
Secure Information Flow for Concurrent Programs Under Total

Store Order
Supplemental technical material

Jeffrey A. Vaughan Todd Millstein

UCLA Compter Science Department
Technical Report #120007

May 9, 2012

Abstract

Modern multicore hardware and multithreaded programming languages expose weak memory models
to programmers, which relax the intuitive sequential consistency (SC) memory model in order to support
a variety of hardware and compiler optimizations. However, to our knowledge all prior work on secure
information flow in a concurrent setting has assumed SC semantics. This paper investigates the impact of
the Total Store Order (TSO) memory model, which is used by Intel x86 and Sun SPARC processors, on
secure information flow, focusing on the natural security condition known as possibilistic noninterference.
We show that possibilistic noninterference under SC and TSO are incomparable notions; neither property
implies the other one. We define a simple type system for possibilistic noninterference under SC and
demonstrate that it is not sound under TSO. We then provide two variants of this type system that
are sound under TSO: one that requires only a small change to the original type system but is overly
restrictive, and another that incorporates a form of flow sensitivity to safely retain desired expressiveness.
Finally, we show that the original type system is in fact sound under TSO for programs that are free
of data races. This report is a companion to “Secure Information Flow for Concurrent Programs Under
Total Store Order” (Vaughan and Millstein, 2012).

1 Overview

This document presents the proofs and full definitions for “Secure Information Flow for Concurrent Programs
Under Total Store Order” (Vaughan and Millstein, 2012).

The conference paper’s type system only accepts well-structured source programs. For the proofs, it is
convenient to present an expanded type system that accepts intermediate program states and to track the
sourceness and well-structuredness properties separately. Additionally, results are numbered differently in
the two documents. The chart below shows how these correspond.

Conference paper This document
Theorem 3 Corollary 10
Theorem 4 Corollary 3
Theorem 6 Corollary 7
Theorem 7 Lemma 111
Theorem 8 Lemma 112
Theorem 15 Theorem 2

2 Language definition

2.1 Language syntax and main semantic sets

This syntax of the concurrent imperative language, and definitions of the main semantic objects are as
follows.

1

Local variables x, y, z ∈ LocalVar
Shared variables X,Y, Z ∈ HeapVar
Variables, Var v ::= LocalVar ∪HeapVar

Locks ` ∈ Lock A finite set

Integer literals i ∈ Z
Boolean literals β ∈ B = {true, false}

Arithmetic Exp. a ::=
| x Local var
| i Integer literal
| a⊕ a | (b ? a : a) | . . . Arithmetic ops.

Boolean Exp. b ::=
| β Boolean literal
| isZero a Zero test
| b> b Boolean ops.

Command c, d ::=
| x := X Load
| X := x Store
| x := a Expression evaluation
| sync ` do c Lock acquire
| holding ` do c Lock held (forbidden in source programs)
| fence Memory barrier
| fork c Thread creation
| c1; c2 | if b do c1 else c2 While language commands
| while b do c | skip

Write buffer, WriteBuf W ::=
| nil Empty
| (X := i)::W Write pending (ready to commit at head,

newer writes in tail)
Local state L ∈ (LocalVar→ Z)× P(Lock)

×WriteBuff

Thread IDs ι ∈ TID A finite set

Thread s, t ::= 〈L, c〉ι

Process soup P,Q ::=
| 0 Nil process
| t || P Parallel composition

Global state G,H ∈ (HeapVar→ Z)× P(Lock)

Configuration, Config χ ::= (G,P)

Operation op ::= eval | commit

Action, Action α ::= op(i)

Action Set A ∈ P(Action)

2

2.2 Notation

Suppose local state L = (M,λ,W). We write L.mem, L.locks, and L.wb for M , λ, and W respectively. If
x ∈ LocalVar we write L[x 7→ i] for (M [x 7→ i], λ,W) and L(x) for M(x). Likewise we use L ∪ κ and L ∩ κ
and L \ κ and ` ∈ L for (M,λ ∪ κ) and (M,λ ∩ κ) and (M,λ \ κ) and ` ∈ λ. Finally we use L++(X := i) for
(M,λ,W++(X := i)::nil) and (X := i)::L for (M,λ, (X := i)::W).

Symbol L� represents the “empty” local state ((λx.0), ∅,nil).
Suppose G = (S, λ). We write G.mem for S and G.locks for λ.
Suppose t = 〈L, c〉. Then t.cmd , t.ls, t.locks, t.wb, and t.mem mean c, L, L.locks, L.wb, and L.mem

respectively.
Metavariable S, for Store, ranges over global heaps and metavariable M , for Memory, ranges over local

memories.
Thread ids are only important for the argument in Section 4 and are often suppressed to avoid clutter.
We will sometimes write singleton process t || 0 simply as t. Additionally we define Q++P to be the process

soup formed by appending Q and P ; that is 0++P = P and (t || Q)++P = t || (Q++P). We abuse notation
and write t ∈ P when P ≡ t || Q for some Q as well as P || Q for P++Q. Finally we write nonempty P when
has form t || P0 and for such a nonempty process soup, hd(P) is t.

2.3 Single Step Operations

(S;W)[X] ⇓ i

(S;W++(X := i))[X] ⇓ i
X 6= Y (S;W)[X] ⇓ i
(S;W++(Y := i0))[X] ⇓ i (S; nil)[X] ⇓ S(X)

L[a] ⇓ i

L[x] ⇓ L(x) L[i] ⇓ i
L[a1] ⇓ i1 L[a2] ⇓ i2 i = i1 [[⊕]] i2

L[a1 ⊕ a2] ⇓ i
L[b] ⇓ true L[a1] ⇓ i
L[(b ? a1 : a2)] ⇓ i

L[b] ⇓ false L[a2] ⇓ i
L[(b ? a1 : a2)] ⇓ i

L[b] ⇓ β

L[β] ⇓ β
L[a] ⇓ 0

L[isZero a] ⇓ true

L[a] ⇓ i i 6= 0

L[isZero a] ⇓ false

L[b1] ⇓ β1 L[b2] ⇓ β2 β = β1 [[>]]β2

L[b1 > b2] ⇓ β

(G, t) −→commit (G′, P)

(G, 〈(X := i)::L, c〉) −→commit (G[X 7→ i], 〈L, c〉)

3

(G, t) −→eval (G′, P)

(G, 〈L,X := x〉) −→eval (G, 〈L++(X := L(x)), skip〉)
ec-Store

(G.mem;L.wb)[X] ⇓ i
(G, 〈L, x := X〉) −→eval (G, 〈L[x 7→ i], skip〉)

ec-Load

L[a] ⇓ i
(G, 〈L, x := a〉) −→eval (G, 〈L[x 7→ i], skip〉)

ec-EvalExp

` ∈ G L.wb = nil

(G, 〈L, sync ` do c〉) −→eval (G \ {`}, 〈L ∪ {`},holding ` do c〉)
ec-SyncAcquire

` ∈ L
(G, 〈L, sync ` do c〉) −→eval (G, 〈L, fence; (c; fence)〉)

ec-SyncReenter

` ∈ L (G, 〈L, c〉ι) −→eval (G′, 〈L′, c′〉ι || P)

(G, 〈L,holding ` do c〉ι) −→eval (G′, 〈L′,holding ` do c′〉ι || P)
ec-HoldStep

` ∈ L L.wb = nil

(G, 〈L,holding ` do skip〉) −→eval (G ∪ {`}, 〈L \ {`}, skip〉)
ec-HoldRelease

L.wb = nil

(G, 〈L, fence〉) −→eval (G, 〈L, skip〉)
ec-Fence

L.wb = nil ι′ fresh

(G, 〈L, fork c〉ι) −→eval (G, 〈L, skip〉ι || 〈L�, c〉ι′)
ec-Fork

(G, 〈L, c1〉ι) −→eval (G′, 〈L′, c′1〉ι || P)

(G, 〈L, c1; c2〉ι) −→eval (G′, 〈L′, c′1; c2〉ι || P)
ec-SeqStruct

(G, 〈L, skip; c〉ι) −→eval (G, 〈L, c〉ι)
ec-SeqSkip

L[b] ⇓ true

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c1〉)
ec-IfTrue

L[b] ⇓ false

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c2〉)
ec-IfFalse

L[b] ⇓ true

(G, 〈L,while b do c〉ι) −→eval (G, 〈L, c; while b do c〉ι)
ec-WhileTrue

L[b] ⇓ false

(G, 〈L,while b do c〉ι) −→eval (G, 〈L, skip〉ι)
ec-WhileFalse

L.wb = nil L.locks = ∅
(G, 〈L, skip〉) −→eval (G, 0)

ec-Reap

4

2.4 Possibilistic evaluation

op(i) ∈ Ready(G, t1 · · · ti · · · tn) iff exists χ such that (G, ti) −→op χ

ReadySC(χ) =

{
commits commits 6= ∅
Ready(χ) otherwise

where commits = {commit(i) | commit(i) ∈ Ready(χ)}

(G,P) =⇒sc (G′, P ′)

op(i) ∈ ReadySC(χ)
P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q) P ′ = t1 . . . ti−1 || Q || ti+1 . . . tn

(G,P) =⇒sc (G′, P ′)

(G,P) =⇒tso (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q) P ′ = t1 . . . ti−1 || Q || ti+1 . . . tn

(G,P) =⇒tso (G′, P ′)

Define =⇒mm∗ as the reflexive, transitive closure of the =⇒mm relation where mm is either sc or tso.

3 A simple type system for possibilistic flows

This is a minimal delta from (Smith and Volpano, 1998). Typing uses the following syntactic classes.

Syntactic Security Level τ ::= low | high
Static Security Context Γ ::= HeapVar ∪ LocalVar ∪ Lock→ τ

We define lattice operators for syntactic security levels: least upper bound t, greatest lower bound u,
and partial order v. These respect the ordering low v high.

3.1 Types and basic properties

Γ ` a : τ

Γ(x) v τ
Γ ` x : τ Γ ` i : τ

Γ ` a1 : τ Γ ` a2 : τ

Γ ` a1 ⊕ a2 : τ

Γ ` b : τ Γ ` a1 : τ Γ ` a2 : τ

Γ ` (b ? a1 : a2) : τ

Γ ` b : τ

Γ ` β : τ

Γ ` a : τ

Γ ` isZero a : τ

Γ ` b1 : τ Γ ` b2 : τ

Γ ` b1 > b2 : τ

5

pc; Γ `tso c

pc t Γ(Y) v Γ(x)

pc; Γ `tso x := Y
tso-Load

pc t Γ(y) v Γ(X)

pc; Γ `tso X := y
tso-Store

Γ ` a : τ pc t τ v Γ(x)

pc; Γ `tso x := a
tso-Eval

Γ(`); Γ `tso c

low ; Γ `tso sync ` do c
tso-Sync

Γ(`); Γ `tso c

low ; Γ `tso holding ` do c
tso-Hold

low ; Γ `tso fence
tso-Fence

pc; Γ `tso c

low ; Γ `tso fork c
tso-Fork

pc; Γ `tso c1 pc; Γ `tso c2

pc; Γ `tso c1; c2
tso-Seq

Γ ` b : τ pc t τ ; Γ `tso c1 pc t τ ; Γ `tso c2

pc; Γ `tso if b do c1 else c2
tso-If

Γ ` b : low pc; Γ `tso c

low ; Γ `tso while b do c
tso-While

pc; Γ `tso skip
tso-Skip

pc; Γ `tso λ

pc; Γ `tso {} low ; Γ `tso λ

pc; Γ `tso W

pc; Γ `tso nil

pc v Γ(X) pc; Γ `tso W

pc; Γ `tso (X := i)::W

pc; Γ `tso t

pc; Γ `tso λ pc; Γ `tso W pc; Γ `tso c

pc; Γ `tso 〈(M,λ,W), c〉ι

pc; Γ `tso P

·; Γ `tso 0

pc; Γ `tso t pc; Γ `tso P

pc, pc; Γ `tso t || P

pc v pc

pc v ·
pc v pc0 pc v pc

pc v pc0, pc

6

3.2 Properties of syntax and evaluation

Definition 1 (size).
size skip = 1

size (x := a) = 2
size (X := x) = 3
size (x := X) = 2

size fence = 2
size (c1; c2) = 1 + size c1 + size c2

size (if b do c1 else c2) = 1 + size c1 + size c2
size (while b do c) = 1 + size c

size (holding ` do c) = 1 + size c
size (sync ` do c) = 7 + size c

size (fork c) = 1 + size c

size nil = 0
size (X := i)::W = 1 + size W

3.3 Evaluation contexts

Command Context C ::= [·] | C; c | holding ` do C
Evaluation Context E = (λ, C)

Notation C[c] has the usual meaning and when E = (λ, C) write E [W | 〈L, c〉ι] for 〈W++L ∪ λ, C[c]〉ι. Notation
E∅ means ([·], ∅).

We define C.locks as follows:

[·].locks = ∅
(C; c).locks = C.locks

(holding ` do C).locks = {`} ∪ C.locks.

Definition 2 (Active evaluation context). Evaluation context (λ, C) is active, written active (λ, C), when
C.locks ⊆ λ.

Lemma 1. If (G, E [W | t]) −→eval (G′, P ′) then active E.

Proof. Assume for a contradiction that E = (λ, C) is not active. Then there is a stuck holding command in
C which contracts the assumption that E [W | t] takes an eval -step.

Definition 3 (canEval). If there exist G,G′, and P ′ such that (G, t) −→eval (G′, P ′), then we say canEval t.

Lemma 2. Suppose canEval (E [t]). Then there exists E0 such that active E0 and E0[t] = E [t].

Proof. Let E = (λ, C) and define E0 = (λ∪ C.locks, C). From canEval E [t] we know that for some G, G′, and
P ′ it is the case that (G, t) −→eval (G′, P ′). To show E0[t] = E [t] if suffices to show that C.locks ⊆ t.ls.locks,
which follows from a simple induction on the −→eval relation.

Lemma 3. If (G,P) =⇒tso∗ (G′, P ′), then (G,P || P0) =⇒tso∗ (G′, P ′ || P0).

Definition 4 (hasEmptyWBs(P)). We say P has empty write buffers, written hasEmptyWBs(P), if for all
t such that P = P1 || t || P2, it is the case that t.wb = nil .

Lemma 4. If (G,P) =⇒sc∗ (G′, P ′), and hasEmptyWBs(P0) then (G,P || P0) =⇒sc∗ (G′, P ′ || P0).

Definition 5. Source programs, and well structured contexts and commands

src c

src (x := X) src (X := x) src (x := X)

src c

src (sync ` do c) fence

src c

src fork c

src c1 src c2

src c1; c2

src c1 src c2

src if b do c1 else c2

src c

src while b do c src skip

7

wellStruct C

wellStruct [·]
wellStruct C src c

wellStruct C; c
wellStruct C ` /∈ C.locks

wellStruct holding ` do C

wellStruct c

wellStruct C src c

wellStruct C[c]

wellStruct t

wellStruct c

wellStruct 〈L, c〉

wellStruct P

wellStruct 0

wellStruct t wellStruct P

wellStruct t || P

There is one interesting difference between the abridged definitions give in the conference submission
and the full versions in this this document. The type systems presented in the paper only apply to source
commands. In this document we extend typing to include threads, locksets, write buffers, and non-source
commands that occur during evaluation. Thus the premises of some theorems in this document contain
additional hypotheses stating that c is either a source command or is well structured, but these hypotheses
are not needed in the submission as they are implied by typing.

Lemma 5. Suppose (G,P) =⇒tso∗ (G′, P ′). If wellStruct P then wellStruct P ′.

Proof. by nested induction on the length of the =⇒tso∗ derivation then induction on each −→eval derivation
or trivial consideration of −→commit s.

Lemma 6. Suppose wellStruct c and c = C[c0], then wellStruct c0 and wellStruct C.

Proof. by structural induction on c.

Definition 6 (c.locks).

(holding ` do c).locks = {`} ∪ c.locks

(sync ` do c).locks = {`} ∪ c.locks

(c1; c2).locks = c1.locks ∪ c2.locks

(skip).locks = ∅
...

Lemma 7. Suppose E = (λ,holding ` do [·]) and wellStruct E [t]. If (G, E [t]) −→eval (G′, E [t′] || P ′) then
` ∈ t′.

Proof. Use induction on the wellStruct derivation to show that t does not contain redexes of the form
holding ` do , then continue by induction on the −→eval derivation.

Lemma 8. Suppose wellStruct c and c.locks = ∅. Then for any ` it is the case that wellStruct holding ` do c.

8

Proof. by induction on the derivation of wellStruct c.

Lemma 9. Suppose (G, t1 || . . . tn || 0) =⇒mm∗ (G′, t′1 || . . . t′m || 0). Then

G.locks ∪ t1.ls.locks ∪ . . . ∪ tn.ls.locks = G′.locks ∪ t′1.ls.locks ∪ . . . ∪ t′m.ls.locks.

Proof. by easy induction.

3.4 Typing properties

Definition 7 (tailOf (W0,W)). Write buffer W0 is the tail of W , written tailOf (W0,W), when W =
(X := i)::W0 for some X and i.

Lemma 10 (Step preservation). Suppose pc; Γ `tso t and (G, E [W | t]) −→op (G′, E [W ′ | t′] || P ′). Further
suppose either W = W ′, or both op = commit and tailOf (W ′,W). Then pc; Γ `tso t′ and pc; Γ `tso P ′ with
pc v pc.

Proof. By induction on the typing relation.

Lemma 11 (Subtyping). Suppose τ2 v τ1. The following implications hold:

• Γ ` a : τ2 implies Γ ` a : τ1

• Γ ` b : τ2 implies Γ ` b : τ1

• τ1; Γ `tso c implies τ2; Γ `tso c

• τ1; Γ `tso λ implies τ2; Γ `tso λ

• τ1; Γ `tso W implies τ2; Γ `tso W

• τ1; Γ `tso t implies τ2; Γ `tso t

Proof. By induction.

Lemma 12 (Eval preservation). Suppose pc; Γ `tso P where pc v pc. If (G,P) =⇒m∗ (G′, P ′) then
pc′; Γ `tso P ′ where pc v pc′.

Proof. by induction on the number of evaluation steps. The lemma holds trivially when there are zero steps.
Instead suppose the trace contains n+ 1 steps. We have

(G,P) = (G,P1 || t || P2) =⇒m (H,P1 || Q || P2) =⇒m∗ (G′, P ′)

where (G, t) −→op (H,Q). Using the induction hypothesis and the definition of `tso, it suffices to show that
pcQ; Γ `tso Q for some pcQ where pc v pcQ. If Q = 0 this is immediate. If instead Q = t′ || Q0 then for
E = (∅, [·]) we have (G, E [nil | t]) −→op (H, E [nil | t′] || Q0). Inverting the definition of `tso yields pct; Γ `tso t
where pc v pct. By Lemma 10, both pct; Γ `tso t′ and pcQ0

; Γ `tso Q0 where pct v pcQ0
. Conclude using

the definition of `tso and the transitivity of v.

Lemma 13 (Total write-buffer typing). For all W , low ; Γ `tso W .

Proof. By inspection.

9

3.5 Trace properties

Definition 8 (Front-Reap–Freedom, Commit-Freedom and Simple Traces). Let T range over non-empty
sequences of of configurations.

Write T :: (G1, P1) =⇒tso∗ (Gn, Pn) when T has form (G1, P1), (G2, P2) . . . (Gn, Pn) and for each
i ∈ {1 . . . n− 1} it is the case that (Gi, Pi) =⇒tso (Gi+1, Pi+1).

We say FrontReapFree T when for each such i, there exist thread pools P,Q,R and thread t such that

Pi = P || t || Q
Pi+1 = P || R || Q

where either P is non-empty or (Gi, t) −→op (Gi+1, R) by a rule other than ec-Reap.
We say FrontCommitFree T when for each i,

Pi = P || t || Q
Pi+1 = P || R || Q

either P is non-empty or (Gi, t) −→op (Gi+1, R) by a rule other than ec-Commit.
Finally Simple T when both FrontReapFree T and FrontCommitFree T .

