
Secure Information Flow for Concurrent
Programs under Total Store Order

Jeffrey A. Vaughan
University of California, Los Angeles

Todd Millstein
University of California, Los Angeles

Abstract—Modern multicore hardware and multithreaded pro-
gramming languages expose weak memory models to program-
mers, which relax the intuitive sequential consistency (SC)
memory model in order to support a variety of hardware and
compiler optimizations. However, to our knowledge all prior
work on secure information flow in a concurrent setting has
assumed SC semantics. This paper investigates the impact of
the Total Store Order (TSO) memory model, which is used by
Intel x86 and Sun SPARC processors, on secure information flow,
focusing on the natural security condition known as possibilistic
noninterference. We show that possibilistic noninterference under
SC and TSO are incomparable notions; neither property implies
the other one. We define a simple type system for possibilistic
noninterference under SC and demonstrate that it is unsound
under TSO. We then provide two variants of this type system that
are sound under TSO: one that requires only a small change to
the original type system but is overly restrictive, and another that
incorporates a form of flow sensitivity to safely retain additional
expressiveness. Finally, we show that the original type system
is in fact sound under TSO for programs that are free of data
races.

Index Terms—information flow, language-based security, weak
memory models

I. INTRODUCTION

A memory model [1, 2] forms the foundation of shared-
memory multithreaded programming by defining the set of
possible orders in which memory operations can execute
and become visible to other threads. To our knowledge, all
prior work on information flow for multithreaded programs
has assumed sequential consistency (SC) [9], which requires
all memory operations to appear to have executed in a
global sequential order consistent with the per-thread program
order. SC is the most natural memory model for program-
mers, since it accords with the intuition of a multithreaded
program’s behavior as the set of all thread interleavings.
However, mainstream hardware architectures (e.g., x86 [13]
and POWER [17]) and programming languages (e.g., Java [10]
and C++ [4]) instead expose a weak memory model to
programmers, which can exhibit subtle non-SC behaviors
but gain the ability to perform a variety of compiler and
hardware optimizations. Therefore, prior results on concurrent
information flow are not immediately applicable to today’s
hardware and software platforms.

This paper explores the implications for secure information
flow of the Total Store Order (TSO) memory model. TSO is a
natural starting point for understanding how weak memory

This research was supported by the National Science Foundation under
award CNS-1064844.

X := 0;
Y := 0;
fork (X := 1;

y := Y);
Y := 1;
x := X

Fig. 1. TSO relaxes write-before-read program order dependencies, which
allows x and y to both end with value 0.

models interact with secure information flow for several
reasons. First, TSO is used by common hardware platforms
today, including Intel x86 and Sun SPARC processors, and
it has been recently explored as a memory model for con-
current programming languages as well [11, 23]. Second,
TSO represents a relatively small weakening of SC and has
a natural operational interpretation [13]. Third, understanding
the impact of TSO is a first step to understanding the impact of
the other memory models used by hardware today, for example
those of ARM and IBM POWER processors [17], which are
strictly weaker than TSO.

In the TSO memory model, a store in thread t can become
visible to other threads after a later non-dependent load on
thread t. For instance, in the canonical example1 shown in
Figure 1, it is possible for both x and y to be assigned the
value 0, while at least one of these variables is assigned the
value 1 in any SC execution. Under TSO, a thread can also
read its own stores before they become visible to other threads.
For instance, in the example shown in Figure 2, it is possible
to end in a state where X has the value 1, y has the value 0,
and x has the value 1. If the x := X assignment could not read
X early, then in any final state where X and y map to 1 and 0
variable x would have value 0.

Operationally, TSO’s relaxation of SC can be accounted for
by the presence of FIFO write buffers in hardware, which
allow a processor to execute later instructions before pending
writes have committed to memory [13]. In our first example
above, the writes of 1 to X and Y are buffered, the subsequent
loads read the value 0 from main memory, and finally the
two buffered writes commit. Our second example is accounted
for by TSO’s support for store-to-load forwarding, whereby a
load searches the processor’s write buffer for a value before

1Examples use a simple imperative language augmented with the ability
to fork new threads. Uppercase variables are shared across threads while
lowercase variables are thread-local temporaries. We formalize this language
in Section II.

