
A Cryptographic Decentralized Label Model

Jeffrey A. Vaughan Steve Zdancewic∗

University of Pennsylvania

Abstract

Information-flow security policies are an appealing way
of specifying confidentiality and integrity policies in infor-
mation systems. Most previous work on language-based se-
curity has assumed that programs run in a closed, managed
environment and that they use potentially unsafe constructs,
such as declassification, to interface to external communi-
cation channels, perhaps after encrypting data to preserve
its confidentiality. This situation is unsatisfactory for sys-
tems that need to communicate over untrusted channels or
use untrusted persistent storage, since the connection be-
tween the cryptographic mechanisms used in the untrusted
environment and the abstract security labels used in the
trusted language environment is ad hoc and unclear.

This paper addresses this problem in three ways: First,
it presents a simple, security-typed language with a novel
mechanism called packages that provides an abstract means
for creating opaque objects and associating them with se-
curity labels; well-typed programs in this language enforce
noninterference. Second, it shows how to implement these
packages using public-key cryptography. This implementa-
tion strategy uses a variant of Myers and Liskov’s decen-
tralized label model, which supports a rich label structure
in which mutually distrusting data owners can specify inde-
pendent confidentiality and integrity requirements. Third, it
demonstrates that this implementation of packages is sound
with respect to Dolev-Yao style attackers—such an attacker
cannot determine the contents of a package without pos-
sessing the appropriate keys, as determined by the security
label on the package.

1 Introduction

Information-flow security policies are an appealing way
of specifying confidentiality and integrity policies in in-

∗This research was sponsored in part by NSF Grants CNS-0346939,
CNS-0524059 and CCF-0524035. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

formation systems. Unlike traditional reference monitors
and cryptography, which regulate access to data, mecha-
nisms that enforce information-flow policies regulate how
the data (and information derived from the data) is al-
lowed to propagate throughout the system. Such end-to-
end security properties are important for applications that
require high degrees of confidentiality (such as those found
in SELinux [28]) and integrity (such as those found in criti-
cal embedded systems [9]).

Language-based mechanisms, which rely on static pro-
gram analysis, are one approach to determining whether a
given piece of software obeys an information-flow policy.
The key idea, stemming from the work by Denning [13, 14]
in the 1970’s, is to annotate program values with labels
drawn from a lattice of security levels and then have the
compiler verify that the program follows the standard “no
read up/no write down” noninterference policy [18, 8]. Fol-
lowing the work of Volpano, Smith, and Irvine [33], these
program analyses are usually expressed as a form of type-
checking.

The literature in this area has explored a wide variety of
label models, programming language features, mechanisms
for dealing with declassification and other kinds of down-
grading, and appropriate definitions of security (see the sur-
vey by Sabelfeld and Myers [27]). FlowCaml [25, 29] and
Jif [11] are two full-fledged programming languages that
support information-flow security policies. Jif, for exam-
ple, has been used to implement some simple distributed
games [5, 35] and a secure e-mail system [20].

Despite these promising results, one important open
question in the design of languages for information-flow
security is how to integrate them with other mechanisms
such as cryptography and traditional access controls. Un-
derstanding the relationship between cryptography and
information-flow is particularly important in the case of
“open” systems in which the data to be protected must leave
the managed environment provided by the language run-
time. For example, if the system needs to send protected
data over an untrusted network or write it to persistent stor-
age, encryption and digital signatures are the appropriate
means of providing confidentiality and integrity.

c© IEEE, 2007 1 Generated January 4, 2008

Although cryptography is an extremely valuable tool
for security engineering, there has been surprisingly little
work on developing a theory of how it and information-
flow mechanisms can be brought together coherently. The
work in this space includes the KDLM [12], crypto-masked
flows [4], sealing calculi [31], cryptographic types [17], and
computational security analyses of information-flow with
encryption [21, 30]. In this paper, we explore a novel design
for incorporating cryptographic operations with language-
based information-flow security.

We have three main goals for the programming language
presented here. First, we want the programming model
to have abstractions suitable for cryptographically enforc-
ing information-flow policies specified via security labels.
Second, the design of the new language primitives should
free the programmer from the burden of having to manu-
ally manage keys and their correspondence to information-
flow policy labels. And, third, we should prove that, under
a reasonable model of cryptography, programs written in
the resulting language satisfy the standard noninterference
properties expected in this context.

In this paper, we realize the goals above by making the
following contributions:

• We develop a language, SImp, with primitives for en-
forcing information-flow security policies, including a
restricted form of cryptographic packaging. The novel
language constructs are reminiscent of the pack/un-
pack operations found in languages with existential
or dynamic datatypes. Operationally, the use of these
packaging constructs requires run-time checks that en-
sure the security of program [17].

• We show that packages have a natural implementa-
tion in terms of public-key cryptography by defining
a translation from language values to cryptographic
messages; this translation depends on the structure of
the labels used to define security policies. A variant of
the decentralized label model [22] provides a pleasant
setting for the translation.

• We prove a noninterference result for SImp, includ-
ing the downgrading implicit in its cryptographic pack-
ages. We also demonstrate the soundness of the cryp-
tographic interpretation of packages by showing that a
Dolev-Yao attacker [16] cannot determine the contents
of a package without possessing the appropriate keys
(as determined by the translation of the security label
on the package).

The rest of this paper is structured as follows. Section 2
introduces our information flow language and proves non-
interference. Section 3 gives a Dolev-Yao system for rea-
soning about cryptography and a translation from language

values to cryptographic messages. Sections 4 and 5 contain
discussion and related work, respectively.

2 The SImp Language

2.1 Background and Example

As with other language-based approaches to
information-flow security, the locations in our pro-
gramming language are annotated with security labels.
This paper uses a decentralized label model (DLM) variant
where labels are lists of security policies with confiden-
tiality and integrity components. These policies refer
to principals, which are characterized by their access to
private keys. A policy has form o : r !w, where r and w are
sets of principals and o is a single principal. This means
that policy owner o certifies that any principal in r can read
from the associated location, and any principal in w can
write. Sections 2.2 and 3.1 discuss the label model and
private keys respectively.

Although the literature discusses “the” DLM, there are
several subtly different models. When they are handled at
all, integrity constraints sometimes correspond to writers of
data; other times to trusters. Additionally, DLM presen-
tations typically contain an acts-for hierarchy: an explicit
and nominal delegation relation. Here, we do not build an
explicit acts-for hierarchy as it is not germane to our set-
ting. Instead we investigate the orthogonal issues of collu-
sion and cooperation among sets of principals. Section 5.1
discusses the acts-for hierarchy further.

Before examining the formal description of SImp, we
present the sample program shown in Figure 1. In this ex-
ample we imagine a small client that can read and write data
to a database shared by many users.1 The database imple-
ments a finite map signature, with no provisions for security.
To model this situation, the database is labeled with a single
policy: {db admin : everyone ! everyone}. That is, data
entered in to the database is readable by anyone; data read
from it may have been altered by anyone.

Input and output are performed by reading from and
writing to designated memory locations. Lines 14
through 20 declare the locations corresponding to input,
and line 23 declares a location corresponding to the ter-
minal. Locations action and position describe the pro-
gram’s mode of operation—whether to read or write and
where. Tagged with security label {p : everyone ! p}, their
contents are readable by everyone and have only been influ-
enced by one principal, p. The label on txt is more restric-
tive; its contents are only readable by p. That is, txt con-
tains a secret. The database is promiscuous; it produces and

1For convenience we have augmented SImp with syntactic sugar,
method calls, strings, and a unit type.

2

1 / ∗ The d a t a b a s e a c c e p t s and p r o d u c e s
2 ∗ i n p u t t h a t i s n o t c o n f i d e n t i a l and
3 ∗ t h a t a n y o n e may h a v e i n f l u e n c e d . ∗ /
4 labeldef db_io =

5 {db_admin:everyone!everyone}

6
7 / ∗ d a t a b a s e i n t e r f a c e ∗ /
8 store: (int * pkg){ db_io} -> (){ db_io}

9 retrieve: int{db_io} -> pkg{db_io}

10
11 / ∗ l o c a t i o n s r e p r e s e n t i n g i n p u t ∗ /
12
13 / ∗ p u t = t r u e ; g e t = f a l s e ∗ /
14 action: bool{p:everyone!p}

15
16 / ∗ r e c o r d i d ∗ /
17 position: int{p:everyone!p}

18
19 / ∗ a c o n f i d e n t i a l n o t e ∗ /
20 txt: string{p:p!p}

21
22 / ∗ l o c a t i o n r e p r e s e n t i n g o u t p u t ∗ /
23 console: string{p:p!everyone}

24
25 / ∗ s c r a t c h l o c a t i o n ∗ /
26 reply: pkg{db_io}

27
28 case action of

29 put =>

30 store(pos , pack txt at {p:p!p});

31 console := "text stored"

32 | get =>

33 reply := retrieve(pos);

34 case (unpack reply

35 as string{p:p!p}) of

36 inl v => console := v

37 | inr _ => console := "bad package"

Figure 1. An example SImp program

consumes values that, according to db admin , are world-
readable and have no integrity constraints.

