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Abstract

Authorization logics provide a principled and flexible ap-
proach to specifying access control policies. One of their
compelling benefits is that a proof in the logic is evidence
that an access-control decision has been made in accor-
dance with policy. Using such proofs for auditing reduces
the trusted computing base and enables the ability to de-
tect flaws in complex authorization policies. Moreover, the
proof structure is itself useful, because proof normalization
can yield information about the relevance of policy state-
ments. Untrusted, but well-typed, applications that access
resources through an appropriate interface must obey the
access control policy and create proofs useful for audit.

This paper presents AURA0, an authorization logic
based on a dependently-typed variant of DCC and proves
the metatheoretic properties of subject-reduction and nor-
malization. It shows the utility of proof-based auditing in a
number of examples and discusses several pragmatic issues
that must be addressed in this context.

1 Introduction

Logging, i.e. recording for subsequent audit significant
events that occur during a system’s execution, has long been
recognized as a crucial part of building secure systems. A
typical use of logging is found in a firewall, which might
record the access control decisions that it makes when de-
ciding whether to permit connection requests. In this case,
the log might consist of a sequence of time stamped strings
written to a file where each entry indicates some informa-
tion about the nature of the request (IP addresses, port num-
bers, etc.) and whether the request was permitted. Other
scenarios place more stringent requirements on the log. For
example, a bank server’s transactions log should be tam-
per resistant, and log entries should be authenticated and
not easily forgeable. Logs are useful because they can help
administrators audit the system both to identify sources of
unusual or malicious behavior and to find flaws in the au-
thorization policies enforced by the system.

Despite the practical importance of auditing, there has
been surprisingly little research into what constitutes good
auditing procedures.1 There has been work on cryptograph-
ically protecting logs to prevent or detect log tampering [29,
11], efficiently searching confidential logs [32], and experi-
mental research on effective, practical logging [6, 26]. But
there is relatively little work on what the contents of an au-
dit log should be or how to ensure that a system implemen-
tation performs appropriate logging (see Wee’s paper on a
logging and auditing file system [33] for one approach to
these issues, however).

In this paper, we argue that audit log entries should
constitute evidence that justifies the authorization decisions
made during the system’s execution. Following an abun-
dance of prior work on authorization logic [4, 24, 17, 1, 27,
2, 21], we adopt the stance that log entries should contain
proofs that access should be granted. Indeed, the idea of
logging such proofs is implicit in the proof-carrying autho-
rization literature [5, 7, 10], but, to our knowledge, the use
of proofs for auditing purposes has not been studied out-
right.

There are several compelling reasons why it is advan-
tageous to include proofs of authorization decisions in the
log. First, by connecting the contents of log entries directly
to the authorization policy (as expressed by a collection of
rules stated in terms of the authorization logic), we obtain
a principled way of determining what information to log.
Second, proofs contain structure that can potentially help
administrators find flaws or misconfigurations in the autho-
rization policy. Third, storing verifiable evidence helps re-
duce the size of the trusted computing base; if every access-
restricting function automatically logs its arguments and re-
sult, the reasoning behind any particular grant of access can-
not be obscured by a careless or malicious programmer.

The impetus for this paper stems from our experience
with the (ongoing) design and implementation of a new
security-oriented programming language called AURA [25].

1Note that the term auditing can also refer to the practice of statically
validating a property of the system. Code review, for example, seeks to
find flaws in software before it is deployed. Such auditing is, of course,
very important, but this paper focuses on dynamic auditing mechanisms
such as logging.
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The primary goal of this work is to find mechanisms that
can be used to simplify the task of manipulating authoriza-
tion proofs and to ensure that appropriate logging is always
performed regardless of how a reference monitor is imple-
mented. Among other features intended to make building
secure software easier, AURA provides a built-in notion of
principals, and its type system treats authorization proofs
as first-class objects; the authorization policies may them-
selves depend on program values.

This paper focuses on the use of proofs for logging pur-
poses and the way in which we envision structuring AURA
software to take advantage of the authorization policies to
minimize the size of the trusted computing base. The main
contributions of this paper can be summarized as follows.

Section 2 proposes a system architecture in which log-
ging operations are performed by a trusted kernel, which
can be thought of as part of the AURA runtime system.
Such a kernel accepts proof objects constructed by pro-
grams written in AURA and logs them while performing
security-relevant operations.

To illustrate AURA more concretely, Section 3 develops
a dependently typed authorization logic based on DCC [2]
and similar to that found in the work by Gordon, Fournet,
and Maffeis [19, 20]. This language, AURA0, is intended
to model the fragment of AURA relevant to auditing. We
show how proof-theoretic properties such as subject reduc-
tion and normalization can play a useful role in this context.
Of particular note is the normalization result for AURA0 au-
thorization proofs.

Section 4 presents an extended example of a file system
interface; as long as a client cannot circumvent this inter-
face, any reference monitor code is guaranteed to provide
appropriate logging information. This example also demon-
strates how additional domain-specific rules can be built on
top of the general kernel interface, and how the logging of
proofs can be useful when it isn’t obvious which of these
rules are appropriate.

Of course, there are many additional engineering prob-
lems that must be overcome before proof-enriched auditing
becomes practical. Although it is not our intent to address
all of those issues here, Section 5 highlights some of the
salient challenges and sketches future research directions.
Section 6 discusses related work.

2 Kernel Mediated Access Control

A common system design idiom protects a resource with
a reference monitor, which takes requests from (generally)
untrusted clients and decides whether to allow or deny ac-
cess to the resource [12]. Ideally a reference monitor should
be configured using a well-specified set of rules that define
the current access-control policy and mirror the intent of
some institutional policy.

Rules

Kernel

ResourceLog

raw-op1 raw-op2

Application

Trusted Computing Base

Untrusted Code Auditable
Formal Policy

∑K

∑ext
Extended 
Signature

op1 op2IK

Figure 1. A monolithic application decom-
posed into several components operating
with various degrees of trust.

Unfortunately, access-control decisions are not always
made in accordance with institutional intent. This can occur
for a variety of reasons including the following:

1. The reference monitor implementation or rule lan-
guage may be insufficient to express institutional in-
tent. It this case, the rules must necessarily be too re-
strictive or too permissive.

2. The reference monitor may be configured with an in-
correct set of rules.

3. The reference monitor itself may be buggy. That is,
it may reach an incorrect decision even when starting
from correct rules.

The first and second points illustrate an interesting ten-
sion: rule language expressiveness is both necessary and
problematic. While overly simple languages prevent ef-
fective realization of policy intent, expressive languages
make it more likely that a particular rule set has unin-
tended consequences. The latter issue is particularly acute
in light of Harrison and colleagues’ observation that de-
termining the ultimate effect of policy changes—even in
simple systems—is generally undecidable [23]. The third
point recognizes that reference monitors may be complex
and consequently vulnerable to implementation flaws.

The AURA programming model suggests a different ap-
proach to protecting resources, illustrated in Figure 1. There
are three main components in the system: a trusted kernel,
an untrusted application, and a set of rules that constitute the
formal policy. The kernel itself contains a log and a resource
to be protected. The application may only request resource
access through kernel interface IK . This interface (made
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up of the opis in the figure) wraps each of the resource’s
native operations (the raw-opis) with new operations taking
an additional argument—a proof that access is permitted.
ΣK and Σext contain constant predicate symbols that may
be occur in these proofs.

