
.NET and Advanced C# Topics

April 16, 2008

Project Demos

In class demos
Next Wednesday
10 minutes per group
Be ready to show off your work and talk a little bit about
how C# worked as an implementation language.
Avoid disaster: Bring a laptop or test the computer in this
room ahead of time. If there’s a problem, let me know early!

Instructor demos
Any day next week (send me mail for scheduling)
Be prepared to discuss your program’s features, and
implementation.

1/17

1 .NET

2 Advanced C# concepts

2/17

Assemblies and modules

Modules
Smallest form of compiler output
Contain CIL code and metadata
Built using code from a single language
Always have extension .netmodule

Assemblies
Correspond to complete libraries (.dll) or programs (.exe)
May contain code, metadata, and reference to modules
May be written using multiple languages
Have distinguished meta data section: the assembly
manifest

3/17

Viewing assemblies in with ildasm

[demo] 4/17

Assembly naming

Two types of names

Strong names (4 components)

Short name: e.g. System.XML
Version number: allows side-by-side execution—a system
can contain multiple versions of the same library without
conflict
Culture identifier: allows different code to be loaded
based on localization settings
Hash token: based on on the developer’s public key and
assembly files names, used to avoid name conflicts
between different groups

Partial names
names lacking one of the above components

5/17

Code signing

Can include a digital signature in assembly manifest
Delayed signing allows code to built without access to
private keys
Prevents malicious parties from swapping assemblies
(ensures assembly integrity)
Does not keep code private (no confidentiality property)

6/17

The Global Assembly Cache

GAC as special directory tree containing assemblies
Starts at C:\Windows\assembly
Assemblies in the GAC are accessible to any program
Assemblies in GAC must be signed or will not load (but this
behavior can be disabled)

7/17

More on metadata

Metadata describes types—this information is used to
implement reflection
.Net metadata is extensible—new forms may be added by
extending the System.Attribute class

8/17

Mixed language programming (Example)

MyMath.fs (F#, the entire file):

l e t rec f a c t n = (i f n = 0 then 1
else n ∗ f a c t (n−1))

callfact.cs:

using System ;

p u b l i c c lass C a l l e r {
p u b l i c s t a t i c vo id Main () {

Console . Wr i teL ine (MyMath . f a c t (4)) ;
}

}

9/17

Common type system

.Net provides a core set of types that any language can
use

int, delegate types, etc. . .
Languages can define nonstandard types to

C#: pointer types, sbyte
F#: fast functions

10/17

1 .NET

2 Advanced C# concepts

11/17

Reflection Example

using System ; using System . R e f l e c t i o n ;

p u b l i c c lass Re f l ec t {

p u b l i c s t a t i c vo id Main () {
Assembly asm =

Assembly . LoadFrom (" RpnCalculator . exe ") ;

foreach (Type t i n asm. GetTypes ()) {
Console . Wr i teL ine (" Class " + t) ;

MethodInfo [] mis = t . GetMethods (
BindingFlags . Ins tance | BindingFlags . Pub l i c) ;

foreach (MethodInfo mi i n mis)
Console . Wr i teL ine (" Method " + mi) ;

} } }

12/17

Reflection Example (output)

Class RpnCalculator . MainDialog
Method System . S t r i n g ToStr ing ()
Method Boolean Va l i da teCh i l d ren ()
Method Boolean Va l i da teCh i l d ren (System . Windows . Forms . V a l i d a t i o n C o n s t r a i n t s)
Method Void RemoveOwnedForm(System . Windows . Forms . Form)
Method Void add_ResizeBegin (System . EventHandler)
Method Void remove_ResizeBegin (System . EventHandler)
Method Void add_ResizeEnd (System . EventHandler)
Method Void remove_ResizeEnd (System . EventHandler)
Method Void SetDesktopBounds (In t32 , In t32 , In t32 , In t32)
Method Void SetDesktopLocat ion (In t32 , In t32)
Method Void Show(System . Windows . Forms . IWin32Window)
Method System . Windows . Forms . Dia logResu l t ShowDialog ()
Method System . Windows . Forms . Dia logResu l t ShowDialog (System . Windows . Forms . IWin32Window)
Method System . Drawing . Size get_AutoScaleBaseSize ()

... 13/17

Reflection capabilities

Query type and method data
Query custom attributes
Call methods (even private ones!)
Build new types at runtime using System.Reflection.Emit
namespace

14/17

Reference and Value types

Two ways to deal with data
Reference types—declared with class

New objects allocated on the heap (big)
Old objects cleaned by garbage collection (slow)
Equality defined by reference

Value types—declared with struct
New objects allocated on the stack (smaller)
Old objects forgotten and overwritten (fast)
Equality defined by structure

Autoboxing lets value types be used where reference types
are expected.

15/17

P/Invoke (Platform invoke)

The P/Invoke interface is used to call native code libraries.
The DllImport attribute identifies which library function to
call
Hardest part: “impedance mismatch” between native and
.NET types. MarshalAs attributes can provide fine-grain
control over necessary type conversions.

16/17

P/Invoke Example

using System ;
using System . Runtime . In te ropServ i ces ;

p u b l i c s t a t i c c lass Beeper {

[D l l I m p o r t (" User32 . d l l ")]
s t a t i c ex tern Boolean MessageBeep (

UInt32 beepType) ;

p u b l i c s t a t i c vo id Main () {
MessageBeep (0) ;

}
}

17/17

	.NET
	Advanced C# concepts