X := 0;
Y := 0;
fork (X := 1;

x := X;
y := Y);

Y := 2;
X := 2

Fig. 2. Under TSO a thread can read its own writes early, which allows
this program to end in a state where X has the value 1, y has the value 0, and
x has the value 1.

accessing main memory. In the example, the read of X in the
forked thread occurs before the prior write to X commits to
memory but still sees the value of that write.

In this paper we explore the impact of TSO on possibilistic
noninterference [19], which is an intuitive generalization of the
traditional notion of noninterference to a concurrent setting.
We leave exploration of the impact of weak memory models
on stronger notions of security, for example those that take
into account the probability distribution of outputs due to the
thread scheduler [22], to future work.

This paper provides several contributions.

• We define a simple formal language to investigate secure
information flow under TSO (Section II). The language
includes a standard imperative core along with constructs
for dynamic thread creation, lock-based synchronization,
and memory barriers.

• We show that relaxing SC to TSO has a nontrivial impact
on secure information flow (Section III). There exist pro-
grams that satisfy possibilistic noninterference under SC
but not under TSO. Perhaps more surprisingly, there also
exist programs that satisfy possibilistic noninterference
under TSO but not under SC.

• We adapt an existing type system for possibilistic non-
interference under SC [19] to our formal language, aug-
menting it to support both dynamic thread creation and
lock-based synchronization (Section IV). The resulting
type system, `sc, is of independent interest.

• While sound under SC semantics, it turns out that
`sc does not ensure possibilistic noninterference under
TSO. We describe a simple modification to `sc that is
sound for TSO (Section V). However, the resulting type
system, `tso disallows concurrency-related constructs
from appearing in high-security contexts.

• We show how to resolve the expressiveness limitation
of `tso by refining it to track a security level for each
thread’s write buffer (Section VI). The resulting `wb type
system includes a simple form of flow sensitivity for this
purpose.

• Finally, we show that the `sc type system is in fact
sound under TSO for programs that are data-race-free
(Section VII). Since it is considered good programming
practice to write race-free programs, this result provides
an alternate approach to guaranteeing secure information
flow on top of weak memory models like TSO.

Figure 3 summarizes the results described above. It also
shows that our three type systems have a natural ordering:
typability of a command c in `tso implies typability in `wb,
which in turn implies typability in `sc. All three type systems
therefore ensure possibilistic noninterference under SC, and
`tso and `wb additionally ensure possibilistic noninterference
under TSO. Full formal development and proofs of the
theorems described in the paper can be found in a companion
technical report [21].

II. A FORMAL MODEL OF TSO PROGRAMS

A. Syntax

Figure 4 presents the syntax of the formal language that
we use throughout the paper. A program is a command c,
which consists of the usual imperative constructs including
assignments, sequencing, conditionals, and while loops. It is
convenient to distinguish between thread-local temporaries x
and possibly-shared variables X . The three kinds of assign-
ments respectively load a value from shared memory, perform
local computation, and store a value into shared memory. Ex-
pression metavariables a and b respectively include the usual
side-effect-free arithmetic and boolean operations, denoted ⊕
and >.

We augment this imperative language with constructs for
shared-memory concurrency. The command (fork c) forks
a new thread that asynchronously executes command c, and
(sync ` do c) provides a simple form of lock-based
synchronization among threads. The fence command is a
memory barrier, which can be used to enforce stronger
semantics in the context of a weak memory model. Specifically
for TSO, this command stalls execution of the current thread
until all pending writes have been committed from the thread’s
write buffer. For example, inserting fences after the commands
X := 1 and Y := 1 in Figure 1 ensures that x and y cannot
both end with value 0. The (holding ` do c) syntax is used
only to properly implement the semantics of reentrant locks
and may not appear in source programs.