Unlike in the standard reference monitor model, an
AURA kernel forwards every well-typed request to its un-
derlying resource. Each opi function takes as an additional
argument a proof that the operation is permitted and returns
a corresponding proof that the operation was performed, so
the well-typedness of a call ensures that the requested ac-
cess is permitted. Proofs can be typechecked dynamically
in time linearly proportional to the size of the proof should
the request not come from a well-typed application. More-
over, logging these proofs is enough to allow an auditor to
ascertain precisely why any particular access was allowed.

We define a language AURA0 to provide an expressive
policy logic for writing rules and kernel interface types. It
is a cut-down version of full AURA [25], which itself is
a polymorphic and dependent variant of Abadi’s Depen-
dency Core Calculus [3, 2]. In AURA0, software compo-
nents may be explicitly associated with one or more princi-
pals. Typically, a trusted kernel is identified with principal
K, and an untrusted application may work on behalf of sev-
eral principals: A, B, etc. Principals can make assertions;
for instance, the (inadvisable) rule “the kernel asserts that
all principals may open any file,” is written as proposition
K says ((A:prin)→ (f :string)→ OkToOpen A f). Ev-
idence for this rule contains one or more signature objects—
possibly implemented as cryptographic signatures—that ir-
refutably tie principals to their utterances.

The above design carries several benefits. Kernels log
the reasoning used to reach access control decisions; if a
particular access control decision violates policy intent but
is allowed by the rules, audit can reveal which rules con-
tributed to this failure. Additionally, because all resource
access is accompanied by a proof, the trusted computing
base is limited to the proof checker and kernel. As small,
standard programs these components are less likely to suf-
fer from software vulnerabilities than than traditional, full-
scale reference monitors.

A key design principle is that kernels should be small and
general; this is realized by removing complex, specialized
reasoning about policy (e.g. proof search) from the trusted
computing base. In this sense, AURA systems are to tradi-
tional reference monitors as operating system microkernels
are to monolithic kernels.

2.1 The formal system description

We model a system consisting of a trusted kernel K
wrapping a security-oblivious resource R and communicat-
ing with an untrusted application. The kernel is the trusted
system component that mediates between the application

and resource by checking and logging access control proofs;
we assume that applications are prevented from accessing
resources directly by using standard resource isolation tech-
niques deployed in operating systems or type systems.

A resource R is a stateful object with a set of opera-
tors that may query and update its state. Formally, R =
(σ, States, IR, δ) where σ ∈ States and

IR = raw-op1 : T1 ⇒ S1, . . . , raw-opn : Tn ⇒ Sn

The current state σ is an arbitrary structure that represent-
ing R’s current state, and States is the set of all possi-
ble resource states. IR is the resource’s interface; each
raw-opi : Ti ⇒ Si is an operator with its corresponding
type signature. The transition function δ describes how the
raw operations update state, as well as their input-output be-
havior. For instance, (u, σ′) = δ(raw-opi, v, σ) when raw
operation i—given input v and initial resource state σ—
produces output u and updates the resource state to σ′.

We formalize a trusted kernel K as a tuple
(L,R,ΣK , IK); the authority of the kernel is denoted
by the constant principal K. The first component, L, is a
list of proofs representing the log. The second component
is the resource encapsulated by the kernel. Signature
ΣK contains pairs of predicates, OkToOpi : Ti → Prop
and DidOpi : Ti → Si → Prop for each raw-opi of
type Ti ⇒ Si in IR. These predicates serve as the core
lexicon for composing access control rules: a proof of
K says OkToOp t signifies that an operation raw-op is
permitted with input t, and a proof of K says DidOp t s
means that raw-op was run with input t and returned s.
Lastly, the kernel exposes an application programming
interface IK , which contains a security-aware wrapper
operation

opi : (x : Ti) ⇒ K says (OkToOpi x) ⇒
{y:Si; K says DidOpi x y}

for each raw-opi in IR. Applications must accessR through
IK rather than IR.

The type of opi shows that the kernel requires two ar-
guments before it will provide access to raw-opi. The first
argument is simply raw-opi’s input; the second is a proof
that the kernel approves the operation, typically a compo-
sition of policy rules (globally known statements signed by
K) and statements made by other relevant principals. The
return value of opi is a pair of raw-opi’s output with a proof
that acts as a receipt, affirming that the kernel called raw-opi

and linking the call’s input and output. Note that OkToOpi

and DidOpi depend on the arguments x and y.
The final components in the model are the application,

the rule set, and the extended signature. We assume ei-
ther that the application is well-typed—and thus that it re-
spects IK—or, equivalently, that the kernel performs dy-
namic typechecking on incoming untrusted arguments. The
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rule set is simply a well-known set of proofs intended to
represent some access control policy; the extended signa-
ture (Σext in Figure 1) defines predicate symbols that these
rules may use in addition to those defined in ΣK .

Remote procedure call example Consider a simple re-
mote procedure call resource with only the single raw op-
eration, raw-rpc : string ⇒ string. The kernel associated
with this resource exposes the following predicates:

ΣK = OkToRPC : string→ Prop,
DidRPC : string→ string→ Prop

and the kernel interface

IK = rpc : (x : string) ⇒ K says OkToRPC x ⇒
{y:string; K says DidRPC x y}.

A trivial policy could allow remote procedure call. This
policy is most simply realized by the singleton rule set
Rules = {r0 : K says ((x:string)→ OkToRPC x)}.

2.2 State transition semantics

While the formalism presented thus far is sufficient to
describe what AURA0 systems look like at one instant in
time, it is much more interesting to consider an evolving
system. Here we describe variant operational semantics of
the AURA0 system at a semi-formal level, with emphasis
on logging. The full AURA language includes a computa-
tion fragment capable of expressing the ideas in this section
by way of a standard monadic state encoding, although its
analysis by Jia and colleagues [25] does not address logging
directly.

To demonstrate the key components of authorization and
auditing in AURA0, we consider evaluations from three per-
spectives listed as follows. In each we will consider up-
dating states according to the transition relations defined in
Figure 2.

1. Resource evaluation, written with −{}→r, models the
state transition for raw resources. This relation does no
logging and does not consider access control.

2. Logged evaluation, written with −{}→l, models state
transitions of an AURA0 system implementing logging
as described in this paper. All proofs produced or con-
sumed by the kernel are recorded in the log.

3. Semi-logged evaluation, written with −{}→s, models
the full system update with weaker logging. While
proofs are still required for access control, the log con-
tains only operation names, not the associated proofs.

Resource evaluation is the simplest evaluation system.
A transition IR; δ ` σ−{raw-opiv}→rσ′ may occur when v
is a well typed input for raw-opi according to resource in-
terface IR and δ specifies that raw-opi, given v and starting
with a resource in state σ, returns u and updates the resource
state to σ′. (In the following we will generally omit the `
and objects to its left, as they are constant and can be in-
ferred from context.)