The branches of the outer case command store and re-
trieve data from the database. In the “put” case, the client
wishes to enter secret value txt to the database. However
simply calling store(pos, txt) would not be secure. (Ad-
ditionally, the shape of txt is string while store expects
a pkg—an important detail, but only peripherally related to
security.) We can deduce that this call is insecure in two
ways. First, the database semantics are insecure; anyone
could read txt if it were stored directly. Second, the la-
bel of txt specifies that p requires that only p can read,
while store (line 8) requires arguments readable by anyone.
Here a simple syntactic check of security labels identifies a
semantic error; this is the point of static information-flow

analysis. The actual invocation of store on line 30 satisfies
the label checking and avoids the semantic error. It does
not leak information because pack builds a cryptographic
message which encrypts (and signs) txt. The typing rules
reflect this, allowing the result of a pack to be treated as
world-readable data.

In the case of a “get”, unpacking reply—the publicly
readable result of retrieve—yields either a confidential
and trusted string, or an error. As we will see, unpacking
requires static and dynamic checks that work in concert to
prevent undesired information flows.

2.2 Security Lattice Properties

As we saw above, variables in SImp programs are an-
notated with security labels. The language definition is pa-
rameterized by the algebraic structure of labels and several
basic axioms. This section describes the generic label prop-
erties and defines a variant of Myers and Liskov’s decen-
tralized label model (DLM) [22], a concrete instantiation of
the structure. In Section 3.2 we examine how to compile
SImp values into cryptographic messages; that discussion
will assume labels are defined by our DLM.

Labels, denoted `, are elements of a non-trivial, bounded
lattice with order relation ≤ and join operation t. Upper
bound > is the most restrictive label, and ⊥ is the least re-
strictive. Labels have confidentiality and integrity compo-
nents. A pair of functions, C and I , allow us to consider
separately parts of a label; C(`) returns a label with `’s con-
fidentiality policy and the least restrictive integrity policy.
Function I is the integrity analog. Both functions are idem-
potent. Formally,

` = C(`) t I(`) C(I(`)) = ⊥ I(C(`)) = ⊥

C(C(`)) = C(`) I(I(`)) = I(`).

Additionally, we assume C and I are monotone.

` ≤ `′ ⇐⇒ C(`) ≤ C(`′) ∧ I(`) ≤ I(`′)

The purpose of labels is to classify who can read, and
who could have written, data. We assume that there is a
fixed set of principals, P , ranged over by p. We also re-
quire two monotone predicates that indicate whether a set
of principals, p ⊆ P , can read (resp. write) according to
a label’s confidentiality (integrity) component. Formally, if
C(`) ≤ C(`′) then p reads `′ implies p reads `. Integrity
is the opposite: if I(`) ≤ I(`′) then p writes ` implies
p writes `′. We call a label set and operators over that set a
security lattice when the above proprieties hold.

We instantiate the above with a decentralized label
model that omits the acts-for hierarchy [22] and assumes
that principals can collude to pool their authority. That is,

3

we intend for p reads ` (resp. p writes `) to hold when
the members of p can cooperate to read (write) at `. Sec-
tion 5.1 compares our presentation of a DLM with several
others, including Myers and Liskov’s original description.

In a DLM, principals typically represent users of a sys-
tem. We call the set of all principals P , and assume it is
finite. We also assume the existence of a canonical total or-
dering on P; this is not the acts-for hierarchy, but a helpful
condition used for defining functions over labels.

Informally, a label consists of several policies in which
principals called owners make access control statements.
Each policy has form o : r !w, and consists of an owner
o, a set of readers r, and a set of writers w. When attached
to a piece of data, such a policy means that owner o certifies
that the data can be read only with the authority of o or of
some principal in r. Similarly, p can only write such data
when p is o or in w.

Formally, a DLM label is function of typeP → 2P×2P .
Notation ` = {o1 : r1 !w1; o2 : r2 !w2} abbreviates

`(o) =


(r1, w1) o = o1

(r2, w2) o = o2

(P, ∅) otherwise.

The projections `(o1).C and `(o2).I give r1 and w2. Be-
cause principals are totally ordered, functions (predicates)
may be defined by recursion (induction) as if labels were
lists of policies.

The inequality `1 ≤ `2 holds when

∀o. `2(o).C ⊆ `1(o).C ∧ `1(o).I ⊆ `2(o).I.

The confidentiality of the policy defined by C(o : r !w) =
o : r ! ∅; integrity is defined by I(o : r !w) = o : P !w.
These definitions generalize to labels in the natural way. If
` = `1 t `2 then

`(o) = (`1(o).C ∩ `2(o).C, `1(o).I ∪ `2(o).I).

Predicates for reading and writing hold when princi-
pals can cooperate to read or write labeled data. Predicate
p reads ` is defined to be true iff ∀o. ∃p ∈ p. p ∈ {o} ∪
`(o).I , and p writes ` when ∀o. ∃p ∈ p. p ∈ {o} ∪ `(o).C.
Intuitively, p can read (write) when every owner permits at
least one member of p to read (write).

As a notational convenience, we will write
{p1, p2 : r !w} for {p1 : r !w; p2 : r !w}. It’s clear
that the most restrictive label, {>}, is {P : ∅ !P}, and the
least restrictive label, {⊥}, is {P : P ! ∅}.

Lemma 1. The DLM is an instance of a security lattice.

2.3 SImp Syntax

SImp is based on Winskel’s IMP language [34] and
the simple security language by Volpano, Smith, and

Irvine [33]. SImp is stratified into pure expressions and im-
perative commands. We examine the language starting with
syntax, then work from dynamic to static semantics.

The following grammar gives the syntax of SImp:

Types τ ::= int | τ1 + τ2 | pkg
Integers i ::= . . .− 1 | 0 | 1 . . .
Values v ::= i | inl v | inr v | 〈v〉`
Expressions e ::= i | a | x | inl e | inr e | e1 + e2

| 〈v〉` | pack e at `
| unpack e as τ{`} | . . .

Commands c ::= skip | x := e | c1; c2

| while e do c
| case e of a1 ⇒ c1 | a2 ⇒ c2

Expressions may of course be augmented with additional
operations on ints as necessary. Pairs of types and labels,
written τ{`}, describe the shape of an expression and its
security policy. Such pairs are called labeled types. We
distinguish variables from locations. Variables, ranged over
by a, are bound in case commands and replaced by substi-
tution. Locations, ranged over by x, are never substituted
away and are used to read from and write to memory.

The new constructs for abstract encryption include pack-
ages 〈v〉`, pack, and unpack. The package 〈v〉` is intended
to have several properties:

1. v must only be read by programs with sufficient au-
thority to read `.

2. v must be kept confidential in accordance with C(`).

3. v must only be written to by programs with authority
to write `.

4. v must have only been influence by data with integrity
greater than I(`).

The third property restricts package creation in SImp; it
would be a more powerful statement if SImp supported first-
class pointers and structures.

Expression pack v at ` constructs package 〈v〉`. Ex-
pression unpack v as τ{`} attempts to interpret v as a pack-
age 〈v0〉`0 where v0 has shape τ and where `0 ≤ `. Logi-
cally, pack and unpack serve as introduction and elimina-
tion rules for pkg. Expression forms pack e at ` and 〈v〉`
are not redundant—pack is an expression that may fail at
runtime; 〈v〉` is the result of a successful pack.

No primitive type describes booleans or errors, but we
encode them with the following abbreviations:

bool = int + int

truei = inl i falsei = inr i

error = int insufficientAuth = 0

illegalFlow = 1 typeMismatch = 2

4

Typically the index of true or false is unimportant and
will be omitted. Additionally, if e then c1 else c2 is
shorthand for case e of a1 ⇒ c1 | a2 ⇒ c2 where
a1 and a2 do not appear in c1 or c2.