B. Operational Semantics

Our operational semantics is defined as a binary relation
on execution states, which is a pair of a global state G and
a thread pool P (Figure 5). A global state G is a pair of a
global store and the set of available locks. A thread pool P
is a sequence of threads, with 0 denoting the empty thread
pool. Each thread contains a local state L and a command
to be executed. A local state includes a local store, the locks
currently held by this thread, and the thread’s write buffer.
A write buffer is a sequence of pending writes to the global
store, with nil denoting the empty write buffer.

Notation Suppose local state L = (M,λ,W). We write
L.mem , L.locks , and L.wb for M , λ, and W respectively. If
x ∈ LocalVar we write L[x 7→ i] for (M [x 7→ i], λ,W)
and L(x) for M(x). We use L ∪ λ′ and L \ λ′ and ` ∈ L
for (M,λ∪λ′,W) and (M,λ \λ′,W) and ` ∈ λ. We use the
analogous notations to manipulate the global store and lockset
within a global state G. We additionally use L++(X := i) for

pc; Γ `sc c
Thm. 3 +3 c is possibilistically

noninterfering under SC and Γ
Cor. 16 +3

c data race free implies
c is possibilistically
noninterfering under TSO and Γ

pc; low ; Γ `wb c⇒ wt ′

Thm. 8

KS

Thm. 6 +3 c is possibilistically
noninterfering under TSO and Γ

pc; Γ `tso c

Thm. 7

KS

Fig. 3. A summary of the paper’s key results. A program is represented as a command c, and Γ is a security policy mapping variables to security labels.
The typing judgments are described in detail later in the paper.

c ::= x := X | x := a | X := x
| skip | c1; c2
| if b do c1 else c2 | while b do c
| fork c | sync ` do c
| fence | holding ` do c

a ::= x | i | a⊕ a
b ::= true | false | isZero a | b> b

Fig. 4. The syntax of our formal language. Metavariable x ranges over a
set LocalVar of thread-local variables, X over a set HeapVar of global
variables, ` over a set Lock of locks, and i over integer literals.

Global state G ::= S × λ
Global store S ∈ HeapVar→ Z
Lockset λ ∈ P(Lock)
Thread pool P,Q ::= 0 | t || P
Thread t ::= 〈L, c〉
Local state L ::= M × λ×W
Local store M ∈ LocalVar→ Z
Write buffer W ::= nil | (X := i)::W

Fig. 5. Domains for the operational semantics.

(M,λ,W++(X := i)::nil), where ++ denotes list append, and
(X := i)::L for (M,λ, (X := i)::W). Finally, when there is
no possibility of confusion we use a single thread t to denote
the corresponding singleton thread pool, t || 0.

Figure 6 provides the rules for taking one step of execution
on a thread, producing a new global state and zero or more
residual threads. We distinguish between two kinds of step
operations and annotate each step accordingly. A commit
operation commits the pending write at the head of the thread’s
write buffer to the global store. An eval operation performs
one computation step on the thread’s current command.

Most of the eval steps are standard. We highlight the most
interesting ones. Rule EC-STORE simply adds the write to
the end of the thread’s write buffer. Rule EC-LOAD uses the

auxiliary judgment shown in Figure 7 to lookup the value of
a shared variable X . That judgment implements the semantics
of store-to-load forwarding: if there is a pending write to X
in the thread’s write buffer, then the value of the most recent
one is returned; otherwise, the value of X is fetched from the
global store.

Rule EC-FENCE acts as a no-op but its premise has the
effect of forcing computation on this thread to stall until all
pending writes have committed. Forking a thread (EC-FORK)
as well as acquiring (EC-SYNCACQUIRE) and releasing (EC-
HOLDRELEASE) a lock also require an empty write buffer,
which accords with the typical semantics of these constructs.
As shown in rule EC-SYNCREENTER, our locks are reentrant;
the fence semantics of lock acquire and release are still
enforced in that case. Symbol L� in EC-FORK represents the
“empty” local state ((λx.0), ∅,nil). Finally, the thread may be
terminated by rule EC-REAP once its command is skip, it has
committed all pending writes, and it has released all locks.