The logged evaluation relation is more interesting: in-
stead of simply updating resource states, it updates config-
urations. A configuration C, is a triple (L, σ,S), where L
is a list of proofs representing a log, σ is an underlying re-
source state, and S is a set of proofs of the form sign(A,P )
intended to track all assertions made by principals. There
are two logged evaluation rules, L-SAY and L-ACT.

Intuitively, L-SAY allows principals other than the kernel
K to add objects of the form sign(A,P ) to S, correspond-
ing to the ability of clients to sign arbitrary propositions,
as long as all of signatures found within P already appear
in S. This last condition is written S � P and prevents
principals from forging evidence—in particular, from forg-
ing evidence signed by K. S � P holds when all signatures
embedded in P appear in S.

Rule L-ACT models the use of a resource through it’s
public interface. The rules ensure that both of the opera-
tion’s arguments—the data component v and the proof p—
are well typed, and all accepted access control proofs are
appended to the log. After the resource is called through its
raw interface, the kernel signs a new proof term, q, as a re-
ceipt; it is both logged and added to S . Again, the premise
S � p guarantees the unforgeability of sign objects.

The semi-logged relation functions similarly (see rules
S-SAY and S-ACT), although it logs only the list of opera-
tions performed rather than any proofs.

By examining the rules in Figure 2, we can see that
the kernel may only sign DidOp receipts during evalua-
tion. Since statements signed by any other principal may
be added to S at any time, we may identify the initial set of
sign objects in S with the system’s policy rules.

Audit and access control The three transition relations
permit different operations and record different information
about allowed actions. Resource evaluation allows all well-
typed calls to the raw interface, and provides no information
to auditors. Semi-logged evaluation allows only authorized
access to the raw interface via access control, and provides
audit information of the list of allowed operations. Logged
evaluation, like semi-logged evaluation, allows only autho-
rized access to the raw interface; it also produces a more
informative log of the proofs of the authorization decisions.
Intuitively, semi-logged and logged evaluation, which de-
ploy access control, allow strictly fewer operations than re-
source evaluation. Logged evaluation provides more infor-
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Resource evaluation relation ·; · ` ·−{·}→r·

·; · ` v : T raw-opi : T ⇒ S ∈ IR ( , σ′) = δ(raw-opi, v, σ)
IR; δ ` σ−{raw-opi v}→rσ′

R-ACT

Semi-logged evaluation relation ·; ·; · ` ·−{·}→s·

opi : (x : T ) ⇒ K says OkToOpi x ⇒ {y:S; K says DidOpi x y} ∈ IK S � p
·; · ` v : T Σext; · ` p : K says OkToOpi v (u, σ′) = δ(raw-opi, v, σ) q = sign(K,DidOpi v u)

Σext; IK; δ ` (L, σ,S)−{opi, v, p}→s(opi :: L, σ′,S ∪ {q})
S-ACT

Σext; · ` P : Prop A 6= K S � P
Σext; IK; δ ` (L, σ,S)−{assert:A says P}→s(L, σ,S ∪ {sign(A,P )})

S-SAY

Proof-logged evaluation relation ·; ·; · ` ·−{·}→l·

opi : (x : T ) ⇒ K says OkToOpi x ⇒ {y:S; K says DidOpi x y} ∈ IK S � p
·; · ` v : T Σext; · ` p : K says OkToOpi v (u, σ′) = raw-opi(v, σ) q = sign(K,DidOpi v u)

Σext; IK; δ ` (L, σ,S)−{opi, v, p}→l(q :: p :: L, σ′,S ∪ {q})
L-ACT

Σext; · ` P : Prop A 6= K S � P
Σext; IK; δ ` (L, σ,S)−{assert:A says P}→l(L, σ,S ∪ {sign(A,P )})

L-SAY

Figure 2. Operational semantics

mation than the semi-logged evaluation for auditing, and
semi-logged evaluation provides more information than re-
source evaluation.

The rest of this section sketches a technical framework
in which the above claims are formalized and verified. The
main result, Lemma 2.1, states that logged evaluation pro-
vides more information during audit than resource evalua-
tion; similar results hold when comparing the logged and
semi-logged relations or the semi-logged and resource re-
lations. Before we present the formal statement of this
lemma, we define a few auxiliary concepts.

Each of the three relations can be lifted to define traces.
For instance, a resource trace is a sequence of the form

τ = σ0−{raw-op1 v1}→rσ1 · · · −{raw-opn vn}→rσn

Logged and semi-logged traces are defined similarly.
The following meta-function, pronounced “erase”,

shows how a logged trace is implemented in terms of its
encapsulated resource:

b(L, σ,S)cl/r = σ

bC−{assert: }→lτcl/r = bτcl/r

bC−{op, v, }→lτcl/r = bCcl/r−{(raw-op, v)}→rbτcl/r

For a set of traces, b(H)cl/r is defined as {bτcl/r | τ ∈ H}.
Analogous functions can be defined to relate other pairs of
evaluation schemes.

The σ0,S0-histories of a configuration C, written
H l(σ0,S0, C), is defined as the set of all traces that ter-
minate at configuration C and begin with an initial state of
the form (nil, σ0,S0). The σ0-histories of a resource state
σ, written Hr(σ0, σ), is defined as the set of all resource
traces that terminate at σ.

The following lemma makes precise the claim that
logged evaluation is strictly more informative, for audit,
than resource evaluation. It describes a thought experiment
where an auditor looks at either a logged evaluation con-
figuration or its erasure as a resource state. In either case
the auditor can consider the histories leading up to his ob-
servation. The lemma shows that there are histories con-
sistent with resource evaluation that are not consistent with
logged evaluation. Intuitively, this means logged evalua-
tion makes more distinctions than—and is more informative
than—resource evaluation.

Lemma 2.1. There exists a kernel K, extended signature
Σext, configuration C = (L, σ,S), rule set S0, initial trace
σ0 and resource trace τ such that τ ∈ Hr(σ0, σ), but τ /∈
b(H l(σ0,S0, C))cl/r.
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Proof Sketch. By construction. Let States = {up, down},
with initial state up. Pick a configuration C whose
log contains six proofs and reflects a trace of the form
( , up, )−{}→l( , down, )−{}→l( , up, ). Now con-
sider trivial resource trace τ = up. Observe that τ ∈
Hr(up, bCcl/r), but τ /∈ H l(C).

Not surprisingly, it is possible to make similar distinc-
tions between logged and semi-logged histories, as logged
histories can ensure that a particular L-ACT step occurred,
but this is not possible in the semi-logged case. As we will
see in Section 3.3, this corresponds to the inability of the
semi-logged system to distinguish between different proofs
of the same proposition and thus to correctly assign blame.

3 The Logic

This section defines AURA0, a language for express-
ing access control. AURA0 is a higher-order, depen-
dently typed, cut-down version of Abadi’s Dependency
Core Calculus [3, 2], Following the Curry-Howard isomor-
phism [16], AURA0 types correspond to propositions relat-
ing to access control, and expressions correspond to proofs
of these propositions. Dependent types allow propositions
to be parameterized by objects of interest, such as princi-
pals or file handles. The interface between application and
kernel code is defined using this language.