Lemma 14. Suppose high; Γ `tso t and active E then T :: (G, E [W | t] || 0) =⇒tso∗ (G′, E [W | 〈L′, skip〉ι] || 0)
for some G′, L′ and Simple T .

Proof. Let 〈L, c〉 = t and proceed by an easy strong induction on size c. Because c is high-typed it does not
contain any occurrences of while, so if it takes a step other than ec-Reap, ec-Commit, or ec-Fork the
size of c decreases and we can conclude by the induction hypothesis.

If c = skip we’re done. Otherwise, observe that typing ensures c contains no occurrences of fork, fence,
sync, or holding. Therefore c is not stuck and can take an eval -step that is not ec-Reap or ec-Fork.
Conclude noting that c steps to a smaller command.

Lemma 15 (Contextual compatibility for eval steps). Suppose active E and c.locks∩λ ⊆ L.locks where E =
(λ, C). Also assume that for all ` ∈ λ it is the case that wellStruct holding ` do c. If (G, E∅[W | 〈L, c〉]) −→eval

(G′, E∅[W | t′] || P ′) then (G, E [W | 〈L, c〉]) −→eval (G′, E [W | t′] || P ′) by a step rule other than ec-Reap.

Proof. by induction.

Lemma 16 (Contextual compatibility for arbitrary steps). Suppose active E and c.locks∩λ ⊆ L.locks where
E = (λ, C). Also assume that for all ` ∈ λ it is the case that wellStruct holding ` do c. If (G, 〈L, c〉ι) −→op

(G′, 〈L′, c′〉ι || P ′), then it is the case that (G, E [nil | 〈L, c〉ι]) −→op (G′, E [nil | 〈L′, c′〉ι] || P ′) by a step rule
other than ec-Reap.

Proof. Commit-steps are trivial; use Lemma 15 for eval -steps.

Lemma 17 (Contextual compatibility for evaluation). Suppose T :: (G, 〈L, c〉ι || P) =⇒tso∗ (G′, 〈L′, c′〉ι || P ′)
and FrontReapFree T . Assume for E = (λ, C) and both active E and c.locks ∩ λ ⊆ L.locks. Also as-
sume that for all ` ∈ λ it is the case that wellStruct holding ` do c. Then it is the case that T ′ ::
(G, E [nil | 〈L, c〉ι] || P) =⇒tso∗ (G′, E [nil | 〈L′, c′〉ι] || P ′) where FrontReapFree T ′.

Proof. By an easy induction on the size of T , using Lemma 16.

3.6 Equivalences

We define several forms of low equivalence. The various ∼ relations are used with all three systems—tso, sc,
and wb—introduced in this document, while the ∼tso relations are specialized for the Smith-Volpano–style
system.

Definition 9 (∼Γ).

1. M1 ∼Γ M2 iff for all x such that Γ(x) = low it is the case that M1(x) = M2(x).

2. W1 ∼Γ W2 is defined as the least fixed point of the following implications.

10

(a) nil ∼Γ nil

(b) (X := i)::W1 ∼Γ (X := i)::W2 when W1 ∼Γ W2

(c) (X := i)::W1 ∼Γ W2 when W1 ∼Γ W2 and Γ(X) = high

(d) W1 ∼Γ (X := i)::W2 when W1 ∼Γ W2 and Γ(X) = high

3. S1 ∼Γ S2 iff for all X such that Γ(X) = low it is the case that S1(X) = S2(X).

Definition 10 (∼tso
Γ).

1. L1 ∼tso
Γ L2 iff each of the following holds:

(a) L1.wb ∼Γ L2.wb

(b) L1.mem ∼Γ L2.mem

(c) L1.locks = L2.locks

2. t1 ∼tso
Γ t2 is defined by the following introduction rules

(a) 〈L1, c〉ι1 ∼tso
Γ 〈L2, c〉ι2 when L1 ∼tso

Γ L2

(b) E [W1 | 〈L1, c1〉ι1] ∼tso
Γ E [W2 | 〈L2, c2〉ι2] when L1 ∼tso

Γ L2 and W1 ∼Γ W2 and both high; Γ `tso

〈L1, c1〉ι1 and high; Γ `tso 〈L2, c2〉ι2 .

3. G1 ∼tso
Γ G2 iff G1.mem ∼Γ G2.mem and G1.locks = G2.locks.

4. P1 ∼tso
Γ P2 is defined by the least fixed point of the following implications.

(a) 0 ∼tso
Γ 0, always

(b) t || P1 ∼tso
Γ P2 when high; Γ `tso t and P1 ∼tso

Γ P2

(c) P1 ∼tso
Γ t || P2 when high; Γ `tso t and P1 ∼tso

Γ P2

(d) t1 || P1 ∼tso
Γ t2 || P2 when t1 ∼tso

Γ t2 and P1 ∼tso
Γ P2

5. (G1, P1) ∼tso
Γ (G2, P2) when G1 ∼tso

Γ G2 and P1 ∼tso
Γ P2.

Lemma 18. Each ∼Γ and ∼tso relation is an equivalence relation.

Proof. By inspection.

Lemma 19. If P11 || t1 || P12 ∼Γ P2 then P2 = P21 || P ∗2 || P22 where the following hold:

P21 ∼Γ P11

P ∗2 ∼Γ t1
P22 ∼Γ P12

P ∗2 ∈ {0, t2 || 0} for some t2

Lemma 20. Suppose G1 ∼tso
Γ G2. Then G1 ∪ {`} ∼tso

Γ G2 ∪ {`}.

Lemma 21. Suppose L1 ∼tso
Γ L2. Then L1 ∪ λ ∼tso

Γ L2 ∪ λ.

Lemma 22. Suppose L1 ∼tso
Γ L2. Then L1++(X := i) ∼tso

Γ L2++(X := i).

Lemma 23. Suppose L1 ∼tso
Γ L2 and Γ(X) = high. Then L1++(X := i) ∼tso

Γ L2++(X := j).

Lemma 24. Suppose L1 ∼tso
Γ L2. Then L1[x 7→ i] ∼tso

Γ L2[x 7→ i] .

Lemma 25. Suppose L1 ∼tso
Γ L2 and Γ(x) = high. Then L1[x 7→ i1] ∼tso

Γ L2[x 7→ i2] .

Lemma 26. Suppose G1.mem ∼Γ G2.mem and L1.wb ∼Γ L2.wb and Γ(X) = low. If (G1.mem;L1.wb)[X] ⇓
i1 and (G2.mem;L2.wb)[X] ⇓ i2 then i1 = i2.

Lemma 27. G1 ∼tso
Γ G2 implies G1[X 7→ i] ∼tso

Γ G2[X 7→ i]

Lemma 28. If t1 || 0 ∼tso
Γ t2 || 0 and W1 ∼Γ W2 then E [W1 | t1] || 0 ∼tso

Γ E [W2 | t2] || 0.

Lemma 29. 〈L1, c1〉 ∼tso
Γ 〈L2, c2〉 implies L1.wb ∼tso

Γ L2.wb.

11

Proof. Suppose we have L1 ∼tso
Γ L2, then we’re done by definition. Otherwise L1 and L2 have write buffers

with equivalent prefixes and suffixes. (The suffixes are both high-typed). These are also equivalent.

Lemma 30. Suppose 〈L1, c1〉ι1 ∼tso
Γ 〈L2, c2〉ι2 and L∗1 ∼tso

Γ L1. Then 〈L∗1, c1〉ι1 ∼tso
Γ 〈L2, c2〉ι2 .

Proof. We proceed by considering two cases. Suppose that c1 = c2 and L1 ∼tso
Γ L2; then we conclude using

Lemma 18.
Suppose instead that

〈L1, c1〉ι1 = E [W1 | 〈L10, c10〉ι1]

〈L2, c2〉ι2 = E [W2 | 〈L20, c20〉ι2]

with high; Γ `tso 〈L10, c10〉ι1 and high; Γ `tso 〈L20, c20〉ι2 and both L10 ∼tso
Γ L20 and W1 ∼Γ W2. Let

(λ, C) = E and W ∗1 = L∗1.wb and define L∗10 = (L∗1.mem, L∗1.locks \ λ,nil). We want to find

〈L∗1, c1〉ι1 = E [W ∗1 | 〈L∗10, c10〉ι1] ∼tso
Γ E [W2 | 〈L20, c20〉ι2],

which follows from three interesting properties.

• To establish high; Γ `tso 〈L∗10, c10〉ι1 , it is necessary to show L∗10.locks = ∅:

L∗10.locks = L∗1 \ λ
= L1 \ λ by defn. of ∼tso

Γ

= L10 \ λ by defn of E-substitution
= ∅ \ λ by typing

• To show W ∗1 ∼Γ W2 we use Lemma 29 to find W ∗1 = L∗1.wb ∼Γ L1.wb ∼Γ L2.wb = W2++L20.wb.
Because L20 has high type, it follows that W ∗1 ∼Γ W2++L20.wb ∼Γ W2.

• And L∗10 ∼tso
Γ L20 follows from Lemma 18 and the definition of ∼tso

Γ .

Lemma 31. If 〈(X := i)++L1, c1〉ι1 ∼tso
Γ 〈(X := i)++L2, c2〉ι2 then 〈L1, c1〉ι1 ∼tso

Γ 〈L2, c2〉ι2 .

Lemma 32. Suppose L1 ∼tso
Γ L2 and both high; Γ `tso c1 and high; Γ `tso c2. Then 〈L1, c1〉ι1 ∼tso

Γ 〈L2, c2〉ι2

Proof. Let L′1 = (L1.mem, ∅,nil) and L′2 = (L2.mem, ∅,nil). From L1 ∼tso
Γ L2, it follows that W1 =

L1.wb ∼Γ L2.wb = W2 and there is some λ = L1.locks = L2.locks. Conclude by defining E = (λ, [·]) and
observing 〈L1, c1〉ι1 = E [W1 | 〈L′1, c1〉ι1] ∼tso

Γ E [W2 | 〈L′2, c2〉ι2] = 〈L2, c2〉ι2 .

3.7 Possibilistic Noninterference

Definition 11 (Possibilistic noninterference). We say that command c is possibilistically noninterfering
(or possibilistically secure) under memory model mm and policy Γ if for all S1, S2 such that S1 ∼Γ S2, if
((S1,Lock), 〈L�, c〉) =⇒mm∗ (G′1, 0) then there exists G′2 such that ((S2,Lock), 〈L�, c〉) =⇒mm∗ (G′2, 0)
and G′1.mem ∼Γ G

′
2.mem.

3.8 Security

Lemma 33. If E = (λ, C) and (G, E [W | 〈L, c〉]) −→eval (G′, P ′) and L.locks ⊇ λ∩ c.locks, then either
c = skip or both P ′ = E [W | 〈L′, c′〉] || P ′0 and (G, E∅[W | 〈L, c〉]) −→eval (G′, E∅[W | 〈L′, c′〉] || P ′0).

Proof. by simple induction. The interesting cases occur when c has form sync or holding; these cases work
because we know that if c references a lock in E , that lock also occurs in L.

Lemma 34. Whenever high; Γ `tso c it is the case that c.locks = ∅.

Proof. by induction.

Lemma 35 (Global confinement). Suppose high; Γ `tso t and (G, E [W | t]) −→op (G′, P ′). If P ′ = 0 or
P ′ = E [W | t′] || P ′0 then (G, E [W | t] || 0) ∼tso

Γ (G′, P ′).

12

Proof. Assume P ′ = 0 or P ′ = E [W | t′] || P ′0. Observe that either op 6= commit or W = nil .
First we demonstrate G ∼tso

Γ G′. It’s necessary to show G.locks = G′.locks, which follows from inverting
the typing relation finitely many times and observing that −→op cannot contain a (nested) use of ec-
SyncAcquire or ec-HoldRelease. Consider an arbitrary global variable X; it remains to show that
G(X) = G′(X) whenever Γ(X) = low . Suppose that op 6= commit ; then G.mem = G′.mem and we’re
done. Instead suppose that op = commit and, consequently, W = nil . Then G′ = G[Y 7→ i] where
t.wb = (Y := i)::W0. Inverting the typing of t.wb yields high v Γ(Y) so X 6= Y and G(X) = G′(X).

Second we must show E [W | t] || 0 ∼tso
Γ P ′. If P ′ = 0 then the process stepped by ec-Reap, so E = (∅, [·])

and E [W | t] = t. Thus we can conclude by noting high; Γ `tso t implies E [W | t] || 0 = t || 0 ∼tso
Γ 0 = P ′.

If instead P ′ = E [W | t′] || P ′0 then it suffices to show high; Γ `tso t′ and pc; Γ `tso P ′0 for high v pc, which
follow from Lemma 10.

Lemma 36 (Local Confinement). Suppose high; Γ `tso t and (G, E [W | t]) −→op (G′, E [W | t′] || P ′). Then
E [W | t] ∼tso

Γ E [W | t′].

Proof. Let t = 〈L, c〉 and t′ = 〈L′, c′〉. As in the proof of Lemma 35, a low write, a low commit, a
lock, or an unlock would contradict c’s high type. Therefore L ∼tso

Γ L′. It remains remains to show that
high; Γ `tso 〈L′, c′〉 and pc; Γ `tso P ′ for high v pc, which follow from Lemma 10.

Lemma 37 (Contextual confinement, fork free). Suppose T :: (G, E [W | t] || 0) =⇒tso∗ (G′, E [W ′ | s′] || 0)
and Simple T . Further suppose high; Γ `tso t. Then there is some t′ such that following hold:

E [W | t′] = E [W ′ | s′]
E [W | t] ∼tso

Γ E [W | t′]
G ∼tso

Γ G′

Proof. By induction on the length of T . If T contains a single element then G′ = G, E [W | t] = E [W ′ | s′]
and we conclude using that ∼tso

Γ is an equivalence relation.
Suppose T contains n > 1 elements. Because high commands cannot contain forks, T witnesses an

evaluation sequence of the following form:

(G, E [W | t]) =⇒tso (G1, E [W1 | s1]) =⇒tso∗ (G′, E [W ′ | s′])

Because Simple T the first step is not a commit, so W1++s.wb = W++t.wb or—if the step is by a write—
W1++s1.wb = W++t.wb++(X := i)::nil . In either case we can define Wt1 such that W1++s1.wb = W++Wt1 .
Define t1 = 〈(s1.mem, s1.locks,Wt1), s1.cmd〉 and observe that T also witnesses the following:

(G, E [W | t]) =⇒tso (G1, E [W | t1]) = (G1, E [W1 | s1]) =⇒tso∗ (G′, E [W ′ | s′])

By the induction hypothesis (G′, E [W ′ | s′]) = (G′, E [W | t′]) for some t′. Additionally G1 ∼tso
Γ G′ and

E [W | t1] ∼tso
Γ E [W | t′] = E [W ′ | s′]. Using the transitivity of ∼tso

Γ , it remains to show G ∼tso
Γ G1 and

E [W | t] ∼tso
Γ E [W | t1]. These are consequences of Lemmas 35 and 36, respectively.

Lemma 38 (SV Expression Confinement). Suppose L1 ∼tso
Γ L2. Then low ; Γ `tso a implies i1 = i2 when

L1[a] ⇓ i1 and L2[a] ⇓ i2. Likewise, low ; Γ `tso b implies β1 = β2 when L1[b] ⇓ β1 and L2[b] ⇓ β2.

Proof. by induction

Lemma 39 (SV Commit step security). Suppose (G1, 〈L1, c1〉ι1) −→commit (G′1, P
′
1) and pc; Γ `tso 〈L1, c1〉ι1 .

Further assume both 〈L1, c1〉ι1 ∼tso
Γ t2 and G1 ∼tso

Γ G2. Then there exist L′1, G′2, and t′2 such that P ′1 =
〈L′1, c1〉ι1 || 0 and G′1 ∼tso

Γ G′2 and 〈L′1, c1〉ι1 ∼tso
Γ t′2 and (G2, t2 || 0) =⇒tso∗ (G′2, t

′
2 || 0).

Proof. Let 〈L2, c2〉ι2 = t2. Proof is by induction on the structure of L2.wb. Inverting the evaluation relation
shows for some X, i, and L10, and that

L1 = (X := i)++L10

G′1 = G1[X 7→ i]

P ′1 = 〈L10, c1〉 || 0.

Let L10 be the witness to L′1.

13

If Γ(X) = high then by definition G′1 ∼tso
Γ G1 ∼tso

Γ G2 and L1 ∼tso
Γ L10. So taking G′2 = G2 and t′2 = t2,

it suffices to show 〈L10, c1〉ι1 ∼tso
Γ 〈L2, c2〉ι2 , a consequence of Lemma 30.

Suppose instead that Γ(X) = low . Were L2.wb empty this would contradict the assumption that t1 ∼tso
Γ

t2, making the conclusion trivial. If L2.wb = (X := j)++L20 then, by the definition of ∼Γ, i = j and
L10.wb ∼Γ L20.wb. Because (G2, t2) −→commit (G2[X 7→ i], 〈L20, c2〉ι2) it suffices to show G1[X 7→ i] ∼tso

Γ

G2[X 7→ i], which follows from by Lemma 27, and 〈L10, c1〉 ∼tso
Γ 〈L20, c2〉ι2 , which follows from Lemma 31.

Finally if L2.wb = (Y := j)++L20 with Y 6= X the definition of ∼Γ requires that Γ(Y) = high. So
(G2, t2) =⇒tso (G2[Y 7→ j], 〈L20, c2〉) where G1 ∼tso

Γ G2[Y 7→ j] and 〈L1, c1〉 ∼tso
Γ 〈L20, c2〉. The induction

hypothesis yields
(G2[Y 7→ j], 〈L20, c2〉) =⇒tso∗ (G′2, t

′
2 || 0)

where G′1 ∼tso
Γ G′2 and 〈L10, c1〉ι1 ∼tso

Γ t′2. Conclude by deriving that (G2, t2) =⇒tso∗ (G′2, t
′
2 || 0).

Lemma 40 (SV Eval step security). Suppose (G1, t1) −→eval (G′1, P
′
1) and pc; Γ `tso t1 and wellStruct t1.

Further assume both t1 ∼tso
Γ t2 and G1 ∼tso

Γ G2. Then there exist G′2 and P ′2 such that (G2, t2) =⇒tso∗ (G′2, P
′
2)

and (G′1, P
′
1) ∼tso

Γ (G′2, P
′
2).

Proof. Let t1 = 〈L1, c1〉ι. We strengthen the induction hypothesis by also requiring P ′2 satisfy the following
property: When P ′1 = t′10 || P ′10 then P ′2 = t′20 || P ′20 and FrontReapFree T where T :: (G2, t2) =⇒tso∗ (G′2, P

′
2),

and both t′10 ∼tso
Γ t′20 and P ′10 ∼tso

Γ P ′20. Proceed by induction on the structure of c1, grouping cases in a
non-standard way.

To avoid pointless textual copying we will let several cases refer to other parts of the argument. There is
no circularity and the dependencies are as follows. In Case 2, subcases ec-HoldStep and ec-SeqStruct
refer to Case 1 and no other (sub)cases. Case 1 refers to Case 2, subcases ec-HoldRelease, ec-Reap,
ec-SeqSkip, and no other (sub)cases.

Consider the two principle cases arising from t1 ∼tso
Γ t2.

• Case 1: t1 = E [W1 | 〈L10, c10〉] and t2 = E [W2 | 〈L20, c20〉] where high; Γ `tso 〈L10, c10〉 and high; Γ `tso

〈L20, c20〉 and both L10 ∼tso
Γ L20 and W1 ∼Γ W2. Lemmas 33 and 34 show we must examine two

situations:

– Suppose c10 = skip. We will show that t2 evaluates to a state such that we can finish by copying
reasoning from the ec-HoldStep, ec-SeqSkip, or ec-Reap cases below. Lemma 14 gives a
simple derivation of

(G2, E2[W1 | 〈L20, c20〉]) =⇒tso∗ (G′20, E [W2 | 〈L′20, skip〉] || 0).