2.4 Dynamic Semantics

SImp programs are run with the authority of some set
of principals. Intuitively, a program run with Alice’s au-
thority can sign and decrypt with her private key. Author-
ity is represented by a set of principals and appears in the p
component of the command and expression evaluation rules
(Figures 2 and 3).

Expressions do not have side effects but can read mem-
ory. Thus expressions must be evaluated in contexts con-
taining a memory, M . Memories are finite maps from
locations to values. Most expressions, but not pack and
unpack, are standard.

As show by rules EE-PACK-OK and EE-PACK-FAIL, ex-
pression pack v at ` may evaluate in two ways. If dynamic
check p writes ` succeeds, then the program is running with
sufficient authority to write at `. In this case, pack evalu-
ates to inl 〈v〉`. However, if the program cannot write at
`, an error results instead. While the dynamic behavior of
pack is influenced by the writes relation, it is not a covert
channel. The authority set p, label ` in the text of pack, and
the definition of writes do not vary at run time. Therefore
an attacker cannot gain information by observing whether a
pack succeeds.

Unpacks can fail in more ways than packs; this is re-
flected in the three premises of EE-UNPACK-OK. Analo-
gously to packing, unpack 〈v0〉`0 as τ{`} requires that
p reads `. However, the contents and label of 〈v0〉`0 are stat-
ically unknown, and we must make two additional runtime
checks. First, checking `0 ≤ ` ensures that the static infor-
mation flow properties of SImp continue to protect v0 after
unpacking. Second, checking ` v0 : τ (which typechecks
v0 to ensure it has type τ) is required to avoid dynamic type
errors. This check must be delayed until runtime; check-
ing sooner is incompatible with the cryptographic semantics
given in Section 3.2.

The only unusual command is case. Tagged unions,
such as inl 0 are consumed by case, which branches on
the tag (i.e. inl) and substitutes the value (i.e. 0) for a
bound variable in the taken branch. Evaluation rules EC-
CASEL and EC-CASER define this behavior.

2.5 Static Semantics

SImp’s type system performs two roles. First, it provides
type safety; this means that the behavior of well typed pro-
grams is always defined. Second, the type system prevents
high-to-low information flows except where permitted by

p;M ` e → e′

EE-LOC
M(x) = v

p;M ` x → v

EE-INL
p;M ` e → e′

p;M ` inl e → inl e′

p;M ` e → e′

p;M ` inr e → inr e′
EE-INR

p;M ` e1 → e′1
p;M ` e1 + e2 → e′1 + e2

EE-PLUS-STRUCT1

p;M ` e → e′

p;M ` v + e → v + e′
EE-PLUS-STRUCT2

p;M ` i1 + i2 → i3
EE-PLUS

where [[i3 = i1 + i2]]

p;M ` e → e′

p;M ` pack e at ` → pack e′ at `
EE-PACK-STRUCT

p writes `

p;M ` pack v at ` → inl 〈v〉`
EE-PACK-OK

EE-PACK-FAIL
¬(p writes `)

p;M ` pack v at ` → inr insufficientAuth

EE-UNPACK-STRUCT
p;M ` e → e′

p;M ` unpack e as τ{`} → unpack e′ as τ{`}

EE-UNPACK-FAIL1
¬(p reads `)

p;M ` unpack 〈v0〉`0 as τ{`} →
inr insufficientAuth

EE-UNPACK-FAIL2
p reads ` `0 � `

p;M ` unpack 〈v0〉`0 as τ{`} → inr illegalFlow

EE-UNPACK-FAIL3
p reads ` `0 ≤ ` 6` v : τ

p;M ` unpack 〈v0〉`0 as τ{`} → inr typeMismatch

EE-UNPACK-OK
p reads ` `0 ≤ ` ` v0 : τ

p;M ` unpack 〈v0〉`0 as τ{`} → inl v0

Figure 2. Expression Evaluation Relation

5

p ` 〈M, c〉 → 〈M ′, c′〉

p;M ` e →∗ v

p ` 〈M,x := e〉 → 〈M [x 7→ v], skip〉
EC-ASSIGN

p ` 〈M, skip; c〉 → 〈M, c〉
EC-SEQ-SKIP

p ` 〈M, c1〉 → 〈M ′, c′1〉
p ` 〈M, c1; c2〉 → 〈M ′, c′1; c2〉

EC-SEQ-STRUCT

EC-WHILE-FALSE
p;M ` e →∗ falsei

p ` 〈M, while e do c〉 → 〈M, skip〉

EC-WHILE-TRUE
p;M ` e →∗ truei

p ` 〈M, while e do c〉 → 〈M, c; while e do c〉

EC-CASEL
p;M ` e →∗ inl v

p ` 〈M, case e of a1 ⇒ c1 | a2 ⇒ c2〉 →
〈M, [v/a1]c1〉

EC-CASER
p;M ` e →∗ inr v

p ` 〈M, case e of a1 ⇒ c1 | a2 ⇒ c2〉 →
〈M, [v/a2]c2〉

Figure 3. Command Evaluation Relation

pack and unpack operations. Expressions and commands
are both typed using contexts. Location contexts, written
Θ, map locations to labeled types. Variable contexts, Γ,
map variables to labeled types.

The expression typing judgment Θ;Γ ` e : τ{`} means
that with contexts Θ and Γ expression e has shape τ and can
be given label `. Expressions relate to at most one shape,
but may be assigned many different labels. This is made
explicit by TE-SUB, which allows an expression’s label to
be raised arbitrarily. In contrast, no rule lowers labels. Rule
TE-VAR looks up locations in Θ and assigns corresponding
labels to locations; this standard rule prevents read up.

The typing of pack and unpack is novel. Expression
pack e at ` can be assigned a label only when e has label `.
Rule TE-PACK gives pack e at ` label `, subject to the con-
straint I(`) = I(`e) where `e classifies e. This is because a
successful pack will yield a package that can only be deci-
phered by code with authority sufficient to read `. Therefore
it is safe to assign the resulting package an arbitrary confi-
dentiality policy. Because packing does not attempt endorse
e, integrity is preserved unchanged.

Θ;Γ ` e : τ{`}

Θ;Γ ` i : int{`}
TE-INT

Θ;Γ ` 〈v〉`′ : pkg{`}
TE-PACKAGE

Θ;Γ ` e1 : int{`} Θ;Γ ` e2 : int{`}
Θ;Γ ` e1 + e2 : int{`}

TE-PLUS

Θ;Γ ` e : τ1{`}
Θ;Γ ` inl e : (τ1 + τ2){`}

TE-SUML

Θ;Γ ` e : τ2{`}
Θ;Γ ` inr e : (τ1 + τ2){`}

TE-SUMR

Θ;Γ ` e : τ{`e} I(`e) = I(`)
Θ; Γ ` pack e at `e : (pkg + error){`}

TE-PACK

Θ;Γ ` e : pkg{`e} C(`e) = C(`)
Θ; Γ ` unpack e as τ{`} : (τ + error){`}

TE-UNPACK

Γ(a) = τ{`}
Θ;Γ ` a : τ{`}

TE-VAR
Θ(x) = τ{`}

Θ;Γ ` x : τ{`}
TE-LOC

Θ;Γ ` e : τ{`′} `′ ≤ `

Θ;Γ ` e : τ{`}
TE-SUB

Figure 4. Expression Typing

Typing unpack is dual to pack. The expression
unpack e as τ{`} is classified by ` when e is labeled
by `e and C(`e) = C(`). That is, unpack maintains e’s
confidentiality but evaluates to a (potentially) lower—more
trusted—integrity level. During execution e evaluates to a
package of form 〈v0〉`0 and conditions `0 ≤ ` and ` v0 : τ
are checked. These conditions ensure that labeled type τ{`}
can classify v0 without introducing illegal flows or stuck
evaluation states. Thus the unpack can safely be given la-
beled type τ{`}.