After defining the syntax and typing rules of AURA0 and
illustrating its use with a few simple access-control exam-
ples, this section gives the reduction rules for AURA0 and
discusses the importance of normalization with respect to
auditing. It concludes with proofs of subject reduction,
strong normalization and confluence for AURA0; details
may be found in theaccompanying technical report [31].

3.1 Syntax

Figure 3 defines the syntax of AURA0, which features
two varieties of terms: access control proofs p, which are
classified by corresponding propositions P of kind Prop,
and conventional expressions e, which are classified by
types T of the kind Type.2 For ease of the subsequent pre-
sentation of the typing rules, we introduce two sorts, KindP

and KindT, which classify Prop and Type respectively. The
base types are prin, the type of principals, and string; we
use x to range over variables, and a to range over constants.
String literals are ""–enclosed ASCII symbols; A, B, C etc.
denote literal principals, while principal variables are writ-
ten A, B, C.

In addition to the standard constructs for the func-
tional dependent type (x:t1) → t2, dependent pair type

2Our use of several syntactic categories in Figure 3 is purely for illus-
trative purposes.

t, s ::= k | T | e Terms

k ::= KindP | KindT Sorts
| Prop | Type Base kinds

T, P ::= string | prin Base types
| x | a Variables and constants
| t says t Says modality
| (x:t)→ t Logical implication
| (x:t) ⇒ t Computational arrows
| {x:t; t} Dependent pair type

e, p ::= "a" | "b" | . . . String literals
| A | B | C . . . Principal literals
| sign(A, t) Signature
| return@[t] t Injection into says
| bind x = t in t Reasoning under says
| λx:t. t | t t Abstraction, application
| 〈t, t〉 Pair

Figure 3. Syntax of AURA0

{x:t1; t2}, lambda abstraction λx:t1. t2, function applica-
tion t1 t2, and pair 〈t1, t2〉, AURA0 includes a special com-
putational function type (x:t1) ⇒ t2. Intuitively, (x:t1)→
t2 is used for logical implication and (x:t1) ⇒ t2 de-

scribes kernel interfaces; Section 3.2 discusses this further.
We will sometimes write t1 → t2, t1 ⇒ t2, and {t1; t2} as
a shorthand for (x:t1) → t2, (x:t1) ⇒ t2, and {x:t1; t2},
respectively, when x does not appear free in t2.

As in DCC, the modality says associates claims relating
to access control with principals. The term return@[A] p
creates a proof of A says P from a proof of P , while
bind x = p1 in p2 allows a proof of A says P1 to be
used as a proof of P1, but only within the scope of a proof
of A says P2. Finally, expressions of the form sign(A, P )
represent assertions claimed without proof. Such an expres-
sion is indisputable evidence that P was asserted by A—
rather than, for example, someone to whomA has delegated
authority. Such signed assertions must be verifiable, bind-
ing (i.e. non-repudiable), and unforgeable; signature imple-
mentation strategies are discussed in Section 5.

3.2 Type system

AURA0’s type system is defined in terms of constant sig-
natures Σ, and variable typing contexts Γ, which associate
types to global constants and local variables, respectively,
and are written:

Γ ::= · | Γ, x : t Σ ::= · | Σ, a : t.
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Σ; Γ ` t : t

Σ ` Γ

Σ; Γ ` Prop : KindP T-PROP
Σ ` Γ

Σ; Γ ` Type : KindT T-TYPE
Σ ` Γ T ∈ {string,prin}

Σ; Γ ` T : Type
T-BASE

Σ ` Γ x : t ∈ Γ
Σ; Γ ` x : t

T-VAR
Σ ` Γ a : t ∈ Σ

Σ; Γ ` a : t
T-CONST

Σ; Γ ` t1 : prin Σ; Γ ` t2 : Prop
Σ; Γ ` t1 says t2 : Prop

T-SAYS

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2 k1 ∈ {KindP,Type,Prop} k2 ∈ {Type,Prop}
Σ; Γ ` (x:t1)→ t2 : k2

T-ARR

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2 k1, k2 ∈ {Type,Prop}
Σ; Γ ` {x:t1; t2} : k2

T-PAIRTYPE

Σ ` Γ A ∈ {A,B, . . .} Σ; · ` t : Prop
Σ; Γ ` sign(A, t) : A says t

T-SIGN

Σ ` Γ s ∈ {"a","b", . . .}
Σ; Γ ` s : string

T-LITSTR
Σ; Γ ` t1 : prin Σ; Γ ` t2 : s2 Σ; Γ ` s2 : Prop

Σ; Γ ` return@[t1] t2 : t1 says s2
T-RETURN

Σ ` Γ A ∈ {A,B . . .}
Σ; Γ ` A : prin

T-LITPRIN
Σ; Γ ` e1 : t says P1 Σ; Γ, x : P1 ` e2 : t says P2 x /∈ fv(P2)

Σ; Γ ` bind x = e1 in e2 : t says P2

T-BIND

Σ; Γ, x : t ` p : P Σ; Γ ` (x:t)→ P : Prop
Σ; Γ ` λx:t. p : (x:t)→ P

T-LAM
Σ; Γ ` t1 : (x:P2)→ P Σ; Γ ` t2 : P2

Σ; Γ ` t1 t2 : {t2/x}P
T-APP

Σ; Γ ` t1 : s1 Σ; Γ ` t2 : {t1/x}s2 Σ; Γ, x : s1 ` s2 : k
Σ; Γ ` 〈t1, t2〉 : {x:s1; s2}

T-PAIR

Σ; Γ ` t

Σ; Γ ` t1 : t2 t2 ∈ {KindP,KindT,Prop,Type}
Σ; Γ ` t1

T-C
Σ; Γ ` t1 : k k ∈ {Type,Prop} Σ; Γ, x : t1 ` t2

Σ; Γ ` (x:t1) ⇒ t2
T-ARR-C

Figure 4. The typing relation

Typechecking consists of four judgments:

Σ ` � Signature Σ is well-formed
Σ ` Γ Context Γ is well formed
Σ; Γ ` t1 : t2 Term t1 has type t2
Σ; Γ ` t Computation type t is well-formed

The signature Σ is well-formed if Σ maps constants to types
of sort KindP—in other words, all AURA0 constants con-
struct propositions. The context Γ is well-formed with re-
spect to signature Σ if Γ maps variables to well-formed
types. A summary of the typing rules for terms can be found
in Figure 4. Most of the rules are straightforward, and we
explain only a few key rules.

Rule T-SIGN states that a signed assertion created by the
principal A signing a proposition P has type A says P ;
here, P can be any proposition, even false. More interest-
ing, however, is when P contains a constant symbol defined
in the signature Σ; as there is no introduction form for con-
stants, there can be no proof of P within the logic, but the
existence of signatures allows for terms of type A says P .
These signed assertions are an essential part of encoding ac-
cess control. The premises of T-SIGN typechecks A and P
in the empty variable context, as signatures are intended to
have unambiguous meaning in any scope—a signature with
free variables is inherently meaningless.

The rule T-RETURN states that if we can construct a
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proof term p for proposition P , then the term return@[A] p
is a proof term for proposition A says P—in other words,
all principals believe what can be independently verified.
The T-BIND rule is a standard bind rule for monads and en-
sures that what principal A believes can only be used when
reasoning from A’s perspective.