(Note that active E because t1 steps and L10.locks = ∅.) It now suffices to find witnesses G′2
and P ′2 such that (G′20, E [W2 | 〈L′20, skip〉] || 0) =⇒tso∗ (G′2, P

′
2) and G′1 ∼tso

Γ G′2 and P ′2 satisfies
the appropriate properties (above). Copying from case 2 can provide such witnesses, but requires
we first demonstrate two equivalences. G1 ∼tso

Γ G2 ∼tso
Γ G′20 and t1 ∼tso

Γ E [W2 | 〈L20, c20〉] ∼tso
Γ

E [W2 | 〈L′20, c
′
20〉] follow from Lemma 37 and the transitivity of ∼tso

Γ .

– Suppose instead that, for some t′10, it is the case that P ′1 = E [W | t′10] || P ′10 and (G1, E∅[W1 | 〈L10, c10〉]) −→eval

(G′1, E∅[W1 | t′10] || P ′10). Take witnesses G′2 and P ′2 to be G2 and P2. It suffices to show that
G1 ∼tso

Γ G′1 and t1 || 0 ∼tso
Γ P ′1. The former is a consequence of Lemma 35. Toward the latter we

use Lemma 12 to establish that pc; Γ `tso P ′1 where high v pc so P ′10 ∼tso
Γ 0. It remains to show

that t1 ∼tso
Γ E [W | t′10], which follows from Lemmas 1, 6, 8, 15, 34, and 36. .

• Case 2: t2 = 〈c2, L2〉 where c1 = c2 and L1 ∼tso
Γ L2. Continue by inverting the −→eval relation.

ec-Store: Here c1 = X := x. If Γ(x) = low , the definition of ∼tso
Γ shows L1(x) = L2(x) and

we conclude using Lemma 22. Otherwise Γ(x) = high, inverting typing rule tso-Store gives
Γ(X) = high, and the result follows from Lemma 23.

ec-Load: Here c1 = x := Y . If Γ(Y) = low then, by Lemma 26, (G1.mem;L1.wb)[Y] ⇓ i and
(G2.mem;L2.wb)[Y] ⇓ i for some i. Conclude using Lemma 24. Suppose instead Γ(Y) = high.
Inverting typing rule tso-Load shows Γ(x) = high and we conclude via Lemma 25.

ec-EvalExp: Here c1 = x := a. Suppose low ` Γ : a then by Lemma 38 there exists a unique i such
that L1[a] ⇓ i and L2[a] ⇓ i, and we can conclude via Lemma 24. Suppose instead high ` Γ : a,
then by inverting typing tso-EvalExp we find Γ(x) = high. Conclude via Lemma 25.

14

ec-SyncAcquire: Here c1 = sync ` do c with ` ∈ G1 and L1.wb = nil . As L1 ∼tso
Γ L2, any store

(X := i) in L2.wb must have Γ(X) = high. As in the op = commit case use an inner induction on
the structure of L2.wb to find G20 and L20 where (G2, t2 || 0) =⇒tso∗ (G20, 〈L20, sync ` do c〉 || 0)
and both G20 ∼tso

Γ G2 ∼tso
Γ G1 and L20 ∼tso

Γ L2 ∼tso
Γ L1. Via the first equivalence, ` ∈ G20 so

using ec-SyncAcquire we find (G2, t2 || 0) =⇒tso∗ (G20, 〈L20,holding ` do c〉 || 0).

ec-HoldRelease, ec-Fence, ec-Fork: Similar to the ec-SyncAcquire case.

ec-SyncReenter: Trivial after noting L1 ∼tso
Γ L2 gives L1.locks = L2.locks.

ec-HoldStep: Here, c1 = holding ` do c and P ′1 = 〈L′1,holding ` do c′10〉ι || P ′10.

Inversion and the induction hypothesis give

` ∈ L1

(G1, 〈L1, c〉ι) −→eval (G′1, 〈L′1, c′10〉ι || P ′10)

T :: (G2, 〈L2, c〉ι) =⇒tso∗ (G′2, 〈L′2, c′20〉ι || P ′20).

FrontReapFree T

From L1 ∼tso
Γ L2 it follows that ` ∈ L2 and we can define E = ({`},holding ` do [·]) where

active E and t2 = E [nil | 〈L2, c〉ι]. By Lemma 17,

T ′ :: (G2, t2 || 0) = (G2, E [nil | 〈L2, c〉ι])
=⇒tso∗ (G′2, E [nil | 〈L′2, c′20〉ι] || P ′20)

where FrontReapFree T ′.
It is necessary to show the following:

G′1 ∼tso
Γ G′2

E [nil | 〈L′1, c′10〉ι] ∼tso
Γ E [nil | 〈L′2, c′20〉ι]

P ′10 ∼tso
Γ P ′20

These are implied by the above use of induction hypothesis and Lemma 28.

ec-SeqStruct: Similar to ec-HoldStep.

ec-SeqSkip: Immediate.

ec-IfTrue: Here c1 = c2 = if b do ct else cf and inversion shows that L1[b] ⇓ true and P ′1 = 〈L1, ct〉.
Suppose that it’s not the case that Γ ` b : low . Then inverting the typing relation shows
both high; Γ `tso ct and high; Γ `tso cf . Thread t2 could potentially step to configuration
(G2, 〈L2, ct〉 || 0) or to configuration (G2, 〈L2, cf 〉 || 0). Without loss of generality assume the
latter. Use Lemma 32 to establish 〈L1, ct〉 ∼tso

Γ 〈L2, cf 〉. All other goals are immediate.

Suppose instead that Γ ` b : low . Then Lemma 38 shows L2[b] ⇓ true and we have a reap-free
trace showing (G2, t2) =⇒tso∗ (G2, 〈L2, ct〉 || 0).

ec-IfFalse, ec-WhileTrue, ec-WhileFalse: Similar to, or simpler than, the ec-IfTrue case.

ec-Reap: Immediate, noting that the trace we construct need not be FrontReapFree.

Theorem 1 (SV Security). Suppose (G1, P1) ∼tso
Γ (G2, P2) and pc; Γ `tso P1 and wellStruct P1. Sup-

pose also that (G1, P1) =⇒tso (G′1, P
′
1). Then there exists G′2, P

′
2 such that (G′1, P

′
1) ∼tso

Γ (G′2, P
′
2) and

(G2, P2) =⇒tso∗ (G′2, P
′
2).

Proof. Inverting the tso-evaluation relation and appealing to Lemma 19 gives

P1 = P11 || t1 || P12

P2 = P21 || P ∗2 || P22

P ′1 = P11 || Q1 || P12

where P ∗2 contains at most one thread (i.e., P ∗2 ∈ {0, t2 || 0} for some t2) and the following hold:

(G, t1) −→op (G′1, Q1)

15

P11 ∼tso
Γ P21

t || 0 ∼tso
Γ P ∗2

P12 ∼tso
Γ P22

It suffices to show that there existsG′2 andQ2 such that (G′1, Q1) ∼tso
Γ (G′2, Q2) and (G2, P

∗
2) =⇒tso∗ (G′2, Q2).

(Observe that while we could rename threads in Q2, we do not need to; thread names are only really relevant
for the data-race freedom argument.) Inspecting the definition of ∼tso

Γ shows there are only three ways in
which to find t || 0 ∼tso

Γ P ∗2 . Proceed by case analysis.
First suppose that that the equivalence arises from Definition 10, clause 4b. Here high; Γ `tso t1 and

via Lemma 35, (G1, t || 0) ∼tso
Γ (G′1, Q1). Note that to apply Lemma 35 we take E = (∅, [·]) and W = nil .

Conclude using Lemma 18 and taking G2 and P ∗2 as existential witnesses G′2 and Q2.
Second suppose that that the equivalence arises from Definition 10, clause 4c. Here P ∗2 = t2 || 0 where

high; Γ `tso t2 and t1 ∼tso
Γ 0. From t1 ∼tso

Γ 0 it follows that high; Γ `tso t1. Again taking G2 and P ∗2 to be
witnesses G′2 and Q′ conclude with the following equational reasoning:

(G′, Q1) ∼tso
Γ (G1, t1 || 0) by Lemma 35
∼tso

Γ (G1, 0)
∼tso

Γ (G2, 0) by assumption
∼tso

Γ (G2, t2 || 0)
= (G2, P

∗
2)

Third suppose that that the equivalence arises from Definition 10, clause 4d. Here P ∗2 = t2 || 0 for some
t2 with t1 ∼tso

Γ t2. Finitely many inversions of the typing relation show pc; Γ `tso t1 for some pc. Similarly,
wellStruct t1. Conclude via Lemmas 39 and 40.

Corollary 1. Suppose (G1, P1) ∼tso
Γ (G2, P2) and pc; Γ `tso P1 and wellStruct P1. Suppose also that

(G1, P1) =⇒tso∗ (G′1, P
′
1). Then there exists G′2, P

′
2 such that (G′1, P

′
1) ∼tso

Γ (G′2, P
′
2) and (G2, P2) =⇒tso∗ (G′2, P

′
2).

Proof. By finitely many application of Lemmas 5 and 12 and Theorem 1.

Corollary 2. Suppose G1 ∼tso
Γ G2 and pc; Γ `tso t and src t.cmd. If (G1, t) =⇒tso∗ (G′1, 0) then

(G2, t) =⇒tso∗ (G′2, 0) for some G′2 where G′1 ∼tso
Γ G′2.

Proof. An instantiation of the first corollary of Theorem 1 shows that (G2, t) reduces to a configuration
where we may conclude with several applications of Lemma 14 and applications of ec-Reap.

Corollary 3 (TSO Simple possibilistic noninterference). Suppose pc; Γ `tso c and src c. Then c is possi-
bilistically noninterfering under tso and Γ.

Proof. Immediate from the second corollary of Theorem 1.

4 Data-Race Freedom

We want to show that our TSO and SC machines are equivalent for data-race free programs.

4.1 SC Executions are a Subset of TSO Executions

First, it is clear that every possibilistic SC execution is also a possibilistic TSO execution. We formalize this
with the following lemma:

Lemma 41 (SC-Eval Implies TSO-Eval). If (G,P) =⇒sc (G′, P ′) then (G,P) =⇒tso (G′, P ′).

Proof. Since (G,P) =⇒sc (G′, P ′) we have that P = t1 . . . ti−1 || ti || ti+1 . . . tn and (G, ti) −→op (G′, Q) and
P ′ = t1 . . . ti−1 || Q || ti+1 . . . tn. Therefore also (G,P) =⇒tso (G′, P ′).

Corollary 4 (SC-Eval* Implies TSO-Eval*). If (G,P) =⇒sc∗ (G′, P ′) then (G,P) =⇒tso∗ (G′, P ′).

16

4.2 Definition of Data Race Freedom

Definition 12 (Reads Next). Thread 〈L, c〉 reads X next if one of the following conditions holds:

• c has the form x := X

• c has the form c1; c2 and 〈L, c1〉 reads X next

• c has the form holding ` do c′ and ` ∈ L and 〈L, c′〉 reads X next

Definition 13 (Writes Next). Thread 〈L, c〉 writes X next if one of the following conditions holds:

• c has the form X := x

• c has the form c1; c2 and 〈L, c1〉 writes X next

• c has the form holding ` do c′ and ` ∈ L and 〈L, c′〉 writes X next

Definition 14 (Accesses Next). Thread t accesses X next if either t reads X next or t writes X next.

Definition 15 (Conflicting Threads). Threads s and t conflict if there exists a variable X such that each
thread accesses X next and at least one thread writes X next.

Definition 16 (Race-Exhibiting Process Soup). Process soup P exhibits a race if it contains two distinct
threads that conflict.

Definition 17 (Race-Free Configuration). Configuration (G,P) is race-free if for all G′ and P ′ such that
(G,P) =⇒sc∗ (G′, P ′), it is not the case that P ′ exhibits a race.

4.3 TSO Executions are a Subset of SC Executions for DRF Programs

4.3.1 Definitions

It will be convenient to associate each step of computation with its action – the kind of step taken (commit
or eval) and the thread that takes the step. Accordingly we annotate our evaluation steps as follows:

op(i) ∈ ReadySC(χ)
P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q) P ′ = t1 . . . ti−1 || Q || ti+1 . . . tn

(G,P) =⇒sc
op(i) (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q) P ′ = t1 . . . ti−1 || Q || ti+1 . . . tn

(G,P) =⇒tso
op(i) (G′, P ′)

Next we define an invariant on any configuration in a valid TSO execution of a program:

Definition 18. Consider configuration G, t1 || . . . || tn Such a configuration is well-locked if lock sets G.locks,
t1.locks, . . . , tn.locks are pairwise disjoint.

Now we define an invariant on any configuration in the TSO execution of a race-free program:

Definition 19 (Well-Behaved Configuration). A configuration (G,P) is well behaved if the following con-
ditions hold, where P = 〈L1, c1〉|| . . . ||〈Ln, cn〉:

• P does not exhibit a race

• (G,P) is well locked

• If Li.wb contains a write (possibly multiple) to some variable X, then for each j 6= i, Lj .wb does not
contain a write to X and cj does not access X next.

Next we need to formalize the relationship between a TSO execution and a corresponding SC execution.
The two executions will not stay in lockstep but their configurations will always have a strong relationship
(if the original program is data-race-free). Let L̂ denote the “cleared” version of L — the local state identical
to L but with an empty write buffer. That is, L̂.mem = L.mem and L̂.locks = L.locks and L̂.wb = nil .

17

Definition 20. Let P = 〈L1, c1〉ι1 || . . . ||〈Ln, cn〉ιn . We say that (H,Q) is the commit closure of (G,P) if
the following conditions hold:

1. Q = 〈L̂1, c1〉ι1 || . . . ||〈L̂n, cn〉ιn

2. H.locks = G.locks

3. For each variable X that does not appear in any write buffer in P , we have H.mem (X) = G.mem
(X).

4. For each variable X that appears in the write buffer of some thread i in P , there exists a k such that
H.mem (X) = k and (G.mem;Li.wb)[X] ⇓ k.

Intuitively, if (H,Q) is the commit closure (G,P) and (G,P) is well behaved then (H,Q) is the unique
configuration that results from executing commit operations in any order from (G,P) until all write buffers
are empty.

4.3.2 Simple Lemmas

Notation: We denote by P.ls(i) the local state in thread i of P and by P.cmd(i) the command in thread i
of P . We denote by P [i 7→ t] the process soup identical to P but with the ith thread replaced by t. We use
P [i 7→ L] as shorthand for P [i 7→ 〈L,P.cmd(i)〉] and P [i 7→ c] as shorthand for P [i 7→ 〈P.ls(i), c〉]. For all of
these notations, we also allow the thread to be indexed by its TID rather than its position. Finally, we use
P [i 7→ Q] to denote the process soup t1 . . . ti−1 || Q || ti+1 . . . tn, where P = t1 . . . ti−1 || ti || ti+1 . . . tn.

Lemma 42 (Preservation of well-lockedness). Suppose (G,P) is well-locked and (G,P) =⇒tso (G′, P ′). Then
(G′, P ′) is also well locked.

Lemma 43. If (S;W)[Y] ⇓ j and X 6= Y , then (S[X 7→ k];W)[Y] ⇓ j.

Lemma 44. If (S; (X := k)::W)[Y] ⇓ j and X 6= Y , then (S;W)[Y] ⇓ j.

Lemma 45. If (S;W)[Y] ⇓ j and X 6= Y , then (S;W++(X := k))[Y] ⇓ j.

Lemma 46. If (S; (X := k)::W)[X] ⇓ j then (S[X 7→ k].mem;W)[X] ⇓ j.

Lemma 47. If (S;W)[X] ⇓ k and X does not appear in W, then S(X) = k.

Lemma 48. If (G,P) is well behaved and (H,Q) is the commit closure of (G,P) and P.cmd(i) accesses X
next and (G.mem;P.ls(i).wb)[X] ⇓ k, then H.mem(X) = k.

Lemma 49. 〈L, c1; c2〉 reads [writes] X next if and only if 〈L, c1〉 reads [writes] X next.

Lemma 50. If 〈L,holding ` do c〉 reads [writes] X next then 〈L, c〉 reads [writes] X next. If 〈L, c〉 reads
[writes] X next then 〈L ∪ {`},holding ` do c〉 reads [writes] X next.

Lemma 51. Suppose (G,P) is well behaved, let 〈L, c〉 be the ith thread of P , and let c′ be a command. If
the set of variables that 〈L, c′〉 reads next are a subset of those that 〈L, c〉 accesses reads next, and similarly
for writes, then (G,P [i 7→ c′]) is well behaved.

Lemma 52. If (H,Q) is the commit closure of (G,P), then (H,Q[i 7→ c]) is the commit closure of (G,P [i 7→
c]).

Lemma 53. If P exhibits a race and (H,Q) is the commit closure of (G,P), then Q exhibits a race.

Lemma 54. If (G, 〈L, c〉) −→eval (G′, P ′) and c has the form C[X := x] then 〈L, c〉 writes X next.

Notation: We denote by P/ι the process soup identical to P but with thread ι removed. We denote by
G/X the global state identical to G but with the value of X set to 0.

18

4.3.3 Key Lemmas

Lemma 55. Suppose (G,P) is well behaved and (G,P) =⇒tso
op(i) (G′, P ′) and (H,Q) is the commit closure

of (G,P).

1. If op = commit then (H,Q) is the commit closure of (G′, P ′).

2. If op = eval and thread ti writes some variable X next, then there exist (H0, Qo) and (H ′, Q′) such
that (H,Q) =⇒sc

op(i) (H0, Q0) and (H0, Q0) =⇒sc
commit(i) (H ′, Q′), where (H ′, Q′) is the commit closure

of (G′, P ′).

3. If op = eval and thread ti does not write any variable next, then there exists (H ′, Q′) such that
(H,Q) =⇒sc

op(i) (H ′, Q′), where (H ′, Q′) is the commit closure of (G′, P ′).

Proof. So we have P = t1 . . . ti−1 || ti || ti+1 . . . tn and (G, ti) −→op (G′, P0) and P ′ = t1 . . . ti−1 || P0 || ti+1 . . . tn.
Let ti = 〈Li, ci〉.

1. Then Li has the form (X := k)::L0 and P0 = 〈L0, ci〉 and G′ = G[X 7→ k]. Then L̂i = L̂0, so since
thread i is the only one that is modified from P to P ′, condition 1 of the commit closure holds. Since
locks are unchanged from G to G′, condition 2 holds as well.

Consider a variable Y 6= X. If Y does not appear in any write buffer of P then we have H.mem (Y) =
G.mem (Y). By definition also Y is not in any write buffer of P ′, and G′.mem (Y) = G.mem (Y), so
condition 3 is satisfied for Y . If Y appears in the write buffer of some thread j in P , then H.mem (Y)
= n and (G.mem;Lj .wb)[Y] ⇓ n for some value n. By definition Y also appears in the write buffer of
thread j in P ′. If j 6= i then by Lemma 43 we have (G′.mem;Lj .wb)[Y] ⇓ n, satisfying condition 4. If
j = i then by Lemmas 44 and 43 we have (G′.mem;L0.wb)[Y] ⇓ n, satisfying condition 4.

Finally consider variable X. Since X is in the write buffer of Li we know that H.mem (X) = n
and (G.mem;Li.wb)[X] ⇓ n for some n. Further since (G,P) is well behaved we know that X is not
in the write buffer of any thread other than i in P and therefore also in P ′. By Lemma 46 we have
(G′.mem;L0.wb)[X] ⇓ n. If X is in the write buffer of L0 then we have satisfied condition 4. Otherwise
X is not in any write buffer in P ′. By Lemma 47 we have that G′.mem (X) = n, so condition 3 is
satisfied for X.

2. We proceed by induction on the derivation of (G, ti) −→op (G′, P0). Case analysis on the form of ci,
which we are given writes variable X next:

X := x Then rule ec-Store is used to step, so L′i = Li++(X := Li(x)) and P0 = 〈L′i, skip〉 and
G′ = G.

I claim that (H,Q) =⇒sc
op(i) (H0, Q0) and (H0, Q0) =⇒sc

commit(i) (H ′, Q′) for some H0, Q0, H ′,

and Q′. Since (H,Q) is the commit closure of (G,P) we know that the ith thread of (H,Q) is
〈L̂i, ci〉. Further we know that all write buffers in Q are empty, so no commit actions are ready on
any thread. Therefore, the first step follows by ec-Store, which then enables the commit step.
By definition L̂i.mem = Li.mem, so L̂i(x) = Li(x), so H ′ = H[X 7→ Li(x)]. Also, Q′ is identical
to Q except the ith thread’s command is skip.