Command typing is basically standard. Intuitively, if
judgment pc; Θ; Γ ` c holds then command c does not leak
information. The pc component indicates the highest la-
bel assigned to locations or variables which may have in-
fluenced control flow at command c. First consider rule
TC-ASSIGN; it only types x := e when the label of x is
greater than the pc joined with the label of e. This prevents
write down. Now consider while x do c. Rule TC-WHILE
accepts this command only when c0 can be checked with

6

pc; Θ; Γ ` c

pc; Θ; Γ ` skip
TC-SKIP

Θ;Γ ` e : τ{`e}
Θ(x) = τ{`} `e t pc ≤ `

pc; Θ; Γ ` x := e
TC-ASSIGN

pc; Θ; Γ ` c1 pc; Θ; Γ ` c2

pc; Θ; Γ ` c1; c2

TC-SEQ

Θ;Γ ` e : bool{`} pc t `; Θ; Γ ` c

pc; Θ; Γ ` while e do c
TC-WHILE

Θ;Γ ` e : (τ1 + τ2){`}
pc t `; Θ; Γ[a1 7→ τ1{`}] ` c1

pc t `; Θ; Γ[a2 7→ τ2{`}] ` c2

pc; Θ; Γ ` case e of a1 ⇒ c1 | a2 ⇒ c2

TC-CASE

pc′; Θ; Γ ` c pc ≤ pc′

pc; Θ; Γ ` c
TC-SUBS

Figure 5. Command Typing

program counter greater than the label of x. Treating the pc
in this manner is necessary to protect against implicit flows.
We also type case commands in this manner.

The following program, which is rejected by the type
system, has a dynamic information leak.

1 if h then

2 x := pack 0 at {⊥}

3 else

4 x := pack 0 at {>};

5 case (unpack x as int{⊥}) of

6 inl _ => output := 1 / ∗ h t r u e ∗ /
7 inr _ => output := 0 / ∗ h f a l s e ∗ /

We assume h has label {>} and output has label {⊥}. If h
is true then unpacking succeeds, and output is assigned 1.
In contrast, if h is false then output is assigned 0. Thus an
attacker, who is authorized to read {⊥} but not {>}, could
determine h by observing output.

Fortunately the above program cannot be typed. As-
sume `x classifies x. Rule TC-CASE forces the pc to
be {>} at line 2, and TC-ASSIGN requires pc ≤ `.
Thus {>} ≤ `x and `x = {>}. On line 5 expression
unpack x as int{⊥} can be assigned—by TE-UNPACK—
label `0 where C(`0) = C(`x) = C({>}). Rule TC-
CASE requires that, on line 6, `0 ≤ pc. By TC-ASSIGN,
pc ≤ {⊥}; so `0 = {⊥}. As is no way to satisfy both

v1
∼=` v2

i ∼=` i
VE-INT

v1
∼=` v2

inl v1
∼=` inl v2

VE-INL

v1
∼=` v2

inr v1
∼=` inr v2

VE-INR

v1
∼=` v2

〈v1〉`1 ∼=` 〈v2〉`1
VE-PACK-IN

`1 � `

〈v1〉`1 ∼=` 〈v2〉`1
VE-PACK-LAB

Figure 6. Equivalent Values

`0 = ⊥ and C(`0) = C({>}), the program is rejected.

2.6 Noninterference

This section establishes the noninterference information-
flow property for well-typed SImp programs. Consider the
terminating execution of program c in memory M1 with re-
sult M ′

1. Now change some high security components of
M1 to obtain M2 and, starting in M2, rerun c to get M ′

2.
If the low security parts of M ′

1 are different from those M ′
2

then c has leaked information. Instead, we would like to
prove that the semantics of SImp ensure M ′

1 and M ′
2 are

equivalent; that is, they differ only in their high security
components. This property, noninterference, will be defined
and formalized in the remainder of this section.

To make noninterference precise, we define when two
values are equivalent at a label. This is done inductively
with the rules in Figure 6. The most interesting rule is VE-
PACK-LAB. It states that an observer at label ` cannot dis-
tinguish packages sealed at `1 when C(`1) � C(`). We
must also define when two commands or expressions are
equivalent. We elide the inductive definitions of these re-
lations. Intuitively e ∼=` e′ holds when e and e′ are equiv-
alent values, or identical productions applied to equivalent
expressions. The definition of c ∼=` c′ is similar.

Conventionally, noninterference treats memories as
equivalent when the contents of corresponding low security
locations are identical. We generalize this and allow equiv-
alent memories to map low locations to equivalent, but not
identical, values.

Definition 1 (Θ ` M1
∼=` M2). In context Θ, memories

M1 and M2 are equivalent to an observer at level `, written
Θ ` M1

∼=` M2, when dom(M1) = dom(M2) and ∀x ∈
dom(M1). ∃τ, `′. Θ(x) = τ{`′} ∧ (M1(x) ∼=` M2(x) ∨
`′ � `).

7

To avoid reasoning about stuck execution states, we
assume commands are always run in well typed memo-
ries. Eliminating stuck states (i.e. proving type soundness)
both simplifies SImp’s metatheory and eliminates attacks
through the runtime-error covert channel.

Definition 2 (Θ ` M OK). A memory, M , is well typed in
location context Θ, when ∀x ∈ dom(Θ). Θ(x) = τ{`} ∧
` M(x) : τ . This property is written Θ ` M OK .

A trace is a set of principals and a sequence of config-
urations, (p, 〈M1, c1〉, 〈M2, c2〉, . . . , 〈Mn, cn〉), where for
each i ∈ {1, n− 1}, p ` 〈Mi, ci〉 → 〈Mi+1, ci+1〉.

Lemma 2 (Trace determinancy). There is at most one
shortest trace of form (p, 〈M1, c1〉, . . . , 〈Mn, cn〉).

If such a trace exists, we will write it as p ` 〈M1, c1〉 →∗

〈M2, c2〉.
The two following non-interference theorems are the pri-

mary language-theoretic results for SImp. The first states
that if `-equivalent expressions, e1 and e2, can be typed with
label `, then evaluating them in `-equivalent memories, M1

and M2, yields `-equivalent results, v1 and v2. That is, eval-
uation of low-security expressions occurs independently of
high security inputs.

Theorem 1 (Expression Non-interference). If

• Θ ` M1 OK , Θ ` M2 OK and Θ ` M1
∼=` M2

• Θ; · ` e1 : τ{`e} and e1
∼=` e2 where `e ≤ `

• p;M1 ` e1 →∗ v1 and p;M2 ` e2 →∗ v2

then v1
∼=` v2.

The second theorem extends this to configurations, and
states that `-equivalence is preserved by terminating com-
putations. These theorems are more general than those of
Smith and Volpano [33] who do not account for equivalent
but unequal values. Additionally, they are substantially sim-
pler than the the robust declassification and qualified robust-
ness theorems needed in the case of general endorsement or
declassification [10, 23].

Theorem 2 (Command Noninterference). If

• Θ ` M1 OK , Θ ` M2 OK and Θ ` M1
∼=` M2

• pc; Θ; · ` c1 and c1
∼=` c2

• p ` 〈M1, c1〉 →∗ 〈M ′
1, skip〉 and p ` 〈M2, c2〉 →∗

〈M ′
2, skip〉

then Θ ` M ′
1
∼=` M ′

2.

The language level definitions and theorems treat con-
fidentiality and integrity uniformly. This is a reflection of
a well known duality between “tainted” and “secret” val-
ues and “untainted” and “public” values. This duality also
arises in the cryptographic semantics described next, where
confidentiality is enforced via encryption and integrity is
enforced via digital signatures.

3 Cryptographic Semantics

The above noninterference property ensures security for
programs run in a trusted environment. We wish to also con-
sider hostile environments: Can we interpret labels using
cryptography to ensure information flow guarantees hold in
open systems?

To examine this issue, we first define a formal syntax of
messages and a Dolev-Yao deduction system for reasoning
about them. Next, we show how to compile SImp values
into messages and establish that compiled packages imple-
ment appropriate confidentiality policies. Last, we relate
memories and commands to messages in order to define
and prove a cryptographic noninterference theorem. Note
that we rely on the soundness of Dolev-Yao reasoning with
respect to computational bounded attackers in the style of
Abadi and Rogaway [3] and of Backes and Pfitzmann [6].

We make several general assumptions. Each principal
has a corresponding public/private key pair. All public keys
are known to all principals, and private keys are known only
to the corresponding principal. Key distribution and name
binding are orthogonal (but important) problems that are not
considered here.

3.1 Messages and Message Analysis

This section defines messages, cryptographic states, and
an inference system for reasoning about them. Messages
are the basic objects in the cryptographic semantics. Cryp-
tographic states are collections of messages that represent
knowledge, ability, and belief. Lastly the inference system
describes when new messages can be synthesized from an
cryptographic state.