The rule for the functional dependent type T-ARR re-
stricts the kinds of dependencies allowed by the type sys-
tem, ruling out functional dependencies on objects of kind
Type. Note that, in the T-LAM rule, the type of the lambda
abstraction must be of kind Prop. With such restrictions in
place, it is rather straightforward to observe that these two
rules allow us to express flexible access control rules while
at the same time ruling out type level computations and pre-
serving decidability of type checking.3

The interfaces between the application code and the ker-
nel also requires a type description. For this reason, AURA0

introduces a special computational arrow type, (x:t1) ⇒
t2. Computations cannot appear in proofs or propositions.
This decouples AURA0 proof reduction from effectful com-
putation, and simplifies the interpretation of propositions.
While AURA [25] demonstrates how to achieve similar re-
sults using a single arrow type and restrictions on applica-
tions, computation types simplify the exposition of AURA0.

The typing rule T-PAIRTYPE for dependent pairs is stan-
dard and permits objects of kinds Type and Prop to be
freely mixed; for simplicity we prohibit types and propo-
sitions themselves from appearing in a pair. Notice that
AURA0 features an introduction proof for pairs but no cor-
responding elimination form. While full AURA does, of
course, feature such terms, AURA0 uses dependent pairs
only when associating proofs with the data on which they
depend, and hence the elimination forms for pairs are un-
necessary and have been elided for brevity.

3.3 Examples

The combination of dependent types and the says modal-
ity in AURA0 can express many interesting policies. For in-
stance, Abadi’s encoding of speaks-for [2] is easily adopted:

A speaksfor B , B says ((P :Prop)→ A says P → P )

Adding dependency allows for more fine grained delega-
tion. For example, we can encode partial delegation:

B says ((x:string)→ A says Good x→ Good x)

Here A speaks for B only when certifying that a string is
“good.” Such fine-grained delegation is important for real

3Using two sorts, KindT and KindP, makes it easy to state these restric-
tions on function types. Full AURA [25] implements a similar restriction
using only a single sort; this makes some of its typing rules slightly heavier,
but the two approaches appear largely equivalent.

applications where the full speaks-for relation may be too
permissive.

Recall also the Remote Procedure Call example from
Section 2.1. While an application might use r0 (of type
K says ((x:string)→ OkToRPC x)) directly when build-
ing proofs, it could also construct a more convenient derived
rule by using AURA0’s bind to reason from K’s perspective.
For instance:

r′0 : (x:string)→ K says OkToRPC x

r′0 = λx:string.bind y = r0 in return@[K]y x

Rules like r0 and its derivatives, however, are likely too
trivial to admit interesting opportunities for audit; a more
interesting policy states that any principal may perform a
remote procedure call so long as that principal signs the in-
put string. One encoding of this policy uses the extended
context

Σext = ReqRPC : string→ Prop,ΣK

and singleton rule set

Rules = {r1 = sign(K, (x:string)→ (A:prin)→
(A says ReqRPC x)→ OkToRPC x)}.

Given this rule, an auditor might find the following proofs
in the log:

p1 = bind x = r1 in
return@[K](x "hi" A sign(A,ReqRPC "hi"))

p2 = (λx:K says OkToRPC "ab".

λy:C says ReqRPC "cd". x)
(bind z = r1 in

return@[K](z "ab" B sign(B,ReqRPC "ab"))
(sign(C,ReqRPC "cd")).

As p1 contains only A’s signature, and as signatures are un-
forgeable, the auditor can conclude that A is responsible for
the request—the ramifications of this depend on the real-
world context of in question. Proof p2 is more complicated;
it contains signatures from both B and C. An administrator
can learn several things from this proof.

We can simplify the analysis of p2 by reducing it as dis-
cussed in the following section. Taking the normal form of
p2 (i.e., simplifying it as much as possible) yields

p′2 = bind z = r1

in return@[K](z "ab" B sign(B,ReqRPC "ab").

This term contains only B’s signature, and hence B may be
considered accountable for the action. This is exactly the
ruling out of histories discussed in Section 2.2.
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` t→ t′

x /∈ fv(t2)
` bind x = t1 in t2 → t2

R-BINDS

` bind x = return@[t0] t1 in t2 → {t1/x}t2
R-BINDT

` t2 → t′2
` return@[t1] t2 → return@[t1] t′2

R-SAYS

y /∈ fv(t3)
` bind x = (bind y = t1 in t2) in t3 →

bind y = t1 in bind x = t2 in t3

R-BINDC

Figure 5. Selected reduction rules

Proofs p2 and p′2 illustrate a tension inherent to this com-
putation model. A configuration whose log contains p2 will
be associated with fewer histories (i.e. those in which C
make no assertions) than an otherwise similar configura-
tion containing p′2. While normalizing proofs inform pol-
icy analysis, it can also discard interesting information. To
see this, consider how C’s signature may be significant on
an informal level. If the application is intended to pass nor-
malized proofs to the kernel, then this is a sign that the ap-
plication is malfunctioning. If principals are only supposed
to sign certain statements, C’s apparently spurious signature
may indicate an violation of that policy, even if the signature
was irrelevant to actual access control decisions.

3.4 Formal language properties

Subject reduction As the preceding example illustrates,
proof simplification is a useful tool for audit. Following
the Curry-Howard isomorphism, proof simplification corre-
sponds to λ-calculus reductions on proof terms.

Most of the reduction rules for AURA0 are standard; se-
lected rules can be seen in Figure 5, and the entire reduc-
tion relation can be found in theaccompanying technical re-
port [31]. For bind, in addition to the standard congruence,
beta reduction, and commute rules as found in monadic lan-
guages, we also include a special beta reduction rule R-
BINDS. The R-BINDS rule eliminates bound proofs that are
never mentioned in the bind’s body. Rule R-BINDS permits
simplification of terms like bind x = sign(A, P ) in t,
which are not subject to R-BINDT reductions. AURA0 dis-
allows reduction under sign, as signatures are intended to
represent fixed objects realized, for example, via crypto-
graphic means.

The following lemma states that the typing of an expres-
sion is preserved under reduction rules:

Lemma 3.1 (Subject Reduction). If ` t → t′ and Σ; Γ `
t : s then Σ; Γ ` t′ : s.

Proof Sketch. The proof proceeds by structural induction
on the reduction relation and depends on several standard
facts. Additionally, the R-BINDS cases requires a non-
standard lemma observing that we may remove a variable
x from the typing context when x is not used elsewhere in
the typing judgment.

Proof normalization An expression is in normal form
when it has no applicable reduction rules; as observed in
Section 3.3, reducing a proof to its normal form can be
quite useful for auditing. Proof normalization is most use-
ful when the normalization process always terminates and
every term has a unique normal form.

An expression t is strongly normalizing if application
of any sequence of reduction rules to t always terminates.
A language is strongly normalizing if all the terms in the
language are strongly normalizing. We have proved that
AURA0 is strongly normalizing, which implies that any al-
gorithm for proof normalization will terminate. The details
of the proofs are presented in theaccompanying technical
report [31].

Lemma 3.2 (Strong Normalization). AURA0 is strongly
normalizing.