We now prove that (H ′, Q′) is the commit closure of (G′, P ′). Condition 1 holds for all threads
other than i, since these threads are unchanged from Q and P and we have that (H,Q) is the
commit closure of (G,P). For thread i the result follows by definition of these threads in P ′ and
Q′ and the fact that L̂i is also the “cleared” version of Li++(X := Li(x)). Condition 2 follows
from the fact that locks are unchanged from G to G′ and H to H ′.

For Condition 3, let S be the set of variables that do not appear in any write buffer in P . Then
S−{X} is the set of variables that do not appear in any write buffer in P ′. For each such variable
Y , G(Y) = G′(Y) and H(Y) = H ′(Y) by the definition of G′ and H ′. Then the result follows
from the fact that G(Y) = H(Y).

For Condition 4, first consider a variable Y 6= X that appears in the write buffer of some thread
j in P ′. Then it also appears in the write buffer of thread j in P , so we know that H.mem (Y)
= k and (G.mem;Lj .wb)[Y] ⇓ k, where Lj is the local state of thread j in P . Then by definition
of H ′ also H ′.mem (Y) = k, and since G′ = G we have (G′.mem;Lj .wb)[Y] ⇓ k. If j 6= i we are
done; otherwise by Lemma 45 we have (G′.mem;L′i.wb)[Y] ⇓ k.

19

Finally consider variable X. Since ti writes X next and (G,P) is well behaved, we know that X
is not in the write buffer of any thread other than i in P , and hence also in P ′. By the definition
of L′i and the lookup procedure we have that (G′.mem;L′i.wb)[X] ⇓ Li(x). By definition of H ′

we have H ′(X) = Li(x) so the result follows.

ci1; ci2 Since 〈Li, ci1〉 writes X next we know that ci1 is not skip, so the step must occur with rule ec-
SeqStruct. Therefore we have (G, 〈Li, ci1〉) −→eval (G′, 〈L′i, c′i1〉 || P ′0) and P0 = 〈L′i, c′i1; ci2〉 || P ′0.
Therefore we have (G,P [i 7→ ci1]) =⇒tso

op(i) (G′, P ′[i 7→ c′i1]). By Lemma 49 the set of variables

that 〈Li, ci1〉 reads [writes] next are a subset of those that 〈Li, ci1; ci2〉 reads [writes] next. There-
fore by Lemma 51 we have that (G,P [i 7→ ci1]) is well behaved. By Lemma 52 (H,Q[i 7→ ci1])
is the commit closure of (G,P [i 7→ ci1]). Finally by Lemma 49 we know that 〈Li, ci1〉 writes X
next.

Therefore by induction there exist (H0, Qo) and (H ′, Q′) such that (H,Q[i 7→ ci1]) =⇒sc
op(i) (H0, Q0)

and (H0, Q0) =⇒sc
commit(i) (H ′, Q′), where (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i1]). Then

by rule ec-SeqStruct it follows that

(H,Q) =⇒sc
op(i) (H0, Q0[i 7→ Q0.cmd(i); ci2])

and by the commit rule

(H0, Q0[i 7→ Q0.cmd(i); ci2]) =⇒sc
commit(i) (H ′, Q′[i 7→ Q0.cmd(i); ci2])

Since (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i1]) we have that Q0.cmd(i) = Q′.cmd(i) =
c′i1, so by Lemma 52 we have that (H ′, Q′[i 7→ Q0.cmd(i); ci2]) is the commit closure of (G′, P ′).

holding ` do ci0 Since 〈Li, ci〉 writes X next in P we have that ` ∈ Li and 〈Li, ci0〉 writes X next.
Therefore we know that ci0 is not skip, so the step cannot occur with rule ec-HoldRelease.
Therefore the step must occur with rule ec-HoldStep. Therefore we have (G, 〈Li, ci0〉) −→eval

(G′, 〈L′i, c′i0〉 || P ′0) and P0 = 〈L′i,holding ` do c′i0〉 || P ′0. Therefore we have

(G,P [i 7→ ci0]) =⇒tso
op(i) (G′, P ′[i 7→ c′i0])

By Lemma 50 the set of variables that 〈Li, ci0〉 reads [writes] next are a subset of those that
〈Li,holding ` do ci0〉 reads [writes] next. Therefore by Lemma 51 we have that (G,P [i 7→ ci0])
is well behaved. By Lemma 52 (H,Q[i 7→ ci0]) is the commit closure of (G,P [i 7→ ci0]). Finally
by Lemma 50 we know that 〈Li, ci0〉 accesses X next.

Therefore by induction there exist (H0, Qo) and (H ′, Q′) such that (H,Q[i 7→ ci0]) =⇒sc
op(i) (H0, Q0)

and (H0, Q0) =⇒sc
commit(i) (H ′, Q′), where (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i0]). Since

` ∈ Li also ` ∈ L̂i, so by rule ec-HoldStep it follows that

(H,Q) =⇒sc
op(i) (H0, Q0[i 7→ holding ` do Q0.cmd(i)])

and by the commit rule

(H0, Q0[i 7→ holding ` do Q0.cmd(i)]) =⇒sc
commit(i) (H ′, Q′[i 7→ holding ` do Q0.cmd(i)])

Since (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i0]), we have Q0.cmd(i) = Q′.cmd(i) = c′i0,
so by Lemma 52 we have that (H ′, Q′[i 7→ holding ` do Q0.cmd(i)]) is the commit closure of
(G′, P ′).

3. We proceed by induction on the derivation of (G, ti) −→op (G′, P0). Case analysis of the rule used to
take this step:

ec-Load Then ci has the form x := X and (G.mem;Li.wb)[X] ⇓ n and P0 = 〈Li[x 7→ n], skip〉 and
G′ = G. Since ci accesses X next, by Lemma 48 we have H.mem(X) = n, and since L̂i has an
empty write buffer also (H.mem; L̂i.wb)[X] ⇓ n. Then by ec-Load we have (H, 〈L̂i, ci〉) −→op

(H,Q0), where Q0 = 〈L̂i[x 7→ n], skip〉. Therefore (H,Q) =⇒sc
op(i) (H ′, Q′), where H ′ = H and

Q′ = Q[i 7→ Q0].

Now we argue that (H ′, Q′) is the commit closure of (G′, P ′). Since L̂i[x 7→ n] is the “cleared”
version of Li[x 7→ n], condition 1 holds for thread i, and it continues to hold for all other threads,
which are unchanged. Condition 2 continues to hold since locks are not changed. Since G′ = G
and H ′ = H and no write buffers are modified, conditions 3 and 4 continue to hold.

20

ec-EvalExp Then ci has the form x := a and Li[a] ⇓ n and P0 = 〈Li[x 7→ n], skip〉 and G′ = G.
By definition of L̂i also L̂i[a] ⇓ n, so by ec-EvalExp we have (H, 〈L̂i, ci〉) −→op (H,Q0), where
Q0 = 〈L̂i[x 7→ n], skip〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→ Q0].

Finally, we can argue that (H ′, Q′) is the commit closure of (G′, P ′) as in the case for ec-Load
above.

ec-SyncAcquire Then ci has the form sync ` do ci0 and ` ∈ G and Li.wb = nil and G′ = G\{`} and
P0 = 〈Li ∪ {`},holding ` do ci0〉. Since (H,Q) is the commit closure of (G,P), also ` ∈ H, and
by definition L̂i.wb = nil . Therefore by ec-SyncAcquire we have (H, 〈L̂i, ci〉) −→op (H ′, Q0),
where H ′ = H \ {`} and Q0 = 〈L̂i ∪ {`},holding ` do ci0〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′),

where Q′ = Q[i 7→ Q0].

Now we argue that (H ′, Q′) is the commit closure of (G′, P ′). Since L̂i ∪ {`} is also the “cleared”
version of Li ∪ {`}, condition 1 holds for thread i, and it continues to hold for all other threads,
which are unchanged. Condition 2 continues to hold since both G and H get ` removed from their
locksets. Since G′.mem = G.mem and H ′.mem = H.mem and no write buffers are modified,
conditions 3 and 4 continue to hold.

ec-SyncReenter Then ci has the form sync ` do ci0 and ` ∈ Li and G′ = G and P0 = 〈Li, ci0〉.
Therefore also ` ∈ L̂i, so by ec-SyncReenter we have (H, 〈L̂i, ci〉) −→op (H,Q0), where Q0 =
〈L̂i, fence; (ci0; fence)〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→
fence; (ci0; fence)]. Then by Lemma 52 we have that (H ′, Q′) is the commit closure of (G′, P ′).

ec-HoldStep Then ci has the form holding ` do ci0 and ` ∈ Li and (G, 〈Li, ci0〉) −→eval (G′, 〈L′i, c′i0〉 || P ′0)
and P0 = 〈L′i,holding ` do c′i0〉 || P ′0. Therefore we have (G,P [i 7→ ci0]) =⇒tso

op(i) (G′, P ′[i 7→ c′i0]).

By Lemma 50 the set of variables that 〈Li, ci0〉 reads [writes] next are a subset of those that
〈Li,holding ` do ci0〉 reads [writes] next. Therefore by Lemma 51 we have that (G,P [i 7→ ci0])
is well behaved. Then by Lemma 52 (H,Q[i 7→ ci0]) is the commit closure of (G,P [i 7→ ci0]).
Finally by Lemma 50 we know that 〈Li, ci0〉 does not write any variables next.

Therefore by induction there exist (H ′, Q′) such that (H,Q[i 7→ ci0]) =⇒sc
op(i) (H ′, Q′), where

(H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i0]). Since ` ∈ Li also ` ∈ L̂i. Then by rule
ec-HoldStep it follows that

(H,Q) =⇒sc
op(i) (H ′, Q′[i 7→ holding ` do Q′.cmd(i)])

Since (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i0]) we have that Q′.cmd(i) = c′i0, so by
Lemma 52 we have that (H ′, Q′[i 7→ holding ` do Q′.cmd(i)]) is the commit closure of (G′, P ′).

ec-HoldRelease Then ci has the form holding ` do skip and ` ∈ Li and Li.wb = nil and G′ =
G ∪ {`} and P0 = 〈Li \ {`}, skip〉. Then by definition ` ∈ L̂i and L̂i.wb = nil . Therefore
by ec-HoldRelease we have (H, 〈L̂i, ci〉) −→op (H ′, Q0), where H ′ = H ∪ {`} and Q0 =
〈L̂i \ {`}, skip〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where Q′ = Q[i 7→ Q0].

Now we argue that (H ′, Q′) is the commit closure of (G′, P ′). Since L̂i \ {`} is also the “cleared”
version of Li \ {`}, condition 1 holds for thread i, and it continues to hold for all other threads,
which are unchanged. Condition 2 continues to hold since both G and H get ` added to their
locksets. Since G′.mem = G.mem and H ′.mem = H.mem and no write buffers are modified,
conditions 3 and 4 continue to hold.

ec-Fence Then ci has the form fence and Li.wb = nil and G′ = G and P0 = 〈Li, skip〉. By definition
L̂i.wb = nil . Therefore by ec-Fence we have (H, 〈L̂i, ci〉) −→op (H,Q0), where Q0 = 〈L̂i, skip〉.
Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→ Q0]. Then by Lemma 52 we

have that (H ′, Q′) is the commit closure of (G′, P ′).

ec-Fork Then ci has the form fork ci0 and Li.wb = nil and G′ = G and P0 = 〈Li, skip〉 || 〈L�, ci0〉.
By definition L̂i.wb = nil . Therefore by ec-Fork we have (H, 〈L̂i, ci〉) −→op (H,Q0), where
Q0 = 〈L̂i, skip〉 || 〈L�, ci0〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→
Q0].

Now we argue that (H ′, Q′) is the commit closure of (G′, P ′). Since all local states are unchanged
and L� is its own “cleared” version by definition, condition 1 continues to hold. Condition 2
continues to hold since G = G′ and H = H ′. Finally, since G′.mem = G.mem and H ′.mem =
H.mem, no write buffers are modified, and L� has an empty write buffer, conditions 3 and 4
continue to hold.

21

ec-SeqStruct Then ci has the form ci1; ci2 and (G, 〈Li, ci1〉) −→eval (G′, 〈L′i, c′i1〉 || P ′0) and P0 =
〈L′i, c′i1; ci2〉 || P ′0. Therefore we have (G,P [i 7→ ci1]) =⇒tso

op(i) (G′, P ′[i 7→ c′i1]). By Lemma 49

the set of variables that 〈Li, ci1〉 reads [writes] next are a subset of those that 〈Li, ci1; ci2〉 reads
[writes] next. Therefore by Lemma 51 we have that (G,P [i 7→ ci1]) is well behaved. By Lemma 52
(H,Q[i 7→ ci1]) is the commit closure of (G,P [i 7→ ci1]). Finally by Lemma 49 we know that
〈Li, ci1〉 does not write any variables next.

Therefore by induction there exist (H ′, Q′) such that (H,Q[i 7→ ci1]) =⇒sc
op(i) (H ′, Q′), where

(H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i1]). Then by rule ec-SeqStruct it follows that

(H,Q) =⇒sc
op(i) (H ′, Q′[i 7→ Q′.cmd(i); ci2])

Since (H ′, Q′) is the commit closure of (G′, P ′[i 7→ c′i1]) we have that Q′.cmd(i) = c′i1, so by
Lemma 52 we have that (H ′, Q′[i 7→ Q′.cmd(i); ci2]) is the commit closure of (G′, P ′).

ec-SeqSkip Then ci has the form skip; ci0 and G′ = G and P0 = 〈Li, ci0〉. Therefore by ec-SeqSkip
we have (H, 〈L̂i, ci〉) −→op (H,Q0), where Q0 = 〈L̂i, ci0〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′),

where H ′ = H and Q′ = Q[i 7→ Q0]. Then by Lemma 52 we have that (H ′, Q′) is the commit
closure of (G′, P ′).

ec-IfTrue Then ci has the form if b do ci1 else ci2 and Li[b] ⇓ true and G′ = G and P0 = 〈Li, ci1〉.
By definition of L̂i also L̂i[b] ⇓ true, so by ec-IfTrue we have (H, 〈L̂i, ci〉) −→op (H,Q0), where
Q0 = 〈L̂i, ci1〉. Therefore (H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→ Q0]. Then by

Lemma 52 we have that (H ′, Q′) is the commit closure of (G′, P ′).

ec-IfFalse, ec-WhileTrue, and ec-WhileFalse Follows from the same argument as for rule ec-
IfTrue above.

ec-Reap Then ci has the form skip and Li.wb = nil and Li.locks = ∅ and G′ = G and P0 =
0. Therefore by ec-Reap we have (H, 〈L̂i, ci〉) −→op (H,Q0), where Q0 = 0. Therefore
(H,Q) =⇒sc

op(i) (H ′, Q′), where H ′ = H and Q′ = Q[i 7→ 0].

Now we argue that (H ′, Q′) is the commit closure of (G′, P ′). Condition 1 continues to hold
for all threads other than i, which are unchanged, and thread i is removed from both P and Q.
Condition 2 continues to hold since locks are not changed in G or H. For condition 3, since Li.wb
= nil we know that the set of variables that do not appear in any write buffer in P is equivalent
to the set that do not appear in any write buffer in P ′. Then since G′ = G and H ′ = H condition
3 continues to hold. For condition 4, again since Li.wb = nil we know that a variable X appears
in the write buffer for some thread j in P if and only if it appears in that thread’s write buffer
in P ′, and furthermore j 6= i. Then again since G′ = G and H ′ = H and no write buffers are
modified, condition 4 continues to hold.

Lemma 56. Suppose (G, 〈L�, c〉) =⇒tso (G1, P1) =⇒tso . . . =⇒tso (Gn, Pn) =⇒tso (G′, P ′) for some
n ≥ 0 and (Gk, Pk) is well behaved for each 1 ≤ k ≤ n and (G′, P ′) is not well behaved. Then (G, 〈L�, c〉)
is not race-free.

Proof. By Definition 19 we have that (G, 〈L�, c〉) is well behaved, and by the definition of L� as well as Defini-
tion 20 also (G, 〈L�, c〉) is its own commit closure. Therefore by Lemma 55 we have (G, 〈L�, c〉) =⇒sc∗ (H1, Q1)
=⇒sc∗ . . . =⇒sc∗ (Hn, Qn) =⇒sc∗ (H ′, Q′) where for each 1 ≤ k ≤ n we have that (Hk, Qk) is the

commit closure of (Gk, Pk) and (H ′, Q′) is the commit closure of (G′, P ′).
Since (G′, P ′) is not well behaved, by Definition 19 there are four possibilities. First suppose P ′ exhibits

a race. Then by Lemma 53 so does Q′ and we have shown that (G, 〈L�, c〉) is not race-free. Second suppose
(G′, P ′) is well locked. But since (Gn, Pn) is well behaved it is also well locked, so by Lemma 42 so is (G′, P ′)
and we have a contradiction. Third suppose there are distinct threads in P ′ that both contain a write to
some variable X in their write buffers. Since (Gn, Pn) is well behaved we know that this is not also true in
Pn. Then there must exist distinct threads ι and ι′ in Pn such that there is a write to X in Pn.ls(ι).wb and
Pn.cmd(ι′) has the form C[X := x]. Then by Lemma 54 thread ι′ in Pn writes X next, so it also accesses X
next. But then (Gn, Pn) is not well behaved, and we have a contradiction.

Finally suppose there are distinct threads ι and ι′ in P ′ such that there is a write to X in P ′.ls(ι).wb
and ι′ accesses X next in P ′. I claim that the step from (Gn, Pn) to (G′, P ′) must execute an eval step on

22

thread ι′, and hence also the step(s) from (Hn, Qn) to (H ′, Q′) must execute thread ι′ by the construction
in Lemma 55. If the step from (Gn, Pn) to (G′, P ′) executes a thread other than ι or ι′ or executes a
commit step on ι′, then there is a write to X in Pn.ls(ι).wb and ι′ accesses X next in Pn, contradicting the
well-behavedness of (Gn, Pn). If the step executes thread ι, then again ι′ accesses X next in Pn, and either
there is a write to X in Pn.ls(ι).wb or ι writes X next in Pn. Either way, the well-behavedness of (Gn, Pn)
is contradicted.

Let k be the greatest index such that Pk.cmd(ι) has the form C[X := x], the step from (Gk, Pk) in our
execution sequence is on thread ι, and for all indices m such that k < m ≤ n there is a write to X in
Pm.ls(ι).wb. It’s clear one such process soup exists, in order to take the step that puts X in the write buffer
of thread ι in P ′. (Further, the latest such process soup cannot be the very first one, 〈L�, c〉, since there is
only one thread initially, and forking another thread requires that the write buffer be empty.) Since (Hk, Qk)
is the commit closure of (Gk, Pk) also Qk.cmd(ι) has the form C[X := x].

Consider the sequence of =⇒sc steps from (Hk, Qk) to (H ′, Q′), and let’s rename them as follows:
(H ′1, Q

′
1) =⇒sc

op1(i1) (H ′2, Q
′
2) =⇒sc . . . =⇒sc (H ′m, Q

′
m) =⇒sc

opm(im) (H ′, Q′). Call the associated sequence

of actions α, and let α0 be identical to α but with each action on thread ι removed. I claim that α0 is also
a valid SC execution sequence from (H ′1, Q

′
1) and furthermore that this sequence ends in a state (H ′′, Q′′)

such that Q′/ι = Q′′/ι. If we can argue this, then we have shown that (G, 〈L�, c〉) is not race-free, since in
the final process soup Q′′ of our execution sequence α0 we have that ι writes X next (because that thread
is unchanged from Qk) and ι′ accesses X next (since ι′ accesses X next in Q′ and Q′/ι = Q′′/ι).