Messages are defined by the following grammar:

Principals p, q, r ::= Alice | Bob | . . .
Key Id κ, W, R (*abstract*)
Private Keys K− ::= K−

κ

Public Keys K+ ::= K+
κ

Strings str ::= "a"|"b" | . . .
Messages m,n ::= str | K | p | (m,m′)

| enc(K,m)
| sign(K,m)

The metavariable K ranges over both public and private
keys. Message enc(K,m) means m encrypted by K ,

8

and sign(K,m) means m signed by K . Messages are
paired with (m,m′). Public and private keys that share
a κ are inverses. Lists, [m1,m2, . . . ,mn], are defined by
nested pairs, (m1, (m2, . . . (mn, "") . . .)). We will write
[m1 . . .mk] ++ [mk+1 . . .mj] for [m1 . . .mj]. Lastly, we
will use "i" and "o : r ! w" to denote the strings encoding
integer value i and policy o : r !w respectively.

We introduce a modal natural deduction style system for
reasoning about a principal’s knowledge. Cryptographic
states, written σ, serve as contexts for the deduction sys-
tem and track a principal’s knowledge, abilities, and beliefs.
It might be that a principal knows , actswith , or believes a
message. The judgment σ `d m has the intended interpre-
tation that message m can be derived from the contents of
σ. The judgment σ `u m has the intended interpretation
that σ can use message m. And the judgment σ `b m has
the intended interpretation that m is considered trusted by
σ. Generally, σ `u m or σ `b m are only interesting when
m is a key. If σ uses a principal’s private key, it has the Prin-
cipal’s authority; if σ believes the principal’s public key, it
trusts the principal. Figure 7 gives the inference rules.

We distinguish knows from actswith because σ `d m
implies σ `u m, but the converse is not true. Thus actswith
provides a convenient way to model private keys which
are used, but never disclosed. Earlier, we said the relation
p ` 〈 , 〉 → 〈 , 〉 represents evaluation with authority p;
cryptographically speaking, execution requires a σ where
σ `u K−

p for all p ∈ p. Additionally, the belief modality
allows us to model low integrity data. Cryptographically
speaking, all messages signed with “untrusted” keys—with
any K where σ 6`b K—will be considered uninformative,
and therefore equivalent. We make these ideas precise in
Section 3.3.

3.2 Compiling Policies

Generally we will encode policies by generating a series
of fresh public key pairs. Plain text is encrypted and signed
using the fresh keys, and a message is created by append-
ing label information to the ciphertext. We aim to do this in
such a way that principal set p can read the cryptographic
interpretation of 〈v〉` text iff p reads `. And, writing v re-
quires the keys of q where q writes `.

DLM labels are intended for situations of mutual dis-
trust. When encoding a policy cryptographically, we have a
high level choice to make: Given principals Alice and Bob,
should it possible for Bob to specify Alice’s policy? Con-
cretely, whose authority should be required to create a value
labeled by {Alice : Bob ! ∅}?

Two apparently reasonable answers to this question are,

1. Policies may be created with no authority.

2. Policy creation requires the owner’s authority.

The first approach is flawed. If no particular authority is re-
quired to labeled values, any user can attach arbitrary asser-
tions to a package. Thus Eve can spoof labels and cause vi-
olations of confidentiality and integrity policies. This both
enables easy attacks and muddies the theory. Therefore we
follow the second approach.

Translating 〈v〉` into a message takes three steps. First
we compile each policy in ` to a seal which can be used to
ensure the confidentiality and integrity of a sealed message.
Second, we compose the seals to create an envelope which
can be read and written only in accordance with `’s mean-
ing. Third, we translate v and write its translation into the
envelope.

As we will see, envelopes serve as one way secure chan-
nels. Public key cryptography is essential to this. Each of an
envelope’s seals is associated with two private keys: one for
reading and one writing. If a principal possesses all of the
read keys, that principal can read from the envelope. Like-
wise, a principal possessing all the write keys can write to
the envelope. Thus a principal is able to read (write) when
she has—or can collude to acquire—a read (write) key for
each seal. In the sequent, a DLM label will be translated
into a message which discloses read and write keys accord-
ing to the label’s meaning. This will follow the definitions
of reads and writes from Section 2.2.

The seal corresponding to π = o : r !w is written P[[π]]
and is intended to ensure two properties. A envelope sealed
with P[[π]] should only be written to with a private key be-
longing to o or a member of w and read from by principals
with a private key from o, r. To compile π we first generate
a two fresh key pairs (K−

W ,K+
W) and (K−

R ,K+
R). Mes-

sages packed in envelopes with this seal will be encrypted
by K+

R and signed by K−
W . Hence the key K−

W will serve
as a (necessary but not sufficient) capability for writing, and
K−

R will serve as a capability for reading. Seal creation en-
crypts K−

W and K−
R such that only principals from o, w and

o, r respectively can read them. The public keys are dis-
played in the clear. Restricting access to K−

W enforces the
policy’s write component; dually, restricting access to K−

R

enforces the read component. Lastly, a string describing the
policy’s structure is prepended, and the entire seal is signed
by o. This signature ensures that the seal authentically de-
scribes o’s policy. The policy translation is described by the
following pair of equations, where the subscripted R and W
parameters make key generation explicit:

P[[o : r !w]]R,W = sign(o, ["o : r ! w", (K+
R ,K+

W)]

++ encFor (o, r) K−
R

++ encFor (o, w) K−
W)

encFor (p1 . . . pn) m = [enc(K+
p1

,m) . . . enc(K+
p2

,m)].

A label comprises one or more ordered policies. We com-
pile a label to an envelope by mapping the constituent poli-

9

σ `d m

(knows m) ∈ σ

σ `d m
D-TAUT

σ `u K σ `d m

σ `d enc(K,m)
D-ENCRYPT

σ `d enc(K+
κ ,m) σ `u K−

κ

σ `d m
D-DECRYPT

σ `u K σ `d m

σ `d sign(K,m)
D-SIGN

σ `d sign(K,m)
σ `d m

D-SIGN-ID
σ `b m

σ `d m
D-LIFT

σ `d enc(K,m)
σ `d K

D-ENC-ID

σ `d (m1,m2)
σ `d m1

D-PAIRL
σ `d (m1,m2)

σ `d m2

D-PAIRR
σ `d m1 σ `d m2

σ `d (m1,m2)
D-PAIR

σ `u m

U-TAUT
(actswith m) ∈ σ

σ `u m

U-LIFT
σ `d m

σ `u m

σ `b m

B-TAUT
(believes m) ∈ σ

σ `b m

B-SIGN-VERIFY
σ `d sign(K−,m) σ `b K+

σ `b m

Figure 7. Cryptographic Deduction System

cies list to to a list of seals.

L[[(π1 . . . πn)]]R1,W1,...Rn,Wn

= [P[[π1]]R1,W1 . . . P[[πn]]Rn,Wn]

Once ` is translated to an envelope, we can proceed with
translating 〈v〉`. First we recursively translate v to obtain
V[[v]]. Next we write into the envelope by encrypting V[[v]]
with each seal’s K−

R and signing with K−
W key. The result is

paired with the list of seals. Formally, the value translation
is given by

V[[i]]κ = "i"

V[[inl v]]κ = ("inl", V[[v]]κ)
V[[inr v]]κ = ("inr", V[[v]]κ)

V[[〈v〉`]]κ1,κ2
= (doPack κ2 V[[v]]κ1

, L[[`]]κ2
)

where

doPack (R1,W1, . . . , Rn,Wn) m

= es(Rn,Wn, . . . es(R1,W1,m) . . .)
es(R,W, m) = sign(K−

W , enc(K+
R ,m)).

Entire memories are translated to cryptographic states
by packing each location’s contents:

M[[·]]Θκ = ∅
M[[M [x 7→ v]]]Θκ,κ′ = M[[M]]Θκ , knows V[[〈v〉`]]κ′

(where Θ(x) = τ{`})

To correctly thread κ though the above calculation, we as-
sume that locations in a program are translated in a fixed
order. Picking an order is easy, as memories are finite and
the choice of order is arbitrary.

3.3 Cryptographic Analysis

We model the execution of a SImp program by an evolv-
ing cryptographic state that reflects the program’s dynamic
memory contents. To do this we will define equivalence
relations on messages and cryptographic states, then show
that the translation functions from Section 3.2 preserve
equivalences. Lastly, we introduce state transition rules
for cryptographic states and argue that command evaluation
corresponds to state evolution.

