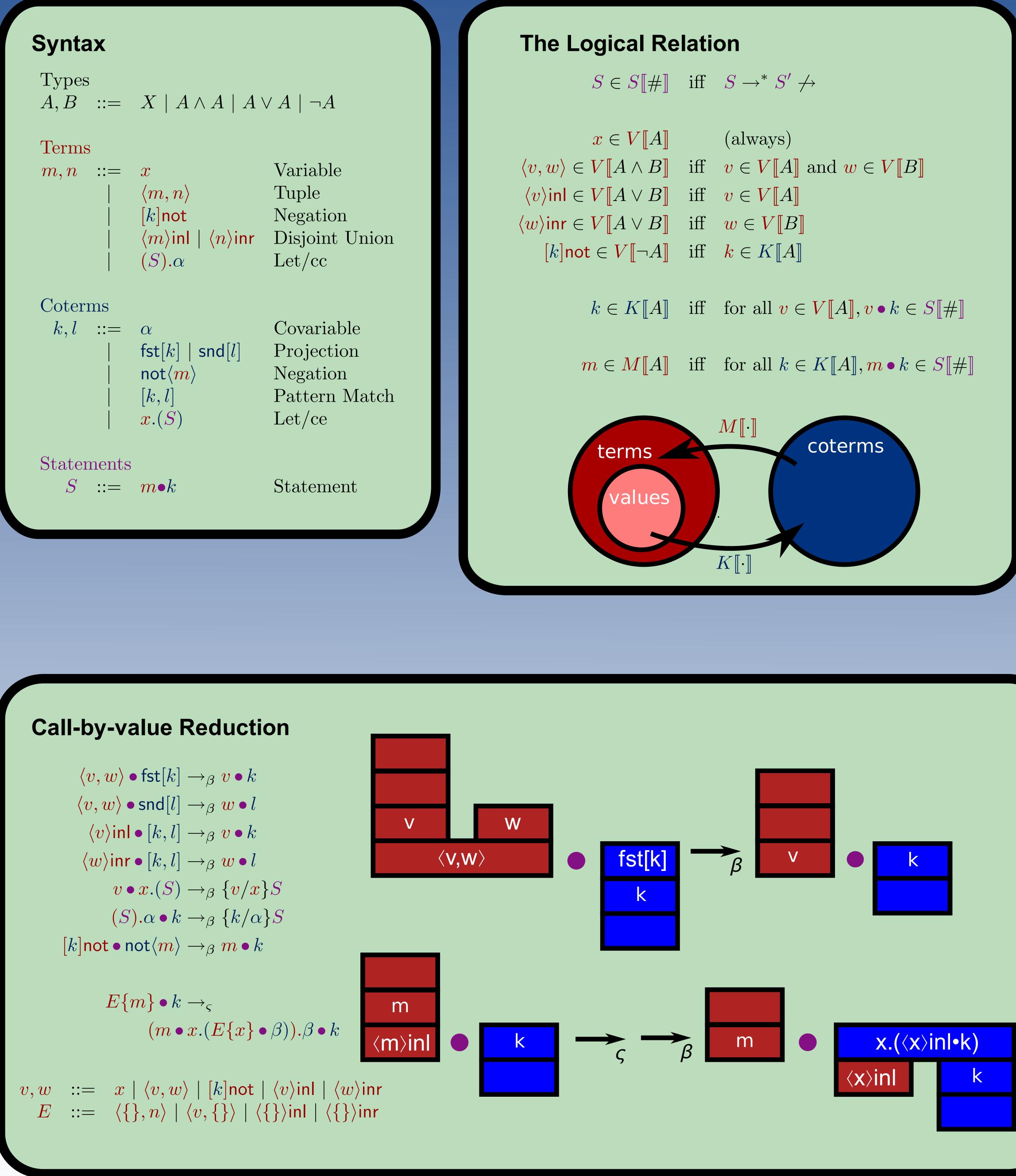
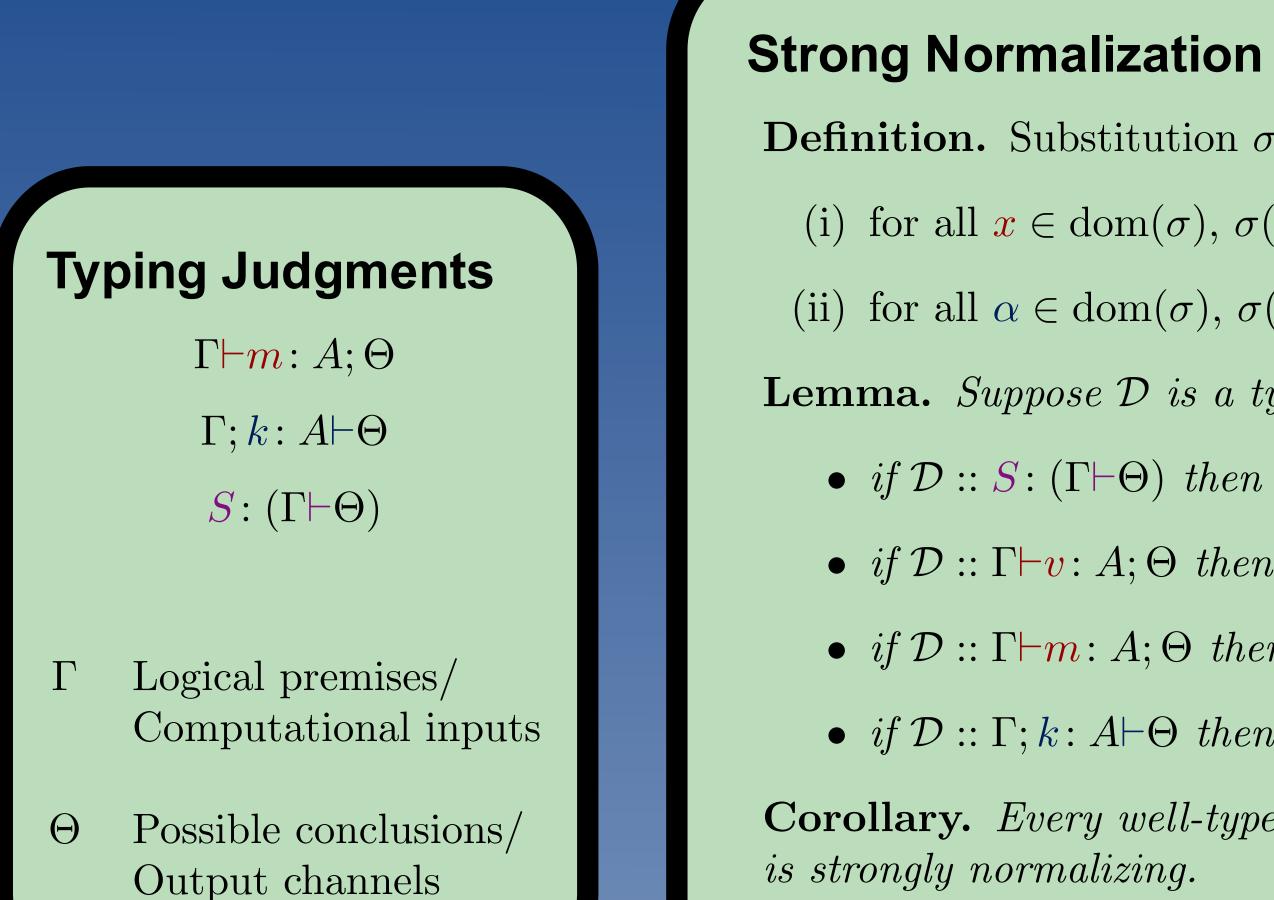
Normalization in the Dual Calculus with Sigma Reductions