Consider a step on thread ι from some state (H,Q) in our execution sequence α. In order for this step to
affect the behavior of another thread in a later step of the sequence, this step must modify the global store.
There are only three rules that directly modify the store:

ec-SyncAcquire So Q.cmd(ι) has the form C[sync ` do c0] and ` ∈ H and Q.ls(ι).wb = nil . But then by
construction of our SC execution in Lemma 55, we know that there is some j > k such that Pj .cmd(ι)
has the form C[sync ` do c0] and ` ∈ Gj . Further, by well-behavedness we know that ` 6∈ Pj .ls(ι).
Therefore, the step from (Gj , Pj) must also use ec-SyncAcquire. But then Pj .ls(ι).wb = nil , which
contradicts the fact that a write to X is in Pj .ls(ι).wb.

ec-HoldRelease Similar to the above case.

commit By construction of our SC execution in Lemma 55, a commit step only happens on thread ι directly
after the associated write is put into ι’s write buffer. Further, there is a corresponding write to the
write buffer of ι in the original TSO execution. So there is some j ≥ k such that Pj .cmd(ι) has the
form C[Y := y] and (Gj , Pj) executes thread ι, thereby adding Y to ι’s write buffer. By our choice of
(Gk, Pk) we know that the step from (Gk, Pk) adds a write to X to the write buffer of ι and that this
write is never committed in the rest of our execution sequence. Since the write buffer is emptied in
FIFO order, this means that the write to Y at (Gj , Pj) is also never committed (note that it is possible
that j = k and hence Y = X). Therefore by well-behavedness, in each (Gm, Pm) for j ≤ m ≤ n it is
the case that no thread other than ι accesses Y next. Therefore, the same is true for each configuration
following (Hj , Qj) in our SC execution sequence α. Therefore, we can omit this write of Y without
affecting any other thread’s behavior in the rest of the execution sequence.

Theorem 2. If (G, 〈L�, c〉) =⇒tso∗ (G′, 0) and (G, 〈L�, c〉) is race-free, then (G, 〈L�, c〉) =⇒sc∗ (G′, 0).

Proof. Since (G, 〈L�, c〉) is race-free, by Lemma 56 each intermediate configuration in execution (G, 〈L�, c〉) =⇒tso∗ (G′, 0)
is well behaved. By Definition 20, (G, 〈L�, c〉) is its own commit closure. Therefore by Lemma 55 we have
(G, 〈L�, c〉) =⇒sc∗ (H ′, Q′) where (H ′, Q′) is the commit closure of (G′, 0). But then by Definition 20,
Q′ = 0 so also H ′ = G′.

5 Typing for Write Buffers

Write buffers are not as cumbersome as in the proofs about the previous type system, and we won’t need to
call them out specially in contexts. Notation E [t] denotes E [nil | t].

23

pc; wt ; Γ `wb c⇒ wt

pc t Γ(Y) v Γ(x)

pc; wt ; Γ `wb x := Y ⇒ wt
wb-Load

pc t Γ(y) v Γ(X)

pc; wt ; Γ `wb X := y ⇒ wt u Γ(X)
wb-Store

Γ ` a : τ pc t τ v Γ(x)

pc; wt ; Γ `wb x := a⇒ wt
wb-Eval

pc v Γ(`) pc v wt Γ(`); high; Γ `wb c⇒ wt ′

pc; wt ; Γ `wb sync ` do c⇒ high
wb-Sync

pc v Γ(`) Γ(`) v wt Γ(`); wt ; Γ `wb c⇒ wt ′

pc; wt ; Γ `wb holding ` do c⇒ high
wb-Hold

pc v wt

pc; wt ; Γ `wb fence⇒ high
wb-Fence

pc; high; Γ `wb c⇒ wt ′ pc v wt

pc; wt ; Γ `wb fork c⇒ high
wb-Fork

pc; wt ; Γ `wb c1 ⇒ wt1 pc; wt1; Γ `wb c2 ⇒ wt2

pc; wt ; Γ `wb c1; c2 ⇒ wt2

wb-Seq

Γ ` b : τ pc t τ ; wt ; Γ `wb c1 ⇒ wt1 pc t τ ; wt ; Γ `wb c2 ⇒ wt2

pc; wt ; Γ `wb if b do c1 else c2 ⇒ wt1 u wt2

wb-If

Γ ` b : low pc; wt u wt ′; Γ `wb c⇒ wt ′

low ; wt ; Γ `wb while b do c⇒ wt u wt ′
wb-While

pc; wt ; Γ `wb skip⇒ wt
wb-Skip

pc; Γ `wb λ

pc; Γ `wb ∅
pc v Γ(`) pc; Γ `wb λ

pc; Γ `wb λ ∪ {`}

wt ; Γ `wb W

wt ; Γ `wb nil

wt v Γ(X) wt ; Γ `wb W

wt ; Γ `wb (X := i)::W

pc; wt ; Γ `wb t

pc; Γ `wb λ wt ; Γ `wb W pc; wt ; Γ `wb c⇒ wt ′

pc; wt ; Γ `wb 〈(M,λ,W), c〉ι

pc; wt ; Γ `wb P

·; ·; Γ `wb 0

pc; wt ; Γ `wb t pc; wt ; Γ `wb P

pc, pc; wt ,wt ; Γ `wb t || P

Lemma 57 (WB Admissibility of subtyping). Suppose pc1 v pc2 and wt1 v wt2. Then the following hold.

24

(i) pc2; Γ `wb λ implies pc1; Γ `wb λ.

(ii) wt2; Γ `wb W implies wt1; Γ `wb W .

(iii) pc2; wt1; Γ `wb c⇒ ut implies pc1; wt2; Γ `wb c⇒ vt for some vt where ut v vt.

(iv) pc2; wt ; Γ `wb t implies pc1; wt ; Γ `wb t.

Proof. Statements (i)–(iii) follow from easy inductions on the typing derivations. The only mildly interesting
cases are for wb-Seq, wb-If, and wb-While, in which we need to reason with the induction hypothesis’s
ut v vt constraint. Statement (iv) follows from (i)–(iii).

Lemma 58. Suppose pc; wt ; Γ `wb c⇒ vt. Then pc u wt v vt.

Proof. by an easy induction.

Lemma 59. From pc v Γ(`) and pc; Γ `wb λ, it follows that pc; Γ `wb λ ∪ {`}.

Proof. Immediate.

Lemma 60. Suppose pc; Γ `wb λ. It follows that pc; Γ `wb λ \ {`}.

Proof. by trivial induction.

Lemma 61 (WB buffer append typing). If wt ; Γ `wb W then wt u Γ(X); Γ `wb W++(X := i).

Proof. by induction.

Lemma 62 (WB Commit Step Preservation). Suppose pc; wt ; Γ `wb t and (G, t) −→commit (G′, P ′). Then
pc; wt ; Γ `wb P ′ where pc v pc and wt v wt.

Proof. Let 〈L, c〉 = t. Then P ′ = 〈L0, c〉 || 0 where L = (X := i)++L0 for some X, i, and L0. We must show
that wt ; Γ `wb L0.wb, which follows from inverting the typing derivation.

Lemma 63 (WB Eval Step Preservation). Suppose pc; wt ; Γ `wb t and (G, t) −→eval (G′, P ′). Then
pc; wt ; Γ `wb P ′ where pc v pc and wt u pc v wt.

Proof. Let 〈L, c〉 = t and observe that pc; wt ; Γ `wb c⇒ ut . Strengthen the induction hypothesis as follows:
If P ′ = t′ || P ′0, it is the case that vt ; Γ `wb t′.wb and pc; vt ; Γ `wb t′.cmd ⇒ ut ′ where wt u pc v vt and
ut v ut ′. Proceed by induction on the −→eval step derivation.

ec-Store: Here c = (X := y) and P ′ = 〈L++(X := i), skip〉 || 0 for some i. It suffices to find vt such that
(i) wt u pc v vt , (ii) vt ; Γ `wb L.wb++(X := i), and (iii) pc; vt ; Γ `wb skip⇒ ut . Taking vt = ut latter
is immediate. Inverting the typing relation shows pc v pc t Γ(y) v Γ(X) and vt = ut = wt u Γ(X) w
wt u pc, satisfying (i). Finally (ii) follows from Lemma 61.

ec-Load: Here c = (x := Y) and P ′ = 〈L[X 7→ i], skip〉 || 0. Inverting the typing relation shows ut = wt .
Taking vt = wt w wt t pc, it suffices to show vt ; Γ `wb L.wb, which follows from inverting the typing
relation and pc; vt ; Γ `wb L.wb ⇒ ut , which is immediate.

ec-EvalExp: Similar to the ec-Load case.

ec-SyncAcquire: Here c = sync ` do c0 and P ′ = 〈L ∪ {`},holding ` do c0)〉 || 0 and L.wb = nil .
Inverting the typing relation gives ut = high and pc v Γ(`) and Γ(`); high; Γ `wb c0 ⇒ ut0. Be-
cause L’s lock set changed, we must show that pc; Γ `wb L.locks ∪ {`}, which is immediate from
Lemma 59. Let vt = high. Conclude by constructing derivations of high; Γ `wb L.wb and pc; high; Γ `wb

holding ` do c0 ⇒ high.

ec-SyncReenter: Here c = sync ` do c0 and P ′ = 〈L, fence; (c0; fence)〉 || 0. Inverting the typing
relation shows ut = high and pc v wt . Inversion also gives Γ(`); high; Γ `wb c0 ⇒ wt0 and pc v Γ(`) so

25

that Lemma 57 yields a derivation showing pc; high; Γ `wb c0 ⇒ wt ′0 with wt0 v wt ′0. By Lemma 58,
pc v wt ′0. Taking vt = wt , it remains to construct the following derivation:

pc v wt

pc; wt ; Γ `wb fence⇒ high

...

pc; high; Γ `wb c0 ⇒ wt ′0

pc v wt ′0

pc; wt ′0; Γ `wb fence⇒ high

pc; high; Γ `wb c0; fence⇒ high

pc; wt ; Γ `wb fence; (c0; fence)⇒ high

ec-HoldStep: Here c = holding ` do c0 and P ′ = 〈L′,holding ` do c′0〉 || P ′0 where (G, 〈L, c0〉) −→eval

(G′, 〈L′, c′0〉 || P ′0). Inverting the typing derivation gives Γ(`); wt ; Γ `wb c0 ⇒ wt0 and pc v Γ(`).
Applying the induction hypothesis yields pc; wt ; Γ `wb P ′ where pc v Γ(`) v pc and pc u wt v
Γ(`) u wt v wt . Thus P ′0 is typed appropriately, and it remains to shows that 〈L′,holding ` do c′0〉
satisfies all typing requirements. Also by the induction hypothesis Γ(`); vt ; Γ `wb c′0 ⇒ wt ′0 and
wt u Γ(`) v vt . It remains to show that pc; vt ; Γ `wb holding ` do c′0 ⇒ high, which follows from rule
wb-Hold and using fact pc; wt ; Γ `wb P ′ to establish pc; Γ `wb L′.locks.

ec-HoldRelease: Here c = holding ` do skip and P ′ = 〈L \ {`}, skip〉 || 0 with L.wb = nil . Inverting
the typing relation shows ut = high. Let vt = high. Proceed as in the ec-Load step, noting that
Lemma 60 gives pc; Γ `wb L.locks \ {`} and high; Γ `wb L.wb is immediate.

ec-Fence: Similar to, but simpler than ec-HoldRelease.

ec-Fork: Here c = fork c0 and P ′ = 〈L, skip〉 || 〈L�, c0〉 || 0 and L.wb = nil .

First we show that pc; high; Γ `wb 〈L�, c0〉 || 0. Inverting the typing relation gives pc; high; Γ `wb c0 ⇒
wt0. Finish building easy derivations of pc; Γ `wb L�.locks and high; Γ `wb L�.wb.

Second we let vt = ut = high and show pc; high; Γ `wb skip ⇒ high, and high; Γ `wb L.wb both of
which are immediate.

ec-SeqStruct: Here c = c1; c2 and P ′ = 〈L′, c′1〉 || P ′0 where (G, 〈L, c1〉) −→eval (G′, 〈L′, c′1〉 || P ′0). Invert-
ing the typing derivation gives pc; wt ; Γ `wb c1 ⇒ wt1 and pc; wt1; Γ `wb c2 ⇒ ut .

The induction hypothesis shows pc; wt ; Γ `wb P ′0 where pc v pc and wt u pc v wt .

Conclude by building a derivation of pc; vt ; Γ `wb c′1; c2 ⇒ ut ′ using the induction hypothesis to find
and appropriate vt where pc; vt ; Γ `wb c′1 ⇒ wt ′1 and wt1 v wt ′1 and computing ut ′ as follows. Use
Lemma 57 to find pc; wt ′1; Γ `wb c2 ⇒ ut ′ where ut v ut ′, then build a derivation pc; vt ; Γ `wb c′1; c2 ⇒
ut with rule wb-Seq.

ec-SeqSkip: Here c = skip; c2 and P ′ = 〈L, c2〉 || 0. Trivial by inverting the typing derivation.

ec-IfTrue, ec-IfFalse, ec-WhileTrue, ec-WhileFalse: Immediate, using Lemma 57 as needed.

ec-Reap: Immediate.

Lemma 64 (WB Preservation). Suppose pc; wt ; Γ `wb P and (G,P) =⇒tso∗ (G′, P ′). Then there exist pc′

and wt
′

such that pc′; wt
′
; Γ `wb P ′.

Proof. By induction on the length of the =⇒tso∗ derivation, using Lemmas 62 or 63.

Definition 21 (∼wb
Γ).

1. λ1 ∼wb
Γ λ2 when it is the case that Γ(`) = low implies that ` ∈ λ1 iff ` ∈ λ2.

2. L1 ∼wb
Γ L2 iff each of the following holds:

(a) L1.wb ∼Γ L2.wb

(b) L1.mem ∼Γ L2.mem

(c) L1.locks ∼wb
Γ L2.locks

3. t1 ∼wb
Γ t2 is defined by the following introduction rules.

26

(a) 〈L1, c〉ι1 ∼wb
Γ 〈L2, c〉ι2 when L1 ∼wb

Γ L2

(b) E [〈L1, c1〉ι1] ∼wb
Γ E [〈L2, c2〉ι2] when L1 ∼wb

Γ L2 and both high; wt ; Γ `wb 〈L1, c1〉ι1 and high; wt ; Γ `wb

〈L2, c2〉ι2 for some wt.

4. G1 ∼wb
Γ G2 iff G1.mem ∼Γ G2.mem and G1.locks ∼wb

Γ G2.locks.

5. P1 ∼wb
Γ P2 is defined by the least fixed point of the following implications.

(a) 0 ∼wb
Γ 0, always

(b) t || P1 ∼wb
Γ P2 when high; high; Γ `wb t and P1 ∼wb

Γ P2

(c) P1 ∼wb
Γ t || P2 when high; high; Γ `wb t and P1 ∼wb

Γ P2

(d) t1 || P1 ∼wb
Γ t2 || P2 when t1 ∼wb

Γ t2 and P1 ∼wb
Γ P2

6. (G1, P1) ∼wb
Γ (G2, P2) when G1 ∼wb

Γ G2 and P1 ∼wb
Γ P2.

Lemma 65. Each ∼wb
Γ relation is an equivalence relation.

Proof. by inspection.

Lemma 66. If (G1, P1) ∼wb
Γ (G2, P22) and P21 ∼wb

Γ 0 then (G1, P1) ∼wb
Γ (G2, P22 || P21)

Lemma 67. Consider some G1, G2, and λ. G1 ∼wb
Γ G2 iff G1 ∪ λ ∼wb

Γ G2 ∪ λ.

Lemma 68. Consider some G1, G2, and λ. G1 ∼wb
Γ G2 iff G1 \ λ ∼wb

Γ G2 \ λ.

Lemma 69. Consider some L1, L2, and λ. L1 ∼wb
Γ L2 iff L1 ∪ λ ∼wb

Γ L2 ∪ λ.

Lemma 70. Suppose L1 ∼wb
Γ L2. Then L1[x 7→ i] ∼wb

Γ L2[x 7→ i].

Lemma 71. Suppose L1 ∼wb
Γ L2 and Γ(x) = high. Then L1[x 7→ i1] ∼wb

Γ L2[x 7→ i2].

Lemma 72. Suppose L1 ∼wb
Γ L2. Then L1++(X := i) ∼wb

Γ L2++(X := i).

Lemma 73. Suppose L1 ∼wb
Γ L2 and Γ(X) = high. Then L1++(X := i) ∼wb

Γ L2++(X := j).

Lemma 74. Suppose L1 ∼wb
Γ L2. Then wt ; Γ `wb L1.wb implies wt ; Γ `wb L2.wb, and pc; Γ `wb L1.locks

implies pc; Γ `wb L2.locks.

Proof. by trivial inductions.

Lemma 75. Suppose t1 ∼wb
Γ t2. Then E [t1] ∼wb

Γ E [t2].

Lemma 76. If P11 || t1 || P12 ∼wb
Γ P2 then P2 = P21 || P ∗2 || P22 where the following hold:

P21 ∼wb
Γ P11

P ∗2 ∼wb
Γ t1

P22 ∼wb
Γ P12

P ∗2 ∈ {0, t2 || 0} for some t2

Proof. By any easy induction on the sum of the lengths of P1 and P2.

Lemma 77. If pc; wt ; Γ `wb E [t] then pc; wt ; Γ `wb t.

Proof. Let E = (λ, C). First use induction on the size of λ to show pc; wt ; Γ `wb E0[t] where E0 = (∅, C).
Conclude by an easy structural induction on C, using Lemma 57.

Definition 22 (·|Γ,τ).
λ|Γ,τ = { ` | ` ∈ λ and Γ(`) = τ }
L|Γ,τ = L.locks|Γ,τ

〈L, c〉|Γ,τ = L|Γ,τ

0|Γ,τ = ∅
(t || P)|Γ,τ = t|Γ,τ ∪ P |Γ,τ

G|Γ,τ = G.locks|Γ,τ

27

Lemma 78. If λ ⊆ Lock|Γ,high and high; wt ; Γ `wb t then high; wt ; Γ `wb t ∪ λ.

Proof. Immediate

Lemma 79. Suppose that high; wt ; Γ `wb t. Then t.cmd .locks ⊆ Lock|Γ,high .

Proof. by trivial induction on the typing derivation.

Lemma 80. Suppose L1 ∼wb
Γ L2 and high; wt ; Γ `wb c1 ⇒ ut1 and high; wt ; Γ `wb c2 ⇒ ut2. Suppose also

that wt ; Γ `wb L1.wb. Then 〈L1, c1〉 ∼wb
Γ 〈L2, c2〉.

Proof. By the definition of ∼wb we want to find E = (λ, C), L10, and L20, such that the following hold.

〈L1, c1〉 = E [〈L10, c1〉] 〈L2, c2〉 = E [〈L20, c2〉] high; wt ; Γ `wb 〈L10, c1〉 high; wt ; Γ `wb 〈L20, c2〉

Let C = [·] and λ = L1|Γ,low . Let also L10 = L1 \λ and L20 = L2 \λ. Clearly 〈L1, c1〉 = E [〈L10, c1〉]. Because
L1 ∼wb

Γ L2 it’s also true that λ = L2|Γ,low , so 〈L2, c2〉 = E [〈L20, c2〉]. We demonstrate high; wt ; Γ `wb

〈L10, c1〉 by using the definition of L10 and the premises to show that high; Γ `wb L10.locks and wt ; Γ `wb

L10.wb. It remains to show high; wt ; Γ `wb 〈L20, c2〉, which works as above, using Lemma 74 to help establish
wt ; Γ `wb L20.wb.

Lemma 81 (WB Eval step local confinement). Suppose t.cmd 6= skip and both high; wt ; Γ `wb t and
(G, E [t]) −→eval (G′, P ′). Then (G, E [t]) ∼wb

Γ (G′, P ′), and P ′ = t′ || P ′0 where E [t] ∼wb
Γ t′.

Proof. Let (λ, C) = E , define t0 = t∪ λ|Γ,high , and observe that by Lemma 79, t0.ls.locks ⊇ λ∩ t0.cmd .locks.
Apply Lemma 33 to reduction (G, E [t]) = (G, E [nil | t0]) −→eval (G′, P ′) to find P ′ = E [t′] || P ′0 and
(G, t0) −→eval (G′, t′ || P ′0).