First we connect the cryptographic system and our DLM.
The predicate σ � p holds when ∀p ∈ p.σ `u K−

p . The
relation σ ` m ∼= m′ means that in state σ messages m and
m′ are indistinguishable. It is inductively defined by the
rules in Figure 8. Rule ME-ID states that identical terms are
indistinguishable. Rule ME-ENC-SECRET assumes perfect
cryptographic operations. In particular, ME-ENC-SECRET
states that if two messages cannot be decrypted, they are
equivalent—you cannot provide evidence that they do not
encrypt equivalent values. The rule ME-PAIR says that in-
formation from the left sides of pairs is considered when
checking the right sides, and vice versa. This is necessary
to avoid erroneously deriving that (K, enc(K, "a")) ∼=`

(K, enc(K ′, "b")).
Rule ME-SIGN-SUSPECT requires explanation. It states

that two messages are equivalent when they are signed by
untrusted keys. From the perspective of an honest user,
this makes perfect sense. Honest players will ignore signed
messages that they do not trust. It also makes sense from
the perspective of the attacker. A Dolev-Yao attacker only
desires to construct (or deconstruct) messages he should not
be allowed to do. This aspect of signatures is handled by D-
SIGN and D-SIGN-ID. While an attacker might swap two

10

σ ` m1
∼= m2

σ ` m ∼= m
ME-ID

σ, knows m2, knows m′
2 ` m1

∼= m′
1

σ, knows m1, knows m′
1 ` m2

∼= m′
2

σ ` (m1,m2) ∼= (m′
1,m

′
2)

ME-PAIR

σ ` m1
∼= m2

σ ` enc(K,m1) ∼= enc(K,m2)
ME-ENC-STRUCT

σ 6`u K−
1 σ 6`u K−

2

σ ` enc(K+
1 ,m1) ∼= enc(K+

2 ,m2)
ME-ENC-SECRET

σ ` m1
∼= m2

σ ` sign(K,m1) ∼= sign(K,m2)
ME-SIGN-STRUCT

σ 6`b K+
1 σ 6`b K+

2

σ ` sign(K−
1 ,m1) ∼= sign(K−

2 ,m2)
ME-SIGN-SUSPECT

Figure 8. Contextual Message Equivalence

equivalent messages, he will only be able to fool an honest
participant who does not believe the keys used to sign the
messages; this is harmless.

The next four definitions extend the notion of `-
equivalence to messages.

Definition 3 (σ reads `).
If ∃p.(p reads ` ∧ ∀p ∈ p.σ `u K−

p) then σ reads `.

Definition 4 (σ distrusts `).
If ∃p.(p writes ` ∧ ∀p ∈ p.σ 6`b K−

p) then σ distrusts `.

Definition 5 (σ ≤ `).
If ¬σ reads ` and σ distrusts ` then σ ≤ `.

Definition 6 (Message `-equivalence: m ∼=` m′).
We write m ∼=` m′ if and only if

∀σ. σ ≤ ` =⇒ σ, knows m, knows m′ ` m ∼= m′

For example, assume K−
R is fresh, then consider the mes-

sages

m = (enc(K+
p ,K−

R), enc(K+
R , "3"))

m′ = (enc(K+
p ,K−

R), enc(K+
R , "4"))

and the label ` = {o : pq !P}. Is it true that m ∼=` m′? To
find out, we take arbitrary σ where σ ≤ `. Unfolding Defi-
nition 5 shows ¬(σ reads `). Therefore, because p reads `,
we conclude σ 6`u K−

p . Now let

σ′ = σ, knows (enc(K+
p ,K−

R))
σ′′ = σ′, knows m, knows m′.

` σ → σ′

` σ → σ, knows (K+
κ ,K−

κ)
CS-FRESH

κ fresh

CS-DERIVE
σ `d m

` σ → σ, knows m

CS-FORGET
σ′ ⊆ σ

` σ → σ′

CS-COMPUTE
σ `d "i1" σ `d "i2"

` σ → σ, "i3"
where i3 = i1 + i2

Figure 9. Cryptographic State Transitions

From σ 6`u K−
p and the freshness of K−

R , it is clear
that σ′ 6`d K−

R and that σ′′ 6`d K−
R . Therefore σ′′ `

enc(K+
R , "3") ∼= enc(K+

R , "4") by ME-ENC-SECRET.
Applying ME-PAIR yields σ′ ` m ∼= m′. Finally gener-
alizing over σ and applying Definition 6 gives m ∼=` m′.

The messages m and m′ contain the key components
of V[[〈3〉{o:p ! }]] and V[[〈4〉{o:p ! }]]. Demonstrating their `-
equivalence here is intended to be suggestive, and this rela-
tion will be made precise by Lemma 3. First, however, we
must lift `-equivalence to cryptographic states.

Definition 7 (σ ∼=` σ′). If knows m ∈ σ implies that there
exists m′ where knows m′ ∈ σ′ and m ∼=` m′, then σ′ �`

σ. If σ′ �` σ and σ �` σ′, then σ ∼=` σ′.

Thus far we have defined two sorts of equivalence rela-
tions: those at the SImp level and those at the cryptographic
level. However, it is not yet clear what, if any, formal re-
lation exists between, say, value and message equivalences.
For our cryptographic semantics to provide a safe interpre-
tation of of SImp, equivalent values (memories) must trans-
late to equivalent messages (states). Otherwise, an attacker
could illegally gain information by observing the crypto-
graphic states corresponding to the beginning and end of a
well-typed program’s execution. The following lemma and
corollary state that this cannot occur.

Lemma 3 (Adequacy of Value Translation). If v1
∼=` v2

and κ is fresh then V[[v1]]κ ∼=` V[[v2]]κ.

Corollary 1 (Adequacy of Memory Translation). If Θ `
M1

∼=` M2 and κ is fresh then M[[M1]]Θκ ∼=` M[[M2]]Θκ .

Coupled with Theorem 2, these demonstrate that our
cryptographic system reflects language level noninterfer-
ence. Thus Lemma 3 and its corollary are the statements
that our cryptographic system is safe.

Above, we showed that SImp and its cryptographic in-
terpretation are safe. However, safety and implementabil-
ity are orthogonal issues. For example, the translation that

11

maps all values to the empty string is safe, but could not
be the basis for practical system. We argue that our crypto-
graphic model is a reasonable foundation for SImp in two
steps. First, we define a nondeterministic transition relation
on cryptographic states in which only cryptographically re-
alizable transitions may occur. Second, we claim that it sim-
ulates SImp evaluation.

Intuitively, the relation ` σ1 →∗ σ2 holds when a cryp-
tographic state σ1 can, using basic cryptographic opera-
tions, transition to state σ2. This is the reflexive transitive
closure of the rules given in Figure 9. We are most inter-
ested in states corresponding to memories (i.e. heaps), and
those corresponding to expressions currently executing (i.e.
stacks). State state(κ, p, c) represents the dynamic infor-
mation associated with command c and principals p. It is
defined by

σ0 = {knows "inl", knows "inr", . . .}
∪ {knows K+

p | p ∈ P}
σc

κ = {V[[vi]]κi
| . . . vi . . . = values(c)}

∪ {V[[`i]]κi
| . . . `i . . . = labels(c)}

state(κ, p, c) = σ0 ∪ σc
κ ∪ {actswith K−

p | p ∈ p}

where values(c) is the list of values occurring in command
c and labels(c) is the list of labels occurring in c. Note
that because σc

κ contains translations of labels occurring in
source program c, all owners’ keys are needed at compile
time (but, of course, not later). Such a requirement is also
intuitively necessary; after all c must be treated as very high
integrity data.

Theorem 3 (Feasibility). If Θ ` M OK , pc; Θ; Γ `
c, p reads pc, p writes pc, and p ` 〈M, c〉 →
〈M ′, c′〉 then ∃κ3, κ4. ` M[[M]]Θκ1

∪ state(κ2, p, c) →∗

M[[M ′]]Θκ3
∪ state(κ4, p, c).

The cryptographic semantics’s non-determinism allows
us to investigate feasibility without picking a particular im-
plementation strategy and providing a fully-abstract sim-
ulation of SImp programs. Thus Theorem 3, demonstrates
that there is some cryptographic realization of memory tran-
sitions described by the program. However, it does not need
to reflect all the computational detail of the program’s op-
eration (e.g. maintenance of the run-time stack) into the
cryptographic transition system.