Proof Sketch. We prove that AURA0 is strongly normal-
izing by translating AURA0 to the Calculus of Construc-
tions extended with dependent pairs, which is known to
be strongly normalizing [22], in a way that preserves both
types and reduction steps. The interesting cases are the
translations of terms relating to the says monad: return ex-
pressions are dropped, bind expressions are translated to to
lambda application, and a term sign(t1, t2) is translated to a
variable whose type is the translation of t2. One subtle point
is the tracking of dependency in the types of these newly in-
troduced variables, which must be handled delicately.

We have also proved that AURA0 is confluent—i.e., that
two series of reductions starting from the same term can
always meet at some point. Let t→∗ t′ whenever t = t′ or
t reduces to t′ in one or more steps.

Lemma 3.3 (Confluence). If t →∗ t1, and t →∗ t2, then
there exists t3 such that t1 →∗ t3 and t2 →∗ t3.

Proof Sketch. We first prove that AURA0 is weakly con-
fluent, which follows immediately from inspection of the
reduction rules. We then apply the well-known fact that
strong normalization and weak confluence imply conflu-
ence.
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A direct consequence of these properties is that every
AURA0 term has a unique normal form; any algorithm for
proof normalization will yield the same normal form for a
given term. This implies that the set of relevant evidence—
i.e., signatures—in a given proof term is also unique, an
important property to have when assigning blame.

4 File System Example

As a more substantial example, we consider a file system
in which file access is authorized using AURA0 and log en-
tries consist of authorization proofs. In a traditional file sys-
tem, authorization decisions regarding file access are made
when a file is opened, and thus we begin by considering
only the open operation and only briefly consider additional
operations. Our open is intended to provide flexible access
control on top of a system featuring a corresponding raw-
open and associated constants:

Mode : Type FileDes : Type

RDONLY : Mode WRONLY : Mode
APPEND : Mode RDWR : Mode

raw-open : {Mode; string} ⇒ FileDes

We can imagine that raw-open is part of the interface to
an underlying file system with no notion of per-user ac-
cess control or AURA0 principals; it, of course, should not
be exposed outside of the kernel. Taking inspiration from
Unix, we define RDONLY, WRONLY, APPEND, and RDWR
(the inhabitants of Mode), which specify whether to open a
file for reading only, overwrite only, append only, or unre-
stricted reading and writing, respectively. Type FileDes is
left abstract; it classifies file descriptors—unforgeable ca-
pabilities used to access the contents of opened files.

Figure 6 shows the interface to open, the extended signa-
ture of available predicates, and the rules used to construct
the proofs of type K says OkToOpen 〈m, f〉 (for some file
f and modem) that open requires. OkToOpen and DidOpen
are as specified in Section 2, and the other predicates have
the obvious readings: Owns A f states that the principal A
owns the file f , ReqOpen m f is a request to open file f
with mode m, and Allow A m s states that A should be al-
lowed to open f with mode m. (As we are not modeling
authentication we will take it as given that all proofs of type
A says ReqOpen m f come from A; we discuss ways of
enforcing this in Section 5.)

We assume, for each file f , the existence of a rule
ownerf of type K says Owns A f for some constant prin-
cipal A—as only one such rule exists for any f and no
other means are provided to generate proofs of this type, we
can be sure that each file will always have a unique owner.
Aside from such statements of ownership, the only rule a

Kernel Signature ΣK

OkToOpen : {Mode; string} → Prop
DidOpen : (x : {Mode; string}) →

FileDes → Prop

Kernel Interface IK

open : (x : {Mode; string}) ⇒
K says OkToOpen x ⇒
{h:FileDes; K says DidOpen x h}

Additional Types in Extended Signature Σext

Owns : prin → string → Prop
ReqOpen : Mode → string → Prop

Allow : prin → Mode → string → Prop

Rule Set R:

ownerf : K says Owns A f

delegate : K says ((A : prin) → (B : prin) →
(m : Mode) → (f : string) →
A says ReqOpen m f →
K says Owns B f →
B says Allow A m f →
OkToOpen 〈m, f〉)

owned : K says ((A : prin) → (m : Mode) →
(f : string) →
A says ReqOpen m f →
K says Owns A f →
OkToOpen 〈m, f〉)

readwrite : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDONLY f →
B says Allow A WRONLY f →
B says Allow A RDWR f)

read : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A RDONLY f)

write : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A WRONLY f)

append : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A APPEND f)

Figure 6. Types for the file system example
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file system absolutely needs is delegate, which states that
the kernel allows anyone to access a file with a particular
mode if the owner of the file allows it.

The other rules, however, are of great convenience. The
rule owned relieves the file owner A from the need to create
signatures of type A says Allow A m f for files A owns,
while readwrite allows a user who has acquired read and
write permission for a file from different sources to open
the file for reading and writing simultaneously. The rules
read, write, and append do the reverse, allowing a user
to drop from RDWR mode to RDONLY, WRONLY, or AP-
PEND. These last four rules simply reflect semantic facts
about constants of type Mode.

With the rules given in Figure 6 and the other constructs
of our logic it is also easy to create complex chains of dele-
gation for file access. For example, Alice (A) may delegate
full authority over any files she can access to Bob (B) with
a signature of type

A says (C : prin→ m : Mode→ f : string→
B says Allow C m f → A says Allow C m f),

or she may restrict what Bob may do by adding further re-
quirements on C, m, or f . She might restrict the delegation
to files that she owns, or replace C with B to prevent Bob
from granting access to anyone but himself. She could do
both with a signature of type

A says (m : Mode→ f : string→ K says Owns A f
B says Allow B m f → A says Allow B m f).

As described in Section 2, the kernel logs the arguments
to our interface functions whenever they are called. So far
we have only one such function, open, and logging its ar-
guments means keeping a record every time the system per-
mits a file to be opened. Given the sort of delegation chains
that the rules allow, it should be clear that the reason why an
open operation is permitted can be rather complex, which
provides a strong motivation for the logging of proofs.

One can easily imagine using logged proof terms—and
in particular proof terms in normal form, as described in
Section 3.3—to assist in assigning the blame for an unusual
file access to the correct principals. For example, a single
principal who carelessly delegates RDWR authority might
be blamed more severely than two unrelated principals who
unwittingly delegate RDONLY and WRONLY authority to
someone who later makes use of readwrite. Examining the
structure of proofs can once again allow an auditor to, in the
terminology of Section 2.2, rule out certain histories.

We can also see how logging proofs might allow a sys-
tem administrator to debug the rule set. The rules in Fig-

ure 6 might well be supplemented with, for example

surely : K says ((A : prin)→ (B : prin)→
(f : string)→
B says Allow A RDONLY f →
B says Allow A APPEND f →
B says Allow A RDWR f)

maybe : K says ((A : prin)→ (B : prin)→
(f : string)→
B says Allow A WRONLY f →
B says Allow A APPEND f)

Rule surely is clearly erroneous, as it allows a user with only
permission to read from and append to a file to alter its ex-
isting content, but such a rule could easily be introduced by
human error when the rule set is created. Since any uses of
this rule would be logged, it would not be possible to ex-
ploit such a problematic rule without leaving a clear record
of how it was done, allowing a more prudent administrator
to correct the rule set.