A low write, acquiring a low lock, or releasing a low lock would contradict t’s high type. Therefore
G ∼wb

Γ G′.
We show that P ′0 ∼wb

Γ 0. If the step was not by ec-Fork this is trivial. Otherwise P ′0 = 〈L�, c0〉 || 0
and it remains to show that high; high; Γ `wb c0 ⇒ ut for some ut . This follows from inverting t’s typing
derivation.

Finally we show that E [t] = E [t0] ∼wb
Γ E [t′]. Again, acquiring or releasing a low lock, or putting a low

write in the write buffer, would contradict t0’s high type. Therefore t0.ls ∼wb
Γ t′.ls. From the type of t

is follows that high; wt ; Γ `wb t0, and preservation (Lemma 63) shows high; vt ; Γ `wb t′ for some vt where
wt v vt . To conclude we must show that t0 and t′ may be typed with the same write typing. If t0.wb
contains a low write then so does t′.wb and because wt = vt = low we’re done. If t0.wb does not contain a
low write then inverting the typing derivation and using Lemma 57 shows high; vt ; Γ `wb t0, allowing us to
conclude.

Lemma 82 (WB Commit step confinement). Suppose pc; high; Γ `wb t and (G, t) −→commit (G′, P ′). Then
(G, t) ∼wb

Γ (G′, P ′).

Proof. Suppose a high value is committed; then the conclusion is immediate. Suppose instead a low value is
committed, this contradicts they typing of t.

Lemma 83 (WB Global confinement). Suppose high; high; Γ `wb t and (G, t) −→op (G′, P ′). Then
(G, t || 0) ∼wb

Γ (G′, P ′).

Proof. Suppose op = commit . Conclude via Lemma 82. Instead suppose op = eval and the step is not by ec-
Reap. Inverting the step relation shows t can be rewritten in form E [〈L, c〉] where c 6= skip and we conclude
via Lemma 81. Finally suppose the step is by ec-Reap and conclude by observing P ′ = 0 ∼wb

Γ t || 0.

Lemma 84 (WB Expression Confinement). Suppose L1 ∼wb
Γ L2. Then low ; Γ `tso a implies i1 = i2 when

L1[a] ⇓ i1 and L2[a] ⇓ i2. Likewise, low ; Γ `tso b implies β1 = β2 when L1[b] ⇓ β1 and L2[b] ⇓ β2.

Proof. by induction

Lemma 85 (Strong inversion for ∼wb). Suppose t1 ∼wb
Γ t2. Then at least one the following conditions holds.

Either,

(i) t1 = 〈L1, c〉 and t2 = 〈L2, c〉 where L1 ∼wb
Γ L2, or

28

(ii) t1 = E [〈L1, c1〉] where c1 6= skip and high; wt ; Γ `wb 〈L1, c1〉 for some wt, or

(iii) t1 = E [〈L1, skip〉] and t2 = E [〈L2, c2〉], where the following hold for some wt:

c2 6= skip, L1 ∼wb
Γ L2, canEval t1 implies active E , high; wt ; Γ `wb 〈L1, c1〉, and

high; wt ; Γ `wb 〈L2, c2〉.

Proof. Suppose that t1 and t2 are related by Definition 21, case 3a. Conclude as (i) is satisfied.
Suppose instead that t1 and t2 are related by case 3b, so Then t1 = E [〈L1, c1〉] and t2 = E [〈L2, c2〉]

and both high; wt ; Γ `wb 〈L1, c1〉 and high; wt ; Γ `wb 〈L2, c2〉. Additionally L1 ∼wb
Γ L2. If c1 6= skip then

condition (ii) is satisfied. Suppose instead that c1 = skip. If c2 = skip then using Lemma 69 we see that
condition (i) is satisfied. Now suppose c2 6= skip. If it’s not the case that canEval t1 then (iii) is satisfied and
we conclude. Otherwise use Lemma 2 to find E0 where active E0 and E0[ti] = E [ti]. Conclude as condition
(iii) is satisfied.

Quiet traces relate consecutive trace components with by ∼wb.

Definition 23 (Quiet traces). Call trace T = (G1, P1), (G2, P2), . . . , (Gn, Pn) quiet in context Γ, written
quietΓ T , when for each pair of consecutive configurations, (Gi, Pi || ti || Ri) and (Gi+1, Pi || Qi+1 || Ri) where
(Gi, ti) −→op (Gi+1, Qi+1), one or more equivalences hold. First, (Gi, ti || 0) ∼wb

Γ (Gi+1, Qi+1). Second, if
Qi+1 = ti+1 || Q0

i+1 then ti+1 ∼wb
Γ ti and Q0

i+1 ∼wb
Γ 0.

Lemma 86. Suppose T :: (G, t || P) =⇒m∗ (G′, t′ || P ′) where quietΓ T and FrontReapFree T . Then
t ∼wb

Γ t′ and P ∼wb
Γ P ′ and G ∼wb

Γ G′.

Proof. Proof by an easy induction on the length of T .

Definition 24 (Syntactically held locks).

synlocks skip = ∅
synlocks (Y := x) = ∅
synlocks (x := Y) = ∅
synlocks (x := a) = ∅

synlocks fence = ∅
synlocks (fork c) = synlocks c

synlocks (sync ` do c) = synlocks c
synlocks (holding ` do c) = {`} ∪ synlocks c

synlocks (c1; c2) = synlocks c1 ∪ synlocks c2
synlocks (if b do c1 else c2) = synlocks c1 ∪ synlocks c2

synlocks (while b do c) = synlocks c

synlocks 〈L, c〉 = synlocks c

Lemma 87. Suppose active E and wellStruct t where synlocks t ⊆ t|Γ,high and high; wt ; Γ `wb t. Also sup-
pose that t|Γ,high and G|Γ,high partition Lock|Γ,high . Then T :: (G, E [t] || 0) =⇒tso∗ (G′, E [〈L′, skip〉] || P ′)
where quietΓ T and FrontReapFree T , and where L′|Γ,high and G′|Γ,high partition Lock|Γ,high and where
L′|Γ,high = t|Γ,high \ (synlocks t)|Γ,high and P ′|Γ,high = ∅. Finally, if wt = high then L′.wb = nil .

Proof. Let 〈L, c〉 = t. Proof is by strong induction on size c + size L.wb. Proceed by inverting the typing
derivation. The interesting cases are as follows:

wb-Load: Here c = x := Y and high v Γ(x). Construct a trace showing (G, E [t] || 0) =⇒sc (G, 〈L[x 7→ i], skip〉 || 0).
This is FrontReapFree. The trace is quiet because Γ(x) = high typing ensures L ∼wb

Γ L[x 7→ i] and
because high; wt ; Γ `wb skip ⇒ wt . Conclude using the induction hypothesis, which is necessary to
ensure that wt = high implies an empty output write buffer.

wb-Store, wb-Eval: Similar to wb-Load. .

29

wb-Sync: Here c = sync ` do c0 with high v Γ(`) = high and high v wt = high and high; high; Γ `wb c⇒
ut .

Suppose L = (X := i)::L0. Because wt = high we have that Γ(X) = high. Thus (G, E [t]) =⇒tso (G[X 7→ i], E [〈L0, c〉]).
This step is FrontReapFree and quiet because only the “high components” of L and G are modi-
fied. Conclude using the induction hypothesis to find a FrontReapFree and quiet trace witnessing
(G[X 7→ i], E [〈L0, c〉]) =⇒tso∗ (G′, E [〈L′, skip〉]) for an appropriate L′ and G′.

Suppose instead that L.wb = nil and ` ∈ L. Reduce E [〈L, c〉] to E [〈L, fence; (c0; fence)〉] and
conclude by invoking the induction hypothesis.

Finally, if L.wb = nil and ` /∈ L then reduce E [〈L, c〉] to E [〈L ∪ {`},holding ` do c0〉] and use the
induction hypothesis to build a quiet and FrontReapFree derivation of

(G, E [t]) =⇒tso (G \ {`}, E [〈L ∪ {`},holding ` do c0〉]) =⇒tso∗ (G′, E [〈L′, skip〉] || P ′).

By the induction hypothesis we have that L′|Γ,high = (L ∪ {`})|Γ,high\(synlocks holding ` do c0)|Γ,high .
From wellStruct t it follows that synlocks c0|Γ,high = ∅ and so L′|Γ,high = L|Γ,high as required.

wb-Hold: Here c = holding ` do c0 with high v Γ(`) = high and Γ(`) v wt = high. As ` ∈ synlocks c ⊆
L|Γ,high , we can define E0 = (λ ∪ {`}, C[holding ` do [·]]) where (λ, C) = E and active E ′. Inverting
the typing relation shows wt = Γ(`) = high and high; high; Γ `wb 〈L, c0〉 . By the induction hypothesis
we have a quiet and FrontReapFree trace showing (G, E0[〈L, c0〉]) =⇒tso∗ (G′, E0[〈L′, skip〉]) where
L′.wb = nil . Because wellStruct t, it is not the case that ` /∈ synlocks c0, so ` ∈ L′. Finish by extending
this trace using ec-HoldRelease.

wb-Fence, wb-Fork: Similar to, but simpler than wb-Sync.

wb-Seq, wb-If, wb-While: Immediate by the induction hypothesis .

Lemma 88. Suppose active E and wellStruct t and high; wt ; Γ `wb t. Also suppose t|Γ,high = ∅ and
G|Γ,high = Lock|Γ,high . Then T :: (G, E [t] || 0) =⇒tso∗ (G′, E [〈L′, skip〉] || P ′) where quietΓ T and FrontReapFree T ,
and where L′|Γ,high = P ′|Γ,high = ∅ and G′|Γ,high = Lock|Γ,high .

Proof. Immediate using Lemma 87.

Lemma 89 (WB commit step security). Suppose the following hold.

(G1, t1) −→commit (G′1, t
′
1 || 0) G1 ∼wb

Γ G2 t1 ∼wb
Γ t2

Then (G2, t2) =⇒tso∗ (G′2, t
′
2) where (G′1, t

′
1) ∼wb

Γ (G′2, t
′
2) and both t′2.locks = t2.locks and G′2.locks =

G2.locks.

Proof. Suppose that the −→commit operation commits write X := i. Consider the case where Γ(X) = high.
We can conclude immediately, taking t′2 = t2 and G′2 = G2.

Suppose instead that Γ(X) = low . By the definition of ∼wb we have that L2.wb = W21++(X := i)++W22

where for each (Y := j) ∈ W21, it is the case Γ(Y) = high. Let n denote the number of writes in W21 and
define t′2 and G′2 by taking n+ 1 commit steps.

Lemma 90 (WB Eval step security). Suppose the following hold.

(G1, t1) −→eval (G′1, P
′
1) pc; wt ; Γ `wb t1 wellStruct t1

G1 ∼wb
Γ G2 t1 ∼wb

Γ t2 t2|Γ,high = ∅ G2|Γ,high = Lock|Γ,high

Then there exist G′2 and P ′2 such that (G′1, P
′
1) ∼wb

Γ (G′2, P
′
2) and (G, t2) =⇒tso∗ (G′2, P

′
2). Furthermore

P ′2|Γ,high = ∅ and G′2|Γ,high = Lock|Γ,high .

Proof. We strengthen the induction hypothesis as follows. Whenever P ′1 = t′1 || P ′10 there exist T , t′2 and P ′20

where T :: (G2, t2) =⇒tso∗ (G′2, P
′
2) and FrontReapFree T and P ′2 = t′2 || P ′20 and where both t′1 ∼wb

Γ t′2 and
P ′10 ∼wb

Γ P ′20. Proceed with strong induction on quantity (size (t1.cmd) + size (t2.cmd)). Invert t1 ∼wb
Γ t1

using Lemma 85 to get three cases. Subcases of (i) will occasionally be completed by “falling through” to
(ii).

30

(i) t1 = 〈L1, c〉 and t2 = 〈L2, c〉 where L1 ∼wb
Γ L2. Continue by inverting the −→commit derivation.

ec-Store: Here c = X := y. If Γ(y) = low , the definition of ∼wb
Γ shows L1(y) = L2(y) and we

conclude using Lemma 72. Otherwise Γ(y) = high, inverting typing rule wb-Store gives Γ(X) =
high, and the result follows from Lemma 73.

ec-Load: Here c = x := Y . If Γ(x) = high we conclude as updating L1 and L2 is not observable. If
instead Γ(x) = low then typing ensures Γ(Y) = low and equivalences L1 ∼wb

Γ L2 and G1 ∼wb
Γ G2,

ensures we’re writing identical values to x.

ec-EvalExp: Follows from Lemmas 70 and 71.

ec-SyncAcquire: Here c = sync ` do c0 and both L1.wb = nil and ` ∈ G1. First suppose that
Γ(`) = high. Let E = (L1|Γ,low , [·]) and note that t1 = E [〈L1 \ L1|Γ,low , c〉]. Inverting typing rule
wb-Sync shows that high; wt ; Γ `wb c0 ⇒ ut for some wt and ut ; using wb-Sync, and noting
that L1 \ L1|Γ,low has both an empty write buffer and no low locks, lets us find high; wt ; Γ `wb

〈L1 \ L1|Γ,low , c〉. Continue by falling through to case (ii).

Now suppose Γ(`) = low . Here we will use that, from inversion, G′1 = G1 \{`} and L′1 = L1∪{`}.
By the definition of ∼wb and fact L1.wb = nil , we see that each write (X := i) in L2.wb has
Γ(X) = high. We can construct a derivation showing (G2, t2) =⇒tso∗ (G′20, 〈L′20, c〉) where
(G2, t2) ∼wb

Γ (G′20, 〈L′20, c〉), using finitely many −→commit steps, each committing high variables.
Applying the definition of ∼wb gives ` ∈ G′20 and L′20.wb = nil . Taking an ec-SyncAcquire
step gives derivation (G2, t2) =⇒tso∗ (G′20 \ {`}, 〈L′20 ∪ {`}, c0〉). We take this result state to
be (G′2, P

′
2) and observe that P ′2|Γ,high = (L′20 ∪ {`})|Γ,high = (L2 ∪ {`})|Γ,high = ∅. It suffices to

show G′20 \ {`} ∼wb
Γ G′1 \ {`}, which follows from Lemmas 65 and 68, and L′20 ∪ {`} ∼wb

Γ L′1 ∪ {`},
which follows from Lemmas 65 and 69 .

ec-Fence, ec-Fork, ec-HoldRelease: Similar to the ec-SyncAcquire case.

ec-SyncReenter: Here c = sync ` do c0. If Γ(`) = high then using an argument to similar to
the ec-SynAcquire case fall through to (ii). If Γ(`) = low then by ∼wb t1 and t2 transition in
lockstep and the case is trivial.

ec-HoldStep: Here c = holding ` do c0.

Suppose that Γ(`) = high. As in case ec-SyncAcquire we fall through to case (ii).

Suppose instead that Γ(`) = low . Let t10 = 〈L1, c0〉 and t20 = 〈L2, c0〉 as well as E =
({`},holding ` do [·]). Inverting the evaluation relation gives ` ∈ L1 and P ′1 = E [t′10] || P ′10 and
(G1, t10) −→eval (G′1, t

′
10). Applying the induction hypothesis to this eval step, using Lemma 77

to establish pc; wt ; Γ `wb t10. This yields, among other properties,

T :: (G2, t20) =⇒tso∗ (G′2, t
′
20)

where FrontReapFree T . Take P ′2 to be E [t′20] || P ′20 and finish by applying Lemma 75. .

ec-SeqStruct: Similar to ec-HoldStep.

ec-SeqSkip: Immediate.

ec-IfTrue: Here c = if b do ct else cf where L1[b] ⇓ true and both P ′1 = 〈L1, ct〉 and G′1 = G1.

Suppose it’s not the case that Γ ` b : low . Then inverting the typing relation shows both
high; wt ; Γ `wb ct ⇒ ut t and high; wt ; Γ `wb cf ⇒ utf , as well as wt ; Γ `wb L1.wb. Without
loss of generality assume L2[b] ⇓ false and let (G′2, P

′
2) = (G′2, 〈L2, cf 〉). It suffices to show that

〈L1, ct〉 ∼wb
Γ 〈L2, cf 〉, which is a consequence of Lemma 80.

Suppose instead that that Γ ` b : low . Lemma 84 shows L2[b] ⇓ true so (G2, t2) =⇒tso∗ (G2, 〈L2, ct〉) ∼wb
Γ

(G1, 〈L1, ct〉) = (G′1, P
′
1).

ec-IfFalse, ec-WhileTrue, ec-WhileFalse: Similar to, or simpler than, ec-IfTrue.

ec-Reap Trivial. .

(ii) t1 = E [〈L1, c1〉] where c1 6= skip and high; wt1; Γ `wb 〈L1, c1〉 for some wt1. By transitivity (Lemma 65)
it suffices to show (G′1, P

′
1) ∼wb

Γ (G1, t1). Conclude via Lemma 81.

(iii) t1 = E [〈L1, skip〉] and t2 = E [〈L2, c2〉]. We know the following for some wt0.

c2 6= skip L1 ∼wb
Γ L2 active E high; wt0; Γ `wb 〈L1, c1〉 high; wt0; Γ `wb 〈L2, c2〉

31

By Lemma 88, we have T :: (G, E [〈L2, c2〉] || 0) =⇒tso∗ (G′2, E [〈L′2, skip〉] || P ′2) where quietΓ T ,
FrontReapFree T , and L′2|Γ,high = P ′2|Γ,high = ∅. By Lemmas 65 and 86 we find:

E [〈L′2, skip〉] ∼wb
Γ E [〈L2, c2〉] ∼wb

Γ t1

G′2 ∼wb
Γ G2 ∼wb

Γ G1

P ′2 ∼wb
Γ 0

Because c2 6= skip it is the case that size (E [〈L′2, skip〉].cmd) < size (E [〈L2, c2〉].cmd), so we can use the
induction hypothesis to findG′′2 and P ′′2 such that (G′1, P

′
1) ∼wb

Γ (G′′2 , P
′′
2) and (G′2, E [〈L′2, skip〉]) =⇒tso∗ (G′′2 , P

′′
2).

By Lemma 66, (G′1, P
′
1) ∼wb

Γ (G′′2 , P
′′
2 || P ′2). Thus it suffices to show (P ′′2 || P ′2)|Γ,high = ∅, which is

immediate, and (G2, t2) =⇒tso∗ (G′′2 , P
′′
2 || P ′2), which is a consequence of Lemma 3.

Theorem 3 (WB Security). Suppose (G1, P1) ∼wb
Γ (G2, P2) and pc; wt ; Γ `wb P1 and wellStruct P1. Suppose

also that (G1, P1) =⇒tso (G′1, P
′
1). Furthermore P2|Γ,high = ∅ and G2|Γ,high = Lock|Γ,high . Then there

exists G′2, P
′
2 such that (G′1, P

′
1) ∼wb

Γ (G′2, P
′
2) and (G2, P2) =⇒tso∗ (G′2, P

′
2), and both P ′2|Γ,high = ∅ and

G′2|Γ,high = Lock|Γ,high .

Proof. Inverting the tso-evaluation relation and appealing to Lemma 76 gives

P1 = P11 || t1 || P12

P2 = P21 || P ∗2 || P22

P ′1 = P11 || Q′1 || P12

where P ∗2 contains at most one thread (i.e., P ∗2 ∈ {0, t2 || 0} for some t2) and the following hold:

(G, t1) −→op (G′1, Q
′
1)

P11 ∼wb
Γ P21

t || 0 ∼wb
Γ P ∗2

P12 ∼wb
Γ P22

It suffices to show that there existsG′2 andQ′2 such that (G′1, Q
′
1) ∼wb

Γ (G′2, Q
′
2) and (G2, P

∗
2) =⇒tso∗ (G′2, Q

′
2).