The commutation diagram below summarizes our main
results. For convenience, we write p; c;κ ` σ →∗ σ′

for ` state(κ, p, c) ∪ σ →∗ σ′. The diagram’s inner and
outer loops each illustrate Theorem 3. The preservation of
`-equivalence by the top and side arrows demonstrates The-
orem 2 and Corollary 1.

M1
∼=` M2 M ′

2
∼=` M ′

1

σ1 ∼=` σ2 σ′2
∼=` σ′1

p `〈 ,c〉→∗〈 ,skip〉
//

p `〈 ,c〉→∗〈 ,skip〉

))

p;c;κ` →∗
//___________

p;c;κ` →∗

55S U W X Z \] _ a b d f g i k

M[[·]]Θκ

��

M[[·]]Θκ

��

M[[·]]Θκ

���
�
�
�
�
�
�
�
�

M[[·]]Θκ

���
�
�
�
�
�
�
�
�

We assume all memories and commands are appropri-
ately typed with location context Θ, the empty value con-
text, and a pc such that p reads pc and p writes pc. To
interpret the diagram, begin with `-equivalent memories,
M1 and M2. The arcs across the top correspond to ter-
minating evaluations of command c. Theorem 2 shows
Θ ` M ′

1
∼=` M ′

2. The arrows going down are memory
translations. Corollary 1 shows σ1

∼=` σ2 and σ′1
∼=` σ′2;

this reflects safety. Lastly, the arcs across the bottom il-
lustrate that by, Theorem 3, the system transformations of
the program are feasible. The right hand side arrows point
down because that is sufficient to demonstrate feasibility.
Reversing these arrows up would require a fully-abstract
translation of SImp to the cryptographic semantics—an in-
teresting problem outside the scope of this paper.

4 Related Work

Askarov, Hedin, and Sabelfeld [4] recently investigated
a type system for programs with encryption and with the
property that all well typed programs are non-interfering.
Their work differs from ours in several ways. They treat en-
cryption, decryption, and key generation as language prim-
itives. In contrast, we use cryptography implicitly to im-
plement high-level language features. Askarov’s language
appears superior for modeling cryptographic protocols, and
ours provides a cleaner and simpler interface for applica-
tions programming. The central technical difference is that
Askarov and colleagues ensure noninterference completely
by way of static checks; our noninterference result stems
from the harmonious interplay of static and dynamic check-
ing. Further comparison of the approaches is warranted.

Chothia, Duggan, and Vitek [12] examine a combina-
tion of DLM-style policies and cryptography, called the
Key-Based DLM (KDLM). Their system, like Askarov’s,
provides an extensive set of language level cryptographic
primitives and types inhabited by keys. In contrast to SImp,

12

KDLM security typing is nominal—labels have names and
each name corresponds to a unique cryptographic key.
While they prove type soundness, Chothia and colleagues
do not provide more specific security theorems such as non-
interference.

Our pack/unpack language feature can be compared
with both dynamic types [2] and standard existential types
[24]. Like typecase, unpack may fail at runtime; the stan-
dard existential unpack always succeeds. As with dynam-
ic/typecase, our pack/unpack does not provide direct sup-
port for abstract datatypes; existentials usually do. A more
refined approach to pack/unpack might use type annota-
tion to expose the internal structure of encrypted values; this
would resemble a existential package with a bounded type
variable.

Sumii and Pierce [31] studied λseal, an extension to
lambda calculus with terms of form {e}e′ , meaning e
sealed-by e′, and a corresponding elimination form. Like
Askarov and colleagues, they make seal (i.e. key) genera-
tion explicit in program text; however their dynamic seman-
tics, which include runtime checking of seals, is simpler
than Askarov’s. λseal includes black-box functions that an-
alyze sealed values, but cannot be disassembled to reveal
the seal (key). It is not clear how to interpret such functions
in a cryptographic model.

Heintze and Riecke’s SLam calculus [19] is an infor-
mation flow lambda calculus in which the right to read a
closure corresponds to the right to apply it. This sidesteps
the black-box function issue from λseal. In SLam, some
expressions are marked with the authority of the func-
tion writer. The annotations control declassification, and,
we conjecture, are analogous to the pretranslated labels in
SImp. Additionally SLam types have a nested form where,
for example, the elements in a list and the list itself may be
given different security annotations. Combined with pack,
such nesting could facilitate defining data structures with
dynamic and heterogeneous security properties.

We use the algebraic Dolev-Yao model to study the con-
nection connection between information flow and cryptog-
raphy. Laud and Vene [21] examined this problem using a
computational model of encryption. More recently, Smith
and Alpı́zar extended this work to include a model of de-
cryption [30]. They prove noninterference for a simple lan-
guage without declassification (or packing) and a two-point
security lattice. Like Chothia and colleagues, they map la-
bels to fixed keys.

Abadi and Rogaway proved that Dolev-Yao analysis is
sound with respect to computational cryptographic analysis
in a setting similar to our own [3]. While the inference sys-
tem in Figure 7 was influenced by their formalism, there are
significant differences in approach. In particular, Abadi and
Rogaway do not discuss public key cryptography, which we
use extensively. Backes and Pfitzmann [6] with Waidner [7]

have also investigated the connection between symbolic and
computational models of encryption. They define a Dolev-
Yao style library and show that protocols proved secure with
respect to library semantics are also secure with respect to
computational cryptographic analysis. This library might
provide an excellent foundation for further rigorous analy-
sis of SImp.

5 Discussion

Information flow languages often provide escape hatches
to declassify secrets or endorse untrusted input. While these
mechanisms allow violations of language policies, they iso-
late locations where leaks can occur and are quite useful
in practice. Unfortunately, languages with unrestricted de-
classification and endorsement no longer enjoy simple non-
interference, leading to complex metatheory [10]. SImp’s
pack and unpack operators provide a middle ground. Like
declassify, pack lowers confidentiality policies, and, like
endorse, unpack lowers integrity label policies. However,
packing and unpacking are not as general as declassifica-
tion and endorsement. For example, pack/unpack cannot be
used to make public the result of a password check—a clas-
sic use of declassification. The advantage of pack/unpack,
is that they preserve non-interference and are thus safer than
declassify/endorse. Thus these constructs are complemen-
tary. We believe a practical information flow language could
include both.

5.1 Comparison with other DLMs

Several decentralized label models are discussed in the
literature. As originally formulated by Myers and Liskov,
structurally defined labels described only confidentiality
(or, dually, integrity) policies [22]. Later research treated
confidentiality and integrity simultaneously. Zdancewic
and Tse examined a DLM where integrity polices define
a “trusted by” relation [32]. In contrast, Myers and Chong
treat integrity as we do, with the “written by” interpreta-
tion [10]. Lastly, Chothia, Duggan, and Vitek’s KDLM
blends structural and nominal label semantics [12].

Our DLM differs significantly from Myers and Liskov’s
original presentation [22], which gives labels a more restric-
tive interpretation. For example, in our setting label

` = {Alice : Alice, Charlie ! ∅; Bob : Bob, Charlie ! ∅}

can be read with the authority of {Alice, Bob} or just
Charlie. Myers requires Charlie’s authority to read `. (Of
course, Alice and Bob may conspire to first declassify and
then read—but it’s important not to conflate this with sim-
ple reading.) Our choice of interpretation was motivated
by the constraints inherent in cryptographically translating

13

packages. In particular, Lemma 3 would not hold under
Myers and Liskov’s interpretation. However, we could re-
tain this result by changing the definition of V[[·]]· to use
share semantics. Under share semantics, 〈v〉` is translated
by generating a fresh key pair and encrypting v with the
public key. Cryptographic shares of the fresh keys are dis-
tributed according to each owner’s read and write policy.
With mutual distrust among owners, no owner should be
able to learn the fresh keys except as permitted by the reads
and writes relations. This requires generating key shares
without revealing the underlying keys. We hoped to do so
with threshold cryptography [15], but current approaches
expose one key of the pair.

Previous DLMs include a partial order on principals
called the acts-for hierarchy [22]. If p � q then principal
p is assumed to have the authority of q. If σ is p’s crypto-
graphic state, σ `u K−

q models this acts-for relation in our
setting. This is a course-grained form of delegation. The
correct cryptographic implementation of the acts for hier-
archy is not clear. A naive implementation might provide
Alice with Bob’s private key when Alice � Bob. However
this has practical shortcomings: revocation is impossible,
and Bob cannot selectively grant Alice rights. A more so-
phisticated protocol might require that Bob provide Alice
with a network service or a smart card that can selectively
provide encryption and signing services.