Jeffrey A. Vaughan • Stephanie Weirich • Steve Zdancewic University of Pennsylvania

Syntax		
Types $A, B ::=$	$X \mid A \wedge A \mid A$	$\lor A \mid \neg A$
Terms		
m,n ::=		Variable
	$\langle m,n angle \ [k]$ not	Tuple Negation
		Disjoint Union
	$(S).\alpha$	Let/cc
Coterms		
k,l ::=	lpha	Covariable
	$fst[k] \mid snd[l]$	Projection
	$not\langle m \rangle$	Negation
	[k, l]	Pattern Match
	x.(S)	Let/ce
Statements		
S ::=	m ullet k	Statement



A proof that call-by-value dual calculus is strongly normalizing using a novel logical-predicates argument.



Open Questions: How does this proof s Top-Top closure?				
programs	r			
explicit substitutions				
(co)values	r^v	$V[\cdot]$		
(co)continuations	r^{vs}	$K[\![\cdot]\!]$		
expressions	r^{vst}	$M\llbracket\cdot rbracket$		

Dougherty, Ghilezan, Lescanne, and Likavec. Strong normalization of the dual classical sequent calculus. LPAR '05. Lovas and Crary. Structural normalization for classical natural deduction. http://www.cs.cmu.edu/~wlovas/papers/clnorm.pdf. 2006. Pitts. Typed operational reasoning. Advanced Topics in Types and Programming Languages, chapter 7. 2005. Tzevelekos. Investigations on the dual calculus. Theoretical Computer Science. 2006. Wadler. Call-by-value is dual to call-by-name. ICFP '03. Zeilberger. On the unity of duality. Annals of Pure and Applied Logic. 2008.

Definition. Substitution σ is Γ , Θ -logical when (i) for all $x \in \text{dom}(\sigma)$, $\sigma(x) \in V[\Gamma(x)]$, and (ii) for all $\alpha \in \operatorname{dom}(\sigma), \, \sigma(\alpha) \in K\llbracket \Theta(\alpha) \rrbracket$. **Lemma.** Suppose \mathcal{D} is a typing derivation, then • if $\mathcal{D} :: S : (\Gamma \vdash \Theta)$ then for all Γ , Θ -logical σ , $\sigma(S) \in S[\#]$, • if $\mathcal{D} :: \Gamma \vdash v : A; \Theta$ then for all Γ , Θ -logical σ , $\sigma(v) \in V[A]$, • if $\mathcal{D} :: \Gamma \vdash m : A; \Theta$ then for all Γ , Θ -logical σ , $\sigma(m) \in M[A]$, • if $\mathcal{D} :: \Gamma; k: A \vdash \Theta$ then for all Γ, Θ -logical $\sigma, \sigma(k) \in K[\![A]\!]$.

Corollary. Every well-typed, call-by-value dual calculus statement