(Observe that while we could rename threads in Q′2, we do not need to; thread names are only really relevant
for the data-race freedom argument.) Inspecting the definition of ∼wb

Γ shows there are only three ways in
which to find t || 0 ∼wb

Γ P ∗2 . Proceed by case analysis.
First suppose that that the equivalence arises from Definition 21, clause 5b. Here high; high; Γ `wb t1

and via Lemma 83, (G1, t || 0) ∼wb
Γ (G′1, Q

′
1). Conclude using Lemma 65, which states ∼wb is an equivalence

relation, and taking G2 and P ∗2 as existential witnesses G′2 and Q′2.
Second suppose that that the equivalence arises from definition 21, clause 5c. Here P ∗2 = t2 || 0 where

high; high; Γ `wb t2 and t1 ∼wb
Γ 0. From t1 ∼wb

Γ 0 it follows that high; high; Γ `wb t1. Again taking G2 and
P ∗2 to be witnesses G′2 and Q′2 conclude with the following equational reasoning:

(G′, Q′1) ∼wb
Γ (G1, t1 || 0) by Lemma 83
∼wb

Γ (G1, 0)
∼wb

Γ (G2, 0) by assumption
∼wb

Γ (G2, t2 || 0)
= (G2, P

∗
2)

Third suppose that that the equivalence arises from Definition 21, clause 5d. Here P ∗2 = t2 || 0 for some
t2 with t1 ∼wb

Γ t2. Finitely many inversions of the typing relation show pc; wt ; Γ `wb t1 for some pc and wt .
Similarly wellStruct t1 and t2|Γ,high = ∅. Conclude via Lemmas 89 and 90.

Corollary 5. Suppose (G1, P1) ∼wb
Γ (G2, P2) and pc; wt ; Γ `wb P1 and wellStruct P1. Suppose also that

(G1, P1) =⇒tso∗ (G′1, P
′
1). Furthermore P2|Γ,high = ∅ and G2|Γ,high = Lock|Γ,high . Then there exist G′2 and

P ′2 such that (G′1, P
′
1) ∼wb

Γ (G′2, P
′
2) and (G2, P2) =⇒tso∗ (G′2, P

′
2) and P ′2|Γ,high = ∅.

Proof. By finitely many application of Theorem 3 and Lemmas 5 and 64.

32

Corollary 6. Suppose G1 ∼wb
Γ G2 and pc; wt ; Γ `wb c⇒ ut and src c. Also assume G2|Γ,high = Lock|Γ,high .

If (G1, 〈L�, c〉) =⇒tso∗ (G′1, 0) then (G2, 〈L�, c〉) =⇒tso∗ (G′2, 0) for some G′2 where G′1 ∼wb
Γ G′2.

Proof. An instantiation of the first corollary of Theorem 3 shows (G2, t) evaluates to a configuration related
to (G′1, 0), and preservation (Lemma 64) and Lemmas 5, 9, and 88, show this evaluates to pool 0.

Corollary 7 (WB Simple possibilistic noninterference). Suppose pc; wt ; Γ `wb c⇒ ut and src c. Then c is
possibilistically noninterfering under tso and Γ.

6 Expressive typing for SC programs

6.1 Typing

As above:
Static Security Context Γ ::= HeapVar ∪ LocalVar ∪ Lock→ τ

The type system will borrow a shared notion of `wb for locks and write buffers. Note that while we wrote
wt ; Γ `wb W earlier, we will write pc; Γ `wb W here. This is okay because both wt and pc are metavariables
ranging over labels.

pc; Γ `sc c

pc t Γ(Y) v Γ(x)

pc; Γ `sc x := Y
sc-Load

pc t Γ(y) v Γ(X)

pc; Γ `sc X := y
sc-Store

Γ ` a : τ pc t τ v Γ(x)

pc; Γ `sc x := a
sc-Eval

pc v Γ(`) Γ(`); Γ `sc c

pc; Γ `sc sync ` do c
sc-Sync

pc v Γ(`) Γ(`); Γ `sc c

pc; Γ `sc holding ` do c
sc-Hold

pc; Γ `sc fence
sc-Fence

pc; Γ `sc c

pc; Γ `sc fork c
sc-Fork

pc; Γ `sc c1 pc; Γ `sc c2

pc; Γ `sc c1; c2
sc-Seq

Γ ` b : τ pc t τ ; Γ `sc c1 pc t τ ; Γ `sc c2

pc; Γ `sc if b do c1 else c2
sc-If

Γ ` b : low pc; Γ `sc c

low ; Γ `sc while b do c
sc-While

pc; Γ `sc skip
sc-Skip

pc; Γ `sc t

pc; Γ `wb λ pc; Γ `wb W pc; Γ `sc c

pc; Γ `sc 〈(M,λ,W), c〉ι

pc; Γ `sc P

·; Γ `sc 0

pc; Γ `sc t pc; Γ `sc P

pc, pc; Γ `sc t || P

Lemma 91 (SC Admissibility of subtyping). Suppose pc1 v pc2. Then the following hold.

(i) pc2; Γ `sc pc1 implies pc1; Γ `sc pc1

(ii) pc2; Γ `sc t implies pc1; Γ `sc t.

33

Proof. Statement (i) follows from easy inductions on the typing derivations. Statement (ii) follows from (i)
and Lemma 57.

Lemma 92. If pc; Γ `sc E [t] then pc; Γ `sc t.

Proof. Let E = (λ, C). First use induction on the size of λ to show pc; Γ `sc E0[t] where E0 = (∅, C). Conclude
by an easy structural induction on C, using Lemma 57.

Lemma 93. Suppose that high; Γ `sc t. Then t.cmd .locks ⊆ Lock|Γ,high .

Proof. by trivial induction on the typing derivation.

Lemma 94 (SC Commit Step Preservation). Suppose pc; Γ `sc t and (G, t) −→commit (G′, P ′). Then
pc; Γ;P ′ `wb w here pc v pc.

Proof. Let 〈L, c〉 = t. Then P ′ = 〈L0, c〉 || 0 where L = (X := i)++L0 for some X, i, and L0. We must show
that pc; Γ `wb L0.wb, which follows from inverting the typing derivation.

Lemma 95 (SC Eval Step Preservation). Suppose pc; Γ `sc t and (G, t) −→eval (G′, P ′). Then pc; Γ `sc P ′

where pc v pc.

Proof. Let 〈L, c〉 = t and proceed by induction on the −→eval step derivation.

ec-Store: Here c = (X := y) and P ′ = 〈L++(X := i), skip〉 || 0 for some i. Inverting the typing derivation
shows pc v Γ(X) and pc; Γ `sc L.wb. We must show pc; Γ `wb L.wb++(X := i), which follows from
Lemma 61. It remains to show pc; Γ `sc skip; this is immediate.

ec-Load, ec-EvalExp, ec-Fence: Immediate.

ec-SyncAcquire: Here c = sync ` do c0 and P ′ = 〈L ∪ {`},holding ` do c0)〉 || 0. Recall that L.wb = nil .
Inverting the typing relation gives pc v Γ(`) and Γ(`); Γ `sc c0. Because the lock set changed, we must
show that pc; Γ `wb L.locks ∪ {`}, which is immediate from Lemma 59. Conclude by constructing a
derivation of pc; Γ `sc holding ` do c0.

ec-SyncReenter: Here c = sync ` do c0 and P ′ = 〈L, fence; (c0; fence)〉 || 0. Inverting the typing
relation shows Γ(`); Γ `sc c0 and pc v Γ(`) so that Lemma 91 yields a derivation showing pc; Γ `sc c0.
It remains to construct the a derivation showing pc; Γ `sc fence; (c0; fence).

ec-HoldStep: Here c = holding ` do c0 and P ′ = 〈L′,holding ` do c′0〉 || P ′0 where (G, 〈L, c0〉) −→eval

(G′, 〈L′, c′0〉 || P ′0). Inverting the typing derivation gives Γ(`); Γ `sc c0 and pc v Γ(`). Applying
the induction hypothesis yields pc; Γ `sc 〈L′, c′0〉 || P ′0 where Γ(`) v pc. It remains to show that
pc; Γ `sc holding ` do c′0, which follows from rule sc-Hold and Lemma 91.

ec-HoldRelease: Here c = holding ` do skip and P ′ = 〈L \ {`}, skip〉 || 0 with L.wb = nil . Noting that
pc; Γ `wb L.wb and that Lemma 60 gives pc; Γ `wb L.locks \ {`}, the result is immediate.

ec-Fork: Here c = fork c0 and P ′ = 〈L, skip〉 || 〈L�, c0〉 || 0 and L.wb = nil .

First we show that pc; Γ `sc 〈L�, c0〉 || 0. Inverting the typing relation gives pc; Γ `sc c0. Finish
building easy derivations of pc; Γ `wb L�.locks and pc; Γ `wb L�.wb.

Second we show pc; Γ `sc skip, and pc; Γ `wb L.wb both of which are immediate.

ec-SeqStruct: Here c = c1; c2 and P ′ = 〈L′, c′1〉 || P ′0 where (G, 〈L, c1〉) −→eval (G′, 〈L′, c′1〉 || P ′0). Invert-
ing the typing derivation gives pc; Γ `sc c1 and pc; Γ `sc c2.

The induction hypothesis shows pc; Γ `sc 〈L′, c′1〉 || P ′0. where pc v pc. By Lemma 91, pc; Γ `sc 〈L′, c′1〉,
and we conclude by inverting this judgment and constructing constructing a derivation of pc; Γ `sc c′1; c2
with sc-Seq.

ec-SeqSkip: Here c = skip; c2 and P ′ = 〈L, c2〉 || 0. Trivial by inverting the typing derivation.

ec-IfTrue, ec-IfFalse, ec-WhileTrue, ec-WhileFalse: Immediate, using Lemma 57 for ec-WhileTrue.

ec-Reap: Immediate.

Lemma 96 (SC Preservation). Suppose pc; Γ `sc P and (G,P) =⇒sc∗ (G′, P ′). Then there exist pc′ such
that pc′; Γ `sc P ′.

Proof. By induction on the length of the =⇒sc∗ derivation, using Lemmas 94 or 95.

34

6.2 Equivalences

Definition 25 (∼sc
Γ).

1. t1 ∼sc
Γ t2 is defined by the following introduction rules.

(a) 〈L1, c〉ι1 ∼sc
Γ 〈L2, c〉ι2 when L1 ∼wb

Γ L2

(b) E [〈L1, c1〉ι1] ∼sc
Γ E [〈L2, c2〉ι2] when L1 ∼wb

Γ L2 and both high; Γ `sc 〈L1, c1〉ι1 and high; Γ `sc

〈L2, c2〉ι2 for some wt.

2. P1 ∼sc
Γ P2 is defined by the least fixed point of the following implications.

(a) 0 ∼sc
Γ 0, always

(b) t || P1 ∼sc
Γ P2 when high; Γ `sc t and P1 ∼sc

Γ P2

(c) P1 ∼sc
Γ t || P2 when high; Γ `sc t and P1 ∼sc

Γ P2

(d) t1 || P1 ∼sc
Γ t2 || P2 when t1 ∼sc

Γ t2 and P1 ∼sc
Γ P2

3. (G1, P1) ∼sc
Γ (G2, P2) when G1 ∼wb

Γ G2 and P1 ∼sc
Γ P2.

Lemma 97. Each ∼sc
Γ relation is an equivalence relation.

Proof. by inspection.

Lemma 98. If P11 || t1 || P12 ∼sc
Γ P2 then P2 = P21 || P ∗2 || P22 where the following hold:

P21 ∼sc
Γ P11

P ∗2 ∼sc
Γ t1

P22 ∼sc
Γ P12

P ∗2 ∈ {0, t2 || 0} for some t2

Proof. By any easy induction on the sum of the lengths of P1 and P2.

Lemma 99 (Strong inversion for ∼sc). Suppose t1 ∼sc
Γ t2. Then at least one the following conditions holds.

Either,

(i) t1 = 〈L1, c〉 and t2 = 〈L2, c〉 where L1 ∼sc
Γ L2, or

(ii) t1 = E [〈L1, c1〉] where c1 6= skip and high; Γ `sc 〈L1, c1〉, or

(iii) t1 = E [〈L1, skip〉] and t2 = E [〈L2, c2〉], where the following hold:

c2 6= skip, L1 ∼wb
Γ L2, canEval t1 implies active E , high; Γ `sc 〈L1, c1〉, and

high; Γ `sc 〈L2, c2〉.

Proof. Suppose that t1 and t2 are related by Definition 25, case 1a. Conclude as (i) is satisfied.
Suppose instead that t1 and t2 are related by case 1b, so Then t1 = E [〈L1, c1〉] and t2 = E [〈L2, c2〉] and

both high; Γ `sc 〈L1, c1〉 and high; Γ `sc 〈L2, c2〉. Additionally L1 ∼wb
Γ L2. If c1 6= skip then condition

(ii) is satisfied. Suppose instead that c1 = skip. If c2 = skip then using Lemma 69 we see that condition
(i) is satisfied. Now suppose c2 6= skip. If it’s not the case that canEval t1 then (iii) is satisfied and we
conclude. Otherwise use Lemma 2 to find E0 where active E0 and E0[ti] = E [ti]. Conclude as condition (iii)
is satisfied.

Lemma 100. Suppose t1 ∼sc
Γ t2. Then E [t1] ∼sc

Γ E [t2].

Lemma 101. Suppose L1 ∼wb
Γ L2 and high; Γ `sc c1 and high; Γ `sc c2. Suppose also that high; Γ `wb L1.wb.

Then 〈L1, c1〉 ∼sc
Γ 〈L2, c2〉.

35

Proof. By the definition of ∼wb we want to find E = (λ, C), L10, and L20, such that the following hold.

〈L1, c1〉 = E [〈L10, c1〉] 〈L2, c2〉 = E [〈L20, c2〉] high; Γ `sc 〈L10, c1〉 high; Γ `sc 〈L20, c2〉

Let C = [·] and λ = L1|Γ,low . Let also L10 = L1 \λ and L20 = L2 \λ. Clearly 〈L1, c1〉 = E [〈L10, c1〉]. Because
L1 ∼wb

Γ L2 it’s also true that λ = L2|Γ,low , so 〈L2, c2〉 = E [〈L20, c2〉]. We demonstrate high; Γ `sc 〈L10, c1〉
by using the definition of L10 and the premises to show that high; Γ `wb L10.locks and high; Γ `wb L10.wb.
It remains to show high; wt ; Γ `wb 〈L20, c2〉, which works as above, using Lemma 74 to help establish
high; Γ `wb L20.wb.

Lemma 102. If (G1, P1) ∼sc
Γ (G2, P21) and P22 ∼sc

Γ 0 then (G1, P1) ∼sc
Γ (G2, P21 || P22)

Proof. By any easy induction on the sum of the lengths of P1 and P2.

6.3 Security proof

Lemma 103 (SC Eval step local confinement). Suppose t.cmd 6= skip and both high; Γ `sc t and (G, E [t]) −→eval

(G′, P ′). Then (G, E [t]) ∼sc
Γ (G′, P ′), and P ′ = t′ || P ′0 where E [t] ∼sc

Γ t′.

Proof. Let (λ, C) = E , define t0 = t∪ λ|Γ,high , and observe that by Lemma 93, t0.ls.locks ⊇ λ∩ t0.cmd .locks.
Apply Lemma 33 to reduction (G, E [t]) = (G, E [nil | t0]) −→eval (G′, P ′) to find P ′ = E [t′] || P ′0 and
(G, t0) −→eval (G′, t′ || P ′0).

A low write, acquiring a low lock, or releasing a low lock would contradict t’s high type. Therefore
G ∼wb

Γ G′.
We show that P ′0 ∼sc

Γ 0. If the step was not by ec-Fork this is trivial. Otherwise c = fork c0 and
P ′0 = 〈L�, c0〉 || 0, and it remains to show that high; Γ `sc c0. This follows from inverting t’s typing
derivation.

Finally we show that E [t] = E [t0] ∼sc
Γ E [t′]. Again, acquiring or releasing a low lock, or putting a low write

in the write buffer, would contradict t0’s high type. Therefore t0.ls ∼sc
Γ t′.ls. From the type of t is follows

that high; Γ `sc t0, and preservation (Lemma 95) shows high; Γ `sc t′. Therefore E [t0] ∼sc
Γ E [t′] holds.

Lemma 104 (SC Commit step confinement). Suppose high; Γ `sc t and (G, t) −→commit (G′, P ′). Then
(G, t) ∼sc

Γ (G′, P ′).

Proof. Suppose a high value is committed; then the conclusion is immediate. Suppose instead a low value is
committed, this contradicts they typing of t.

Lemma 105 (SC Global confinement). Suppose high; Γ `sc t and (G, t) −→op (G′, P ′). Then (G, t || 0) ∼sc
Γ

(G′, P ′).

Proof. Suppose op = commit . Conclude via Lemma 104. Instead suppose op = eval and the step is
not by ec-Reap. Inverting the step relation shows t can be rewritten in form E [〈L, c〉] where c 6= skip
and we conclude via Lemma 103. Finally suppose the step is by ec-Reap and conclude by observing
P ′ = 0 ∼wb

Γ t || 0.

Definition 26 (SC-Quiet traces). Call trace T = (G1, P1), (G2, P2), . . . , (Gn, Pn) sc-quiet in context Γ, writ-
ten quietsc

Γ T , when for each pair of consecutive configurations, (Gi, Pi || ti || Ri) and (Gi+1, Pi || Qi+1 || Ri)
where (Gi, ti) −→op (Gi+1, Qi+1), one or more equivalences hold. First, (Gi, ti || 0) ∼sc

Γ (Gi+1, Qi+1).
Second, if Qi+1 = ti+1 || Q0

i+1 then ti+1 ∼sc
Γ ti and Q0

i+1 ∼sc
Γ 0.

Lemma 106. Suppose T :: (G, t || P) =⇒m∗ (G′, t′ || P ′) where quietsc
Γ T and FrontReapFree T . Then

t ∼sc
Γ t′ and P ∼sc

Γ P ′ and G ∼wb
Γ G′.

Proof. Proof by an easy induction on the length of T .

Lemma 107. Suppose active E and wellStruct t where synlocks t ⊆ t|Γ,high and high; Γ `sc t. Also suppose
that t|Γ,high and G|Γ,high partition Lock|Γ,high . Then T :: (G, E [t] || 0) =⇒sc∗ (G′, E [〈L′, skip〉] || P ′) where
quietsc

Γ T and FrontReapFree T , and where L′|Γ,high and G′|Γ,high partition Lock|Γ,high and where L′|Γ,high =
t|Γ,high \ (synlocks t)|Γ,high and P ′|Γ,high = ∅ and L′.wb = nil . Also hasEmptyWBs(E [〈L′, skip〉] || P ′).

36

Proof. Let 〈L, c〉 = t. Proof is by strong induction on size c+ size L.wb.
First suppose that L.wb = (X := i)++L0. Inverting the typing derivation shows Γ(X) = high. Using a

commit step and invoking the induction hypothesis yields a appropriate quietsc, FrontReapFree trace with
form,

(G, t) =⇒sc (G[X 7→ i], 〈L0, c〉) =⇒sc∗ (G[X 7→ i], 〈L′, skip〉).

Suppose instead that L.wb = nil and proceed by case analysis on the typing derivation.

sc-Load: Here c = x := Y and high v Γ(x). Construct a trace showing (G, E [t] || 0) =⇒tso (G, 〈L[x 7→ i], skip〉 || 0).
This trace is quietsc because Γ(x) = high typing ensures L ∼wb

Γ L[x 7→ i] and because high; Γ `sc skip.
Conclude using the induction hypothesis, which is necessary to ensure that wt = high implies an empty
output write buffer.

sc-Store, sc-Eval: Similar to sc-Load. In the sc-Store case we must also commit a high write to ensure
that the output state hasEmptyWBs.

sc-Sync: Here c = sync ` do c0 with high v Γ(`) = high and high; Γ `sc c. Recall L.wb = nil and

Suppose that ` ∈ L. Reduce E [〈L, c〉] to E [〈L, fence; (c0; fence)〉] and conclude by invoking the
induction hypothesis.