Rule maybe, on the other hand, is a bit more subtle—
it states that the ability to overwrite a file is strictly more
powerful than the ability to append to that file, even in the
absence of any ability to read. Whether such a rule is valid
depends on the expectations of the system’s users: maybe
is clearly unacceptable if users desire to allow others to
overwrite but not to append to files; otherwise, maybe may
be seen as quite convenient, allowing, for examples, easy
continuation of long write operations that were prematurely
aborted. Examining the proofs in the log can help the ad-
ministrator determine whether the inclusion of maybe best
suits the needs of most users.

We have so far discussed only open, but there is still
much AURA0 has to offer a file system, even in the context
of operations that do not involve authorization.

Reading and writing While access permission is granted
when a file is opened, it is worth noting that, as presented,
the type FileDes conveys no information about what sort
of access has been granted; consequently, attempting, for
example, to write to a read-only file descriptor will re-
sult in a run-time error. Since we already have a system
with dependent types, this need not be the case; while it
is somewhat orthogonal to our concerns of authorization,
FileDes could easily be made to depend on the mode with
which a file has been opened, and operations could expect
file descriptors equipped with the correct Mode arguments.
This would, however, require some analog to the subsump-
tion rules read, write, and append—and perhaps also read-
write—along with, for pragmatic reasons, a means of pre-
venting the kernel from logging file contents being read or
written, as discussed in Section 5.
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Close At first glance it seems that closing a file, like read-
ing or writing, is an operation that requires only a valid file
descriptor to ensure success, yet there is something more the
type system can provide. For example, if we require a cor-
responding DidOpen when constructing proofs of type Ok-
ToClose, we can allow a user to share an open file descrip-
tor with other processes secure in the knowledge that those
processes will be unable to prematurely close the file. In
addition, logging of file close operations can help pinpoint
erroneous double closes, which, while technically harmless,
may be signs of deeper logic errors in the program that trig-
gered them.

Ownership File creation and deletion are certainly oper-
ations that should require authorization, and they are es-
pecially interesting due to their interaction with the Owns
predicate. The creation of file f by principal A should in-
troduce a rule ownerf : Owns A f into the rule set, while
the deletion of a file should remove said rule; a means of
transferring file ownership would also be desirable. This
can amount to treating a subset of our rules as a protected
resource in its own right, with a protected interface to these
rules and further rules concerning the circumstances under
which access to this new resource should be granted. An
alternate approach is to dispense with ownership rules com-
pletely and instead use signed objects and signature revoca-
tion, discussed further in Section 5, to represent ownership.

5 Discussion

Signature implementation Thus far we have treated sig-
natures as abstract objects that may only be created by prin-
cipals or programs with sufficient authority. This suggests
two different implementation strategies.

The first approach is cryptographic: a sign object can be
represented by a digital signature in public key cryptogra-
phy. Each principal must be associated with a well known
public key and in possession of its private counterpart; im-
plementing rule T-SIGN reduces to calling a digital signa-
ture verification function. The cryptographic scheme is well
suited for distributed systems with mutual distrust.

A decision remains to be made, however: we can in-
terpret sign(A, P ) either as a tuple containing the crypto-
graphic signature along with A and P in plaintext, or as the
cryptographic signature alone. In the latter case signatures
are small (potentially constructed from a hash of the con-
tents), but recovering the text of a proposition from its proof
(i.e., doing type inference) may not be possible. In the for-
mer case, inference is trivial, but proofs are generally large.
Note that proof checking of signs in either case involves
validating digital signatures, a polynomial time operation.

An alternative implementation of signatures assumes
that all principals trust some moderator, who maintains a

table of signatures as abstract data values; each sign may
then be represented as an index into the moderator’s table.
Such indices can be small while still allowing for easy type
inference, but such a scheme requires a closed system with
a mutually trusted component. In a small system, the mod-
erator can be the kernel itself, but a larger system might
contain several kernels protecting different resources and
administered by disparate organizations, in which case find-
ing a suitable moderator may be quite difficult.

Temporary signatures Real-world digital signature im-
plementations generally include with each signature an in-
terval of time outside of which the signature should not be
considered valid. In addition, there is often some notion of
a revocation list to which signatures can be added to ensure
their immediate invalidation. Both of these concepts could
be useful in our setting, as principals might want to dele-
gate authority temporarily and might or might not know in
advance how long this delegation should last. Potentially
mutable rules—which could be very important in a truly
distributed setting—can even be represented by digital sig-
natures in the presence of a revocation list.

The question remains, however, how best to integrate
these concepts with AURA0. One possible answer is to
change nothing in the logic and simply allow for the pos-
sibility that any proof might be declared invalid at runtime
due to an expired signature. Following this strategy requires
operations to dynamically validate the timestamps in the
signatures before logging, thereby making all kernel oper-
ations partial (i.e., able to fail due to expired proofs). In
such a setting, it seems appealing to incorporate some kind
of transaction mechanism so that clients can be guaranteed
that their proofs are current before attempting to pass them
to the kernel. While easy to implement, this approach may
be unsatisfying in that programmers are left unable to rea-
son about or account for such invalid proofs.

Signatures might also be limited in the number of times
they may be used, and this seems like a natural application
for linear or affine types (see Bauer et al. for an authoriza-
tion logic with linearity constraints [8]). Objects of a linear
or affine type must be used exactly or at most once, respec-
tively, making such types appropriate for granting access to
a resource only a set number of times. They can also be
used to represent protocols at the type level, ensuring, for
example, that a file descriptor is not used after it is closed.

Garg, deYoung, and Pfenning [18] are studying a con-
structive and linear access control logic with an explicit time
intervals. Their syntax includes propositions of the form
P@[T1, T2], meaning “P is valid between times T1 and T2.”
To handle time, the judgment system is parameterized by an
interval; the interpretation of sequent Ψ; Γ; ∆ =⇒ P [I] is,
“given assumptions Ψ, Γ, and ∆, P is valid during interval
I .” Adopting this technique could allow AURA0 to address
the problems of temporal policies, though it is currently un-
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clear what representations of time and revocation might best
balance concerns of simplicity and expressive power.

Proof normalization Proofs in normal form are useful for
audit because they provide a particularly clear view of au-
thorization decisions. Normalization, however, is an expen-
sive operation—even for simply typed lambda calculus, the
worst-case lower-bound on the complexity of the normal-
ization is on the order of exp(2, n), where exp(2, 0) = 1,
exp(2, n) = 2exp(2,(n−1)), etc., and n is the size of the
term [30]. Furthermore, the size of a normalized proof can
grow to exp(2, n) as well. On the other hand, checking
whether a proof is in normal form is linear to the size of the
proof, and, in practice, non-malicious proof producers will
likely create proofs that are simple to normalize. Conse-
quently, where the normalization process should be carried
out depends on the system in question.

A kernel operating in a highly untrusted environment
might require all submitted proofs to be in normal form,
shifting the computational burden to potentially malicious
clients (as is commonly done to defend against denial of
service attacks). By contrast, a kernel providing services to
a “smart dust” network might normalize proofs itself, shift-
ing work away from computationally impoverished nodes
and onto a more robust system, again a standard design.
Server side normalization might be done online as proofs
come in (to amortized computation cost) or offline during
audit (to avoid latency). Ultimately, the AURA program-
ming model naturally accommodates these approaches and
others; an implementation should allow programmers to se-
lect whatever normalization model is appropriate.

