 −> Counter_inc
f u n c t i o n [] v tab le = { Counter_inc } ;

}

f u n c t i o n vo id Counter_inc (Counter t h i s , i n t x) {
t h i s .C += x ; }

24/27

Example: Virtual methods through v-tables

c lass FastCounter : Counter {
ove r r i de vo id inc (i n t x) {C += 2∗x ; } }

simpleClass FastCounter {

/ / copied from base c lass
i n t C;
/ / compi ler remembers 0 −> FastCounter_inc
f u n c t i o n [] v tab le = { FastCounter_inc } ;

}

f u n c t i o n vo id FastCounter_inc (Counter t h i s , i n t x) {
C += 2∗x ; }

25/27

Example: Virtual methods through v-tables

s t a t i c vo id Main (s t r i n g [] args)
{

Counter c = new FastCounter () ;

c . i nc (3) ;
}

/ / s t a t i c methods can compile to f u nc t i o ns w/ o t h i s
f u n c t i o n vo id Runner_Main (s t r i n g [] args) {

/ / c a l l FastCounter ’ s d e f a u l t cons t r uc to r
c = c a l l FastCounter_ctor () ;

/ / do the v i r t u a l c a l l
f u n c t i o n f = c . v tab le [0] ;
c a l l f (c , 3)

}

26/27

Other features

Interfaces Each interface gets an interface table—analogous
to a vtable.

Constructors Implemented like static methods—return the this
pointer.

27/27

	The C# object model
	Implementing an object oriented language