Suppose instead that ` /∈ L then reduce E [〈L, c〉] to E [〈L ∪ {`},holding ` do c0〉] and use the induction
hypothesis to build a quietsc and FrontReapFree derivation of

(G, E [t]) =⇒sc (G \ {`}, E [〈L ∪ {`},holding ` do c0〉]) =⇒sc∗ (G′, E [〈L′, skip〉] || P ′).

By the induction hypothesis we have that L′|Γ,high = (L ∪ {`})|Γ,high\(synlocks holding ` do c0)|Γ,high .
From wellStruct t it follows that synlocks c0|Γ,high = ∅ and so L′|Γ,high = L|Γ,high as required.

sc-Hold: Here c = holding ` do c0 with high v Γ(`) = high. As ` ∈ synlocks c ⊆ L|Γ,high , we can define
E0 = (λ ∪ {`}, C[holding ` do [·]]) where (λ, C) = E and active E ′. Inverting the typing relation shows
wt = Γ(`) = high and high; high; Γ `wb 〈L, c0〉. By the induction hypothesis we have a quietsc and
FrontReapFree trace showing (G, E0[〈L, c0〉]) =⇒sc∗ (G′, E0[〈L′, skip〉]) where L′.wb = nil . Because
wellStruct t, it is not the case that ` /∈ synlocks c0, so ` ∈ L′. Finish by extending this trace using
ec-HoldRelease.

sc-Fence, sc-Fork: Similar to, but simpler than sc-Sync. Note that in the sc-Fork case the spawned
thread has an empty write buffer and holds no locks.

sc-Seq, sc-If, sc-While: Immediate by the induction hypothesis.

Lemma 108. Suppose active E and wellStruct t and high; Γ `sc t. Also suppose t|Γ,high = ∅ and G|Γ,high =
Lock|Γ,high . Then T :: (G, E [t] || 0) =⇒sc∗ (G′, E [〈L′, skip〉] || P ′) where quiet sc

Γ T and FrontReapFree T ,
and where L′|Γ,high = P ′|Γ,high = ∅ and G′|Γ,high = Lock|Γ,high . Also hasEmptyWBs(E [〈L′, skip〉] || P ′).

Proof. Immediate using Lemma 107.

Lemma 109 (SC commit step security). Suppose the following hold.

(G1, t1) −→commit (G′1, t
′
1 || 0) G1 ∼sc

Γ G2 t1 ∼sc
Γ t2

Then (G2, t2) =⇒sc∗ (G′2, t
′
2) where (G′1, t

′
1) ∼sc

Γ (G′2, t
′
2) and both t′2.locks = t2.locks and G′2.locks =

G2.locks.

Proof. Suppose that the −→commit operation commits write X := i. Consider the case where Γ(X) = high.
We can conclude immediately, taking t′2 = t2 and G′2 = G2.

Suppose instead that Γ(X) = low . By the definition of ∼sc we have that L2.wb = W21++(X := i)++W22

where for each (Y := j) ∈W21, it is the case Γ(Y) = high. (Although dynamic sc execution traces will never
have more than one write buffer entry, we do not require a premise of this form.) Let n denote the number
of writes in W21 and define t′2 and G′2 by taking n+ 1 commit steps.

37

Lemma 110 (SC Eval step security). Suppose the following hold.

(G1, t1) −→eval (G′1, P
′
1) pc; Γ `sc t1 wellStruct t1 t1.wb = nil

G1 ∼sc
Γ G2 t1 ∼sc

Γ t2 t2|Γ,high = ∅ G2|Γ,high = Lock|Γ,high

Then there exist G′2 and P ′2 such that (G′1, P
′
1) ∼wb

Γ (G′2, P
′
2) and (G, t2) =⇒sc∗ (G′2, P

′
2). Furthermore

P ′2|Γ,high = ∅ and G′2|Γ,high = Lock|Γ,high .

Proof. We strengthen the induction hypothesis as follows. Whenever P ′1 = t′1 || P ′10 there exist T , t′2 and P ′20

where T :: (G2, t2) =⇒tso∗ (G′2, P
′
2) and FrontReapFree T and P ′2 = t′2 || P ′20 and where both t′1 ∼wb

Γ t′2 and
P ′10 ∼wb

Γ P ′20. Proceed with strong induction on quantity (size (t1.cmd) + size (t2.cmd)). Invert t1 ∼wb
Γ t1

using Lemma 85 to get three cases. Subcases of (i) will occasionally be completed by “falling through” to
(ii).

(i) t1 = 〈L1, c〉 and t2 = 〈L2, c〉 where L1 ∼wb
Γ L2. Continue by inverting the −→commit derivation.

ec-Store: Here c = X := y. If Γ(y) = low , the definition of ∼wb
Γ shows L1(y) = L2(y) and we

conclude using Lemma 72. Otherwise Γ(y) = high, inverting typing rule wb-Store gives Γ(X) =
high, and the result follows from Lemma 73.

ec-Load: Here c = x := Y . If Γ(x) = high we conclude as updating L1 and L2 is not observable. If
instead Γ(x) = low then typing ensures Γ(Y) = low and equivalences L1 ∼wb

Γ L2 and G1 ∼wb
Γ G2,

ensures we’re writing identical values to x.

ec-EvalExp: Follows from Lemmas 70 and 71.

ec-SyncAcquire: Here c = sync ` do c0 and ` ∈ G1. First suppose that Γ(`) = high. Let
E = (L1|Γ,low , [·]) and note that t1 = E [〈L1 \ L1|Γ,low , c〉]. Inverting typing rule sc-Sync shows
that high; Γ `sc c0; using sc-Sync, and noting that L1 \ L1|Γ,low has both an empty write buffer
and no low locks, lets us find high; Γ `sc 〈L1 \ L1|Γ,low , c〉. Continue by falling through to case
(ii).

Now suppose Γ(`) = low . Here we will use that, from inversion, G′1 = G1 \{`} and L′1 = L1∪{`}.
By the definition of ∼sc and fact L1.wb = nil , we see that each write (X := i) in L2.wb has
Γ(X) = high. We can construct a derivation showing (G2, t2) =⇒sc∗ (G′20, 〈L′20, c〉) where
(G2, t2) ∼sc

Γ (G′20, 〈L′20, c〉), using finitely many −→commit steps, each committing high variables .
(Again, the premises of this lemma are weak, in that we don’t assume t2’s write buffer contains
at most one elements.) Applying the definition of ∼sc gives ` ∈ G′20 and L′20.wb = nil . Taking an
ec-SyncAcquire step gives derivation (G2, t2) =⇒sc∗ (G′20 \ {`}, 〈L′20 ∪ {`}, c0〉). We take this
result state to be (G′2, P

′
2) and observe that P ′2|Γ,high = (L′20 ∪ {`})|Γ,high = (L2 ∪ {`})|Γ,high = ∅.

It suffices to show G′20\{`} ∼wb
Γ G′1\{`}, which follows from Lemmas 65 and 68, and L′20∪{`} ∼wb

Γ

L′1 ∪ {`}, which follows from Lemmas 65 and 69 .

ec-Fence, ec-Fork, ec-HoldRelease: Similar to the ec-SyncAcquire case.

ec-SyncReenter: Here c = sync ` do c0. If Γ(`) = high then using an argument to similar to
the ec-SynAcquire case fall through to (ii). If Γ(`) = low then by ∼wb t1 and t2 transition in
lockstep and the case is trivial.

ec-HoldStep: Here c = holding ` do c0.

Suppose that Γ(`) = high. As in case ec-SyncAcquire we fall through to case (ii).

Let t10 = 〈L1, c0〉 and t20 = 〈L2, c0〉 as well as E = ({`},holding ` do [·]). Inverting the
evaluation relation gives ` ∈ L1 and P ′1 = E [t′10] || P ′10 and (G1, t10) −→eval (G′1, t

′
10). Applying

the induction hypothesis to this eval step, using Lemma 92 to establish pc; Γ `sc t10. This yields,
among other properties,

T :: (G2, t20) =⇒sc∗ (G′2, t
′
20)

where FrontReapFree T . Take P ′2 to be E [t′20] || P ′20 and finish by applying Lemma 100. .

ec-SeqStruct: Similar to ec-HoldStep.

ec-SeqSkip: Immediate.

38

ec-IfTrue: Here c = if b do ct else cf where L1[b] ⇓ true and both P ′1 = 〈L1, ct〉 and G′1 = G1.

Suppose it’s not the case that Γ ` b : low . Then inverting the typing relation shows both
high; Γ `sc ct and high; Γ `sc cf . Without loss of generality assume L2[b] ⇓ false and let (G′2, P

′
2) =

(G′2, 〈L2, cf 〉). It suffices to show that 〈L1, ct〉 ∼sc
Γ 〈L2, cf 〉. By Lemma 101 it suffices to show

high; Γ `wb L1.wb, which follows from hypothesis L1.wb = nil .

Suppose instead that that Γ ` b : low . Lemma 84 shows L2[b] ⇓ true so (G2, t2) =⇒sc∗ (G2, 〈L2, ct〉) ∼wb
Γ

(G1, 〈L1, ct〉) = (G′1, P
′
1). Observe that this trace may begin with finitely many high commits.

ec-IfFalse, ec-WhileTrue, ec-WhileFalse: Similar to, or simpler than, ec-IfTrue.

ec-Reap Trivial. .

(ii) t1 = E [〈L1, c1〉] where c1 6= skip and high; Γ `sc 〈L1, c1〉 for some wt1. By transitivity (Lemma 97) it
suffices to show (G′1, P

′
1) ∼sc

Γ (G1, t1). Conclude via Lemma 103.

(iii) t1 = E [〈L1, skip〉] and t2 = E [〈L2, c2〉]. We know the following for some wt0.

c2 6= skip L1 ∼wb
Γ L2 active E high; Γ `sc 〈L1, c1〉 high; Γ `sc 〈L2, c2〉

By Lemma 108, we have T :: (G, E [〈L2, c2〉] || 0) =⇒sc∗ (G′2, E [〈L′2, skip〉] || P ′2) where quietΓ T ,
FrontReapFree T , and L′2|Γ,high = P ′2|Γ,high = ∅. Furthermore hasEmptyWBs(E [〈L′2, skip〉] || P ′2) so
hasEmptyWBs(P ′2). By Lemmas 65, 97 and 106 we find:

E [〈L′2, skip〉] ∼sc
Γ E [〈L2, c2〉] ∼sc

Γ t1

G′2 ∼wb
Γ G2 ∼wb

Γ G1

P ′2 ∼sc
Γ 0

Because c2 6= skip it is the case that size (E [〈L′2, skip〉].cmd) < size (E [〈L2, c2〉].cmd), so we can use the
induction hypothesis to findG′′2 and P ′′2 such that (G′1, P

′
1) ∼wb

Γ (G′′2 , P
′′
2) and (G′2, E [〈L′2, skip〉]) =⇒tso∗ (G′′2 , P

′′
2).

By Lemma 102, (G′1, P
′
1) ∼wb

Γ (G′′2 , P
′′
2 || P ′2). Thus it suffices to show (P ′′2 || P ′2)|Γ,high = ∅, which is

immediate, and (G2, t2) =⇒tso∗ (G′′2 , P
′′
2 || P ′2), which is a consequence of Lemma 4.

Theorem 4 (SC Security). Suppose (G1, P1) ∼sc
Γ (G2, P2) and pc; Γ `sc P1 and wellStruct P1. Suppose

also that (G1, P1) =⇒sc (G′1, P
′
1). Furthermore P2|Γ,high = ∅ and G2|Γ,high = Lock|Γ,high . Then there

exists G′2, P
′
2 such that (G′1, P

′
1) ∼sc

Γ (G′2, P
′
2) and (G2, P2) =⇒sc∗ (G′2, P

′
2), and both P ′2|Γ,high = ∅ and

G′2|Γ,high = Lock|Γ,high .

Proof. Inverting the tso-evaluation relation and appealing to Lemma 98 gives

P1 = P11 || t1 || P12

P2 = P21 || P ∗2 || P22

P ′1 = P11 || Q′1 || P12

where P ∗2 contains at most one thread (i.e., P ∗2 ∈ {0, t2 || 0} for some t2) and the following hold:

(G, t1) −→op (G′1, Q
′
1)

P11 ∼sc
Γ P21

t || 0 ∼sc
Γ P ∗2

P12 ∼sc
Γ P22

It suffices to show that there existsG′2 andQ′2 such that (G′1, Q
′
1) ∼sc

Γ (G′2, Q
′
2) and (G2, P

∗
2) =⇒sc∗ (G′2, Q

′
2).

(Observe that while we could rename threads in Q′2, we do not need to; thread names are only really relevant
for the data-race freedom argument.) Inspecting the definition of ∼sc

Γ shows there are only three ways in
which to find t || 0 ∼sc

Γ P ∗2 . Proceed by case analysis.
First suppose that that the equivalence arises from Definition 25, clause 2b. Here high; Γ `sc t1 and via

Lemma 105, (G1, t || 0) ∼sc
Γ (G′1, Q

′
1). Conclude using Lemma 97, which states ∼sc is an equivalence relation,

and taking G2 and P ∗2 as existential witnesses G′2 and Q′2.

39

Second suppose that that the equivalence arises from definition 25, clause 2c. Here P ∗2 = t2 || 0 where
high; Γ `sc t2 and t1 ∼wb

Γ 0. From t1 ∼wb
Γ 0 it follows that high; Γ `sc t1. Again taking G2 and P ∗2 to be

witnesses G′2 and Q′2 conclude with the following equational reasoning:

(G′, Q′1) ∼sc
Γ (G1, t1 || 0) by Lemma 105
∼sc

Γ (G1, 0)
∼sc

Γ (G2, 0) by assumption
∼sc

Γ (G2, t2 || 0)
= (G2, P

∗
2)

Third suppose that that the equivalence arises from Definition 25, clause 2d. Here P ∗2 = t2 || 0 for some
t2 with t1 ∼sc

Γ t2. Finitely many inversions of the typing relation show pc; Γ `sc t1 for some pc. Similarly
wellStruct t1 and t2|Γ,high = ∅. Suppose the step is a commit (that is, op = commit); then conclude via
Lemmas 109. If the step is an eval inverting the =⇒sc relation shows t1.wb = nil , and we conclude using
Lemma 110.

Corollary 8. Suppose (G1, P1) ∼sc
Γ (G2, P2) and pc; Γ `sc P1 and wellStruct P1. Suppose also that

(G1, P1) =⇒sc∗ (G′1, P
′
1). Furthermore P2|Γ,high = ∅ and G2|Γ,high = Lock|Γ,high . Then there exist G′2

and P ′2 such that (G′1, P
′
1) ∼sc

Γ (G′2, P
′
2) and (G2, P2) =⇒sc∗ (G′2, P

′
2) and P ′2|Γ,high = ∅.

Proof. By finitely many application of Theorem 4 and Lemmas 5 and 96.

Corollary 9. Suppose G1 ∼sc
Γ G2 and pc; Γ `sc c and src c. Also assume G2|Γ,high = Lock|Γ,high . If

(G1, 〈L�, c〉) =⇒sc∗ (G′1, 0) then (G2, 〈L�, c〉) =⇒sc∗ (G′2, 0) for some G′2 where G′1 ∼wb
Γ G′2.

Proof. The first corollary to Theorem 4 shows (G2, t) evaluates to a configuration related to (G′1, 0), and
preservation (Lemma 96) and Lemmas 5, 9, and 108, show this evaluates to pool 0.

Corollary 10 (SC Simple possibilistic noninterference). Suppose pc; Γ `sc c and src c. Then c is possibilis-
tically noninterfering under sc and Γ.

7 Relating the type systems

Lemma 111. If pc; Γ `tso c and src c then there exists wt such that pc; low ; Γ `wb c⇒ wt.

Proof. By induction on the derivation of pc; Γ `tso c.

tso-Load, tso-Store, tso-Eval Follows immediately since wb-Load, wb-Store, and wb-Eval respec-
tively have the same premises.

tso-Sync Then pc = low and c has the form sync ` do c′ and Γ(`); Γ `tso c′. Since pc = low we have
pc v Γ(`) and pc v low . By induction there exists wt ′ such that Γ(`); low ; Γ `wb c′ ⇒ wt ′ and by
Lemma 57 (iii) there exists wt ′′ such that Γ(`); high; Γ `wb c′ ⇒ wt ′′. Then the result follows by
wb-Sync.

tso-Hold Then c has the form holding ` do c′ contradicting the premise src c.

tso-Fence Then pc = low so pc v low and the result follows by wb-Fence.

tso-Fork Then pc = low and c has the form fork c′ and pc′; Γ `tso c′. Since pc = low we have pc v low .
By induction there exists wt ′ such that pc′; low ; Γ `wb c′ ⇒ wt ′ and by Lemma 57 (iii) there exists wt ′′

such that low ; high; Γ `wb c′ ⇒ wt ′′. Then the result follows by wb-Fork.

tso-Seq Then c has the form c1; c2 and pc; Γ `tso c1 and pc; Γ `tso c2. By induction there exist wt1 and
wt2 such that pc; low ; Γ `wb c1 ⇒ wt1 and pc; low ; Γ `wb c2 ⇒ wt2. By Lemma 57 (iii) there exists
wt ′2 such that pc; wt1; Γ `wb c2 ⇒ wt2, and the result follows by wb-Seq.

tso-If Then c has the form if b do c1 else c2 and Γ ` b : τ and pc t τ ; Γ `tso c1 and pc t τ ; Γ `tso c2. By
induction there exist wt1 and wt2 such that pc t τ ; low ; Γ `wb c1 ⇒ wt1 and pc t τ ; low ; Γ `wb c2 ⇒
wt2, and the result follows by wb-If.

40

tso-While Then pc = low and c has the form while b do c′ and Γ ` b : low and pc′; Γ `tso c′. By induction
there exists wt ′ such that pc′; low ; Γ `wb c′ ⇒ wt ′, and the result follows by wb-While.

tso-Skip Then c has the form skip and the result follows by wb-Skip.

Lemma 112. If pc; wt ; Γ `wb c⇒ ut then pc; Γ `sc c.

Proof. by induction on the structure of the `wb judgment.

wb-Load, wb-Store, wb-Eval wb-Fence, wb-Skip: Immediate as the corresponding sc-* rules have
the same or fewer premises.

wb-Sync: Here c = sync ` do c0 and pc v Γ(`) by the induction hypothesis Γ(`); Γ `sc c0. The result
follows from sc-Sync.

wb-Hold: Similar to wb-Sync.

wb-Fork: Here c = fork c0 and induction gives pc; Γ `sc c0. The result follows from sc-Fork.

wb-Seq: Here c = c1; c2 and the induction hypothesis gives pc; Γ `sc c1 and pc; Γ `sc c2. The result follows
from sc-Seq.

wb-If: Here c = if b do c1 else c2 where Γ ` b : τ and the induction hypothesis gives pc t τ ; Γ `sc c1 and
pc t τ ; Γ `sc c2. Conclude with rule sc-If.

wb-While: Here c = while b do c0. Inverting the typing relation shows pc = low and Γ ` b : low .
Furthermore, for some pc0 and ut0, it is the case that pc0; ut ; Γ `wb c0 ⇒ ut0. By induction pc0; Γ `sc

c0. Conclude with rule sc-While.

References

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imperative language. In
Proc. 25th ACM Symp. on Principles of Programming Languages (POPL), pages 355–364, San Diego,
California, January 1998.

Jefrey A. Vaughan and Todd Millstein. Secure information flow for concurrent programs under total store
order. In CSF ’12, 2012.

41

	Overview
	Language definition
	Language syntax and main semantic sets
	Notation
	Single Step Operations
	Possibilistic evaluation

	A simple type system for possibilistic flows
	Types and basic properties
	Properties of syntax and evaluation
	Evaluation contexts
	Typing properties
	Trace properties
	Equivalences
	Possibilistic Noninterference
	Security

	Data-Race Freedom
	SC Executions are a Subset of TSO Executions
	Definition of Data Race Freedom
	TSO Executions are a Subset of SC Executions for DRF Programs
	Definitions
	Simple Lemmas
	Key Lemmas

	Typing for Write Buffers
	Expressive typing for SC programs
	Typing
	Equivalences
	Security proof

	Relating the type systems