Authentication In Section 4 we assumed that signatures
of type A says ReqOpen m f are always sent from A.
Such an assumption is necessary because we are not cur-
rently modeling any form of authentication—or even the as-
sociation of a principal with a running program—but a more
realistic solution is needed when moving beyond the scope
of this paper. For example, communication between pro-
grams running on behalf of different principals could take
place over channel endpoints with types that depend on the
principal on the other end of the channel.

Of course, when this communication is between differ-
ent machines on an inherently insecure network, problems
of secure authentication become non-trivial, as we must im-
plement a secure channel on top of an insecure one. In prac-
tice this is done with cryptography, and one of the long-term
goals of the AURA project is to elegantly integrate crypto-
graphic methods with the type system, following the work
of, for example, Fournet, et al. [20].

Pragmatics We are in the process of implementing
AURA, in part to gain practical experience with the method-
ology proposed in this paper. Besides the issues with tem-

poral policies and authentication described above, we antic-
ipate several other concerns that need to be addressed.

In particular, we will require efficient log operations and
compact proof representations. Prior work on proof com-
pression for proof-carrying code [28] should apply in this
setting, but until we have experience with concrete exam-
ples, it is not clear how large the authorization proofs may
become in practice. A related issue is tool support for
browsing querying the audit logs: tools should allow system
administrators to issue queries against the log and analyze
the evidence that is present and rules that have been used.

For client developers, we expect that it will often prove
useful to log information beyond what is logged by the ker-
nel. A simple means of doing this is to treat the log itself
as a resource protected by the kernel. The kernel interface
could expose a generic “log” operation

log : (x : string)→ K says OkToLog x→
K says DidLog x

with (hopefully permissive) rules for constructing OkToLog
proofs. It might be especially useful to log failed attempts
at proof construction. For example, users of the file system
presented in Section 4 might repeatedly attempt to construct
proofs for APPEND access given only the privileges nec-
essary for WRONLY access, indicating that the rule maybe
might be appropriate for their needs.

Conversely, some operations take arguments that should
not be logged, perhaps due to security or space constraints.
Section 4 mentions the possibility of logging file read and
write operations, which touches on both these issues—even
if it were practical to log all data read from and written
to each file, many users would likely prefer that their file
contents not be included in the system logs. Terms that
must be excluded from the log, however, limit not just the
scope of auditing but also the dependencies that may oc-
cur within propositions, as it would hardly suffice for data
excised from the log to appear inside a type annotation.

6 Related Work

Earlier work on proof-carrying access control [4, 5, 14,
9, 10, 19] recognized the importance of says and provided
a variety of interpretations for it. Garg and Pfenning [21]
and, later, Abadi [2] introduced the treatment of says as an
indexed monad. Both systems [21, 3] also enjoy the cru-
cial noninterference property: in the absence of delegation,
nothing B says can cause A to say false. AURA0 builds on
this prior work, especially Abadi’s DCC, in several ways.
The addition of dependent types enhances the expressive-
ness of DCC, and the addition of sign allows for a robust
distributed interpretation of says. AURA0’s treatment of
principals as terms, as opposed to members of a special
index set, enables quantification over principals. Lastly,
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AURA0 eliminates DCC’s built-in acts-for lattice (which
can be encoded as described in Section 3.3) along with the
protects relation (which allows additional commutation and
simplification of says with with regards to that lattice).

Our work is closely related to Fournet, Gordon and Maf-
feis’s research on authorization in distributed systems. [19,
20] Fournet et al. work with an explicit π-calculus based
model of computation. Like us, they use dependent types to
express access control properties. Fournet and colleagues
focus on the security properties that are maintained dur-
ing execution, which are reflected into the type system us-
ing static theorem proving and a type constructor Ok. The
inhabitants of Ok, however, do not contain dynamic infor-
mation and cannot be logged for later audit. Additionally,
while AURA0 treats signing abstractly, Fournet and col-
leagues’ type system (and computation model) can explic-
itly discuss cryptographic operations.

Trust management systems like PolicyMaker and
Keynote [13] are also related to our work. Trust manage-
ment systems are meant to determine whether a set of cre-
dentials proves that the request complies with a security
policy, and they use general purpose compliance check-
ers to verify these credentials. In PolicyMaker, proofs
are programs—written in a safe language—that operate on
strings; a request r is allowed when the application can
combine proofs such that the result returns true on in-
put r. While validity of AURA0 propositions is tested by
type checking, validity in PolicyMaker is tested by evalua-
tion; this represents a fundamentally different approaches to
logic. Similar to this paper, trust management systems in-
tend for proof checking to occur in a small and application-
independent trusted computing base;proof search may be
delegated to untrusted components.

Proof carrying access control has been field tested by
Bauer and colleagues in the Grey project [9, 10]. In their
project, smart phones build proofs which can be used to
open office doors or log into computer systems. The Grey
architecture shares structural similarities with the model
discussed in this paper: in Grey, proof generating devices,
like our applications, need not reside in the trusted com-
puting base, and both systems use expressive foundational
logics to define policies (Grey uses higher-order logic [15]).
In order to make proof search effective, Bauer suggests us-
ing cut-down fragments of higher order logic for express-
ing particular rule sets and using a distributed, tactic-based
proof search algorithm.

Wee implemented the Logging and Auditing File System
(LAFS) [33], a practical system which shares several archi-
tectural elements with AURA0. LAFS uses a lightweight
daemon, analogous to our kernel, to wrap NFS file systems;
like our kernel, the LAFS daemon forwards all requests to
the underlying resources. Both systems also configure pol-
icy using sets of rules defined outside the trusted computing

base. The systems differ in three key respects. First, the
LAFS policy language is too weak to express many AURA0

policies. Second, AURA0 requires some privileged K says
rules to bootstrap a policy, while LAFS can be completely
configured with non-privileged policies. Third, the LAFS
interface is designed to be transparent to application code
and does not provide any access control properties; instead
LAFS logs—but does not prevent—rule violations.

Cederquist and colleagues describe a distributed system
architecture with discretionary logging and no reference
monitor [14]. In this system agents—i.e. principals—may
choose to enter proofs (written in a first-order natural de-
duction style logic) into a a trusted log when performing
actions. Cederquist et al. formalize accountability such that
agents are guilty until proved innocent—that is, agents use
log entries to reduce the quantity of actions for which they
can be held accountable. This relies on the ability of some
authority to independently observe certain actions; such ob-
servations are necessary to begin the audit process.

7 Conclusion

This paper has argued for evidence-based auditing, in
which audit log entries contain proofs about authorization;
such proofs are useful for minimizing the trusted computing
base and provide information that can help debug policies.
This paper has presented an architecture for structuring sys-
tems in terms of trusted kernels whose interfaces require
proofs. As a concrete instance of this approach, this paper
has developed AURA0, a dependently-typed authorization
logic that enjoys subject reduction and strong normalization
properties. Several examples using AURA0 have demon-
strated how we envision applying these ideas in practice.
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