5.2 Language Extensions

SImp is a core language for programming with informa-
tion flow and packing. Future work may extend it with sev-
eral new constructs.

Currently SImp programs must unpack packages to com-
pute with their contents. Alternatively, the rule

p;M ` v1 + v2 → v3

p;M ` 〈v1〉` + 〈v2〉` → 〈v3〉`
BIND

would permit computation within packages. (The name
BIND follows the monadic interpretation of security state-
ments in Abadi’s Dependency Core Calculus [1].) While
BIND can be implemented using the homomorphic proper-
ties of the Goldwasser-Micali cryptosystems, they cannot
sustain an analogous multiplication rule. Other systems
(e.g. RSA) would support multiplication but not addition.
Unfortunately, current cryptosystems can only provide effi-
cient homomorphic computation over a single algebraic op-
erator. A more general bind would require an efficient ho-
momorphic algebraic (i.e. additive and multiplicative) cryp-
tosystem; the existence of such schemes is an open prob-
lem [26].

Imperative update of packed values is compatible with
SImp’s semantics. The operational semantics might look

like
p writes `

p;M ` put v in 〈v0〉` → inl 〈v〉`
PUT

.

PUT assigns a low (trusted, public) value into a high
(tainted, secret) package; this is straightforward to type-
check and dynamically safe. What distinguishes packing
and writing? Compiling a pack requires the creation of
a new envelope, which in turn requires the owners’ keys.
In contrast, a put reuses dynamically acquired envelopes
and requires no compile-time keys. Our model assumes that
programs are compiled with the authority of all owners; thus
PUT conveys no particular advantage. It may be useful un-
der weaker assumptions, such as those encountered in the
context of program partitioning [35].

Lastly, SImp could allow programs to strengthen the la-
bel of a (potentially unreadable) package. In full generality,

`1 ≤ `2

p;M ` strengthen 〈v〉`1 to `2 → 〈v〉`2
STRENGTHEN

.

In the case of a DLM, `2 may be more restrictive than `1
in two ways: `2 may have new that policies `1 does not, or
`2 may have more restrictive policies than `1. In the former
case, it is straightforward to append the new policy’s seal to
`1’s envelope and finish the construction of V[[〈v〉`2]]. How-
ever, it is not clear what to do in the second case.

Conclusion It is important to consider the interplay be-
tween cryptography and information-flow in the context of
language-based security. This paper has investigated one
design for high-level language features that make it easy for
to connect a secure program’s confidentiality and integrity
labels with an underlying cryptographic implementation.
Our package mechanism complements existing, more gen-
eral approaches to downgrading, but has the advantage of
yielding a strong noninterference result against Dolev-Yao
attackers. We expect that such packages will be useful for
building systems that enforce strong security policies, even
when confidential data must leave the confines of the trusted
run-time environment.

Acknowledgments We would like to thank the anony-
mous reviewers for their helpful comments and Peeter Laud
for his suggestions regarding the cryptographic semantics.

References

[1] M. Abadi. Access control in a core calculus of depen-
dency. In ICFP ’06: Proceedings of the eleventh ACM
SIGPLAN international conference on Functional Program-
ming, pages 263–273, Portland, Oregon, USA, September
2006.

14

[2] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic
typing in polymorphic languages. Journal of Functional
Programming, 5(1):111–130, January 1995.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion). Journal of Cryptology, 15(2):103–127, 2002.

[4] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically
masked information flows. In Proceedings of the Interna-
tional Static Analysis Symposium, LNCS, Seoul, Korea, Au-
gust 2006.

[5] A. Askarov and A. Sabelfeld. Security-typed languages for
implementation of cryptographic protocols: A case study. In
Proceedings of the 10th European Symposium on Research
in Computer Security (ESORICS), Milan, Italy, September
2005.

[6] M. Backes and B. Pfitzmann. Relating symbolic and cryp-
tographic secrecy. IEEE Trans. Dependable Secur. Comput.,
2(2):109–123, 2005.

[7] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In CCS ’03:
Proceedings of the 10th ACM conference on Computer and
communications security, pages 220–230, Washington D.C.,
USA, 2003. ACM Press.

[8] D. E. Bell and L. J. LaPadula. Secure computer system: Uni-
fied exposition and Multics interpretation. Technical Report
ESD-TR-75-306, MITRE Corp. MTR-2997, Bedford, MA,
1975. Available as NTIS AD-A023 588.

[9] R. Chapman. Industrial experience with spark. Ada Lett.,
XX(4):64–68, 2000.

[10] S. Chong and A. C. Myers. Decentralized robustness. In
Proceedings of the 19th IEEE Computer Security Founda-
tions Workshop (CSFW’06), pages 242–253, Los Alamitos,
CA, USA, July 2006.

[11] S. Chong, A. C. Myers, K. Vikram, and L. Zheng.
Jif Reference Manual, June 2006. Available from
http://www.cs.cornell.edu/jif.

[12] T. Chothia, D. Duggan, and J. Vitek. Type based distributed
access control. In Proceedings of the 16th IEEE Computer
Security Foundations Workshop (CSFW’03), Asilomar, Ca.,
USA, July 2003.

[13] D. E. Denning. Secure Information Flow in Computer Sys-
tems. PhD thesis, Purdue University, W. Lafayette, Indiana,
USA, May 1975.

[14] D. E. Denning and P. J. Denning. Certification of Pro-
grams for Secure Information Flow. Comm. of the ACM,
20(7):504–513, July 1977.

[15] Y. G. Desmedt and Y. Frankel. Threshold cryptosystems.
In CRYPTO ’89: Proceedings on Advances in cryptology,
pages 307–315, New York, NY, USA, 1989. Springer-Verlag
New York, Inc.

[16] D. Dolev and A. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 2(29),
1983.

[17] D. Duggan. Cryptographic types. In CSFW ’02: Proceed-
ings of the 15th IEEE Computer Security Foundations Work-
shop (CSFW’02), page 238, Washington, DC, USA, 2002.
IEEE Computer Society.

[18] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symposium on Security and Privacy,
pages 11–20. IEEE Computer Society Press, Apr. 1982.

[19] N. Heintze and J. G. Riecke. The SLam calculus: program-
ming with secrecy and integrity. In POPL ’98: Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 365–377, New York,
NY, USA, 1998. ACM Press.

[20] B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understand-
ing practical application development in security-typed lan-
guages. In 22st Annual Computer Security Applications
Conference (ACSAC), Miami, Fl, December 2006.

[21] P. Laud and V. Vene. A type system for computationally
secure information flow. In Proceedings of the 15th Interna-
tional Symposium on Fundamentals of Computational The-
ory, volume 3623, pages 365–377, Lübeck, Germany, 2005.

[22] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, 2000.

[23] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification and qualified robustness. Journal of
Computer Security, 2006. To appear.

[24] B. C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, Massachusetts, 2002.

[25] F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 319 – 330, Portland, Ore-
gon, Jan. 2002.

[26] D. K. Rappe. Homomorphic Cryptosystems and Their Ap-
plications. PhD thesis, University of Dortmund, Germany,
2004.

[27] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, Jan. 2003.

[28] Security-enhanced Linux. Project website http://www.

nsa.gov/selinux/ accessed November, 2006.
[29] V. Simonet. Flow Caml in a nutshell. In G. Hutton, editor,

Proceedings of the first APPSEM-II workshop, pages 152–
165, Mar. 2003.

[30] G. Smith and R. Alpı́zar. Secure information flow with ran-
dom assignment and encryption. In Proceedings of The 4th
ACM Workshop on Formal Methods in Security Engineer-
ing: From Specifications to Code (FSME’06), pages 33–43,
Alexandria, Virgina, USA, November 2006.

[31] E. Sumii and B. C. Pierce. A bisimulation for dynamic seal-
ing. In Principals of Programming Languages, Venice, Italy,
January 2004.

[32] S. Tse and S. Zdancewic. Run-time principals in
information-flow type systems. In IEEE Symposium on Se-
curity and Privacy, 2004.

[33] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(3):167–187, 1996.

[34] G. Winskel. The Formal Semantics of Programming Lan-
guages: An Introduction. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[35] L. Zheng, S. Chong, S. Zdancewic, and A. C. Myers. Build-
ing Secure Distributed Systems Using Replication and Parti-
tioning. In IEEE 2003 Symposium on Security and Privacy.
IEEE Computer Society Press, 2003.

15

