
join Tracks, Albums deleting from Tracks

project Tracks on Track, Rating, Album,
Quantity with default {Date=Unknown}

select from Tracks where Quantity > 2

1992 WishTrust

1989

Date

1989

1989

1989 DisintegrationLovesong
Lovesong Galore

ShowLullaby
Lullaby Galore
Track Rating Album

Wish 5

Show

Album

Galore

Disintegration

Paris 4
1
3
7

Quantity

Tracks

Albums

Quantity

1

1

4
5

3

1992 WishTrust

1989

Date

1989

1989

1989 ParisLovesong
Lovesong Galore

ShowLullaby
Lullaby Galore
Track Rating Album

Tracks

Quantity

1

1

4
5

3

WishTrust
ParisLovesong

Lovesong Galore
ShowLullaby

Lullaby Galore
Track Rating Album

Tracks
Quantity

1

1

7
5

3

WishTrust
DisintegrationLovesong

Lovesong Galore
ShowLullaby

Lullaby Galore
Track Rating Album

Tracks

1989

1989

Date

1989
1992

1989

Quantity

1

1

7
5

3

WishTrust
DisintegrationLovesong

Lovesong Galore
ShowLullaby

Lullaby Galore
Track Rating Album

Tracks

Quantity

4
5

3

WishTrust
Lovesong Paris

ShowLullaby
Track Rating Album

Tracks
Quantity

7
5

3

WishTrust
Lovesong Disintegration

ShowLullaby
Track Rating Album

Tracks

Relational Lenses: A language
for defining updateable views

Aaron Bohannon Jeffrey A. Vaughan Benjamin C. Pierce

Select's update policy specifies that it
changes existing records to
agree with new ones when necessary
to satisfy functional dependencies.
Note the first row's updated Rating
field.

In project's reverse direction, missing
information can be recovered from the
database state or supplied as a default.
Here, the year 1989 is inferred for the
third row using the Track -> Date
functional dependency.

In this example, the missing row can
be realized by a removal from either
Albums or Tracks. The lens expression
defining join indicates that rows from
Tracks should be deleted when such
ambiguous situations arise during an
update.

Functional Dependancies:

Album -> Quantity
Track -> Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Date, Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Date, Rating{ }

An update consistent with the
view schema.

Rating of Lullaby becomes 4
Lovesong's album becomes Disintegration
Trust deleted

1992 WishTrust

1989

Date

1989

1989

1989 ParisLovesong
Lovesong Galore

ShowLullaby
Lullaby Galore
Track Rating Album

Wish 5

Show

Album

Galore

Disintegration

Paris 4
1
3
6

Quantity

Tracks

Albums

Functional Dependancies:

Album -> Quantity
Track -> Date, Rating{ }

Functional Dependancies:

Album -> Quantity
Track -> Date, Rating{ }

Views are edited offline: a single "edit"
yields an arbitrary new state.

Key Idea

Every expression in the language denotes a bidirectional
transformation called a lens (a view definition together with a view
update policy).

The View Definition Language

• The sources and targets of lenses are database states (sets of
named relations with associated schemas).

• Schemas include predicates and functional dependencies. Both
play a significant role in determining view update policies.

• A small set of basic lenses is provided.
• Each basic lens corresponds to a simple relational operation.
• Additional parameters determine view update policies.

• A composite lens expression can be read from left to right to
describe a composite view definition and from right to left to
describe a composite view update policy.

Static Checking

• We are interested in lenses that are well behaved:
• View definition and update policy "fit together" in a suitable sense.
• Any consistent updated view state is mapped to a consistent

updated database state (totality).
• Well-behavedness is guaranteed by static checking.

• Each primitive lens comes with a typing constraint guaranteeing its
well-behavedness.

• Well-behavedness of well-typed composite lenses follows by
construction.

Key Research Challenge

Detailed design of the basic lenses and their typing constraints.

A Composite Lens:
join Tracks, Albums deleting from Tracks;
project Tracks on Track, Rating, Album,

Quantity with default {Date=Unknown};
select from Tracks where Quantity > 2