Figure 8 shows the rules for stepping an execution state,
under both the TSO and SC memory models. Under TSO, a
thread is chosen nondeterministically for execution, and that
thread can perform either a commit or eval operation (ranged
over by metavariable op). The SC memory model is a special
case of TSO whereby a commit operation is always scheduled
for execution if one is enabled. This semantics has the effect
of forcing a write to be committed to main memory as soon
as it is added to the write buffer.

C. Possibilistic Noninterference

Now we can define the standard notion of possibilistic
noninterference [19] for programs in our formalism. Let a
security level be either low or high and a security context
Γ be a function from shared variables, local variables, and
locks to security levels. We define security levels as a lattice
with partial order v, least upper bound t, and greatest lower
bound u. These operators respect the ordering low v high .
It is straightforward to allow an arbitrary lattice of security
levels rather than just two [6].

(G, t) −→commit (G′, P)

(G, 〈(X := i)::L, c〉) −→commit (G[X 7→ i], 〈L, c〉)

(G, t) −→eval (G′, P)

(G, 〈L,X := x〉) −→eval (G, 〈L++(X := L(x)), skip〉)
EC-STORE

(G.mem;L.wb)[X] ⇓ i
(G, 〈L, x := X〉) −→eval (G, 〈L[x 7→ i], skip〉)

EC-LOAD
L[a] ⇓ i

(G, 〈L, x := a〉) −→eval (G, 〈L[x 7→ i], skip〉)
EC-EVALEXP

(G, 〈L, c1〉) −→eval (G′, 〈L′, c′1〉 || P)

(G, 〈L, c1; c2〉) −→eval (G′, 〈L′, c′1; c2〉 || P)
EC-SEQSTRUCT

(G, 〈L, skip; c〉) −→eval (G, 〈L, c〉)
EC-SEQSKIP

L[b] ⇓ true

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c1〉)
EC-IFTRUE

L[b] ⇓ false

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c2〉)
EC-IFFALSE

L[b] ⇓ true

(G, 〈L,while b do c〉) −→eval (G, 〈L, c; while b do c〉)
EC-WHILETRUE

L[b] ⇓ false

(G, 〈L,while b do c〉) −→eval (G, 〈L, skip〉)
EC-WHILEFALSE

L.wb = nil

(G, 〈L, fork c〉) −→eval (G, 〈L, skip〉 || 〈L�, c〉)
EC-FORK

L.wb = nil

(G, 〈L, fence〉) −→eval (G, 〈L, skip〉)
EC-FENCE

` ∈ G L.wb = nil

(G, 〈L, sync ` do c〉) −→eval (G \ {`}, 〈L ∪ {`},holding ` do c〉)
EC-SYNCACQUIRE

` ∈ L
(G, 〈L, sync ` do c〉) −→eval (G, 〈L, fence; c; fence〉)

EC-SYNCREENTER

` ∈ L (G, 〈L, c〉) −→eval (G′, 〈L′, c′〉 || P)

(G, 〈L,holding ` do c〉) −→eval (G′, 〈L′,holding ` do c′〉 || P)
EC-HOLDSTEP

` ∈ L L.wb = nil

(G, 〈L,holding ` do skip〉) −→eval (G ∪ {`}, 〈L \ {`}, skip〉)
EC-HOLDRELEASE

L.wb = nil L.locks = ∅
(G, 〈L, skip〉) −→eval (G, 0)

EC-REAP

Fig. 6. Rules for taking one step of execution on a thread. We omit the rules for standard judgments L[a] ⇓ i and L[b] ⇓ v, which evaluate arithmetic and
boolean expressions.

(S;W)[X] ⇓ i

(S;W++(X := i))[X] ⇓ i
X 6= Y (S;W)[X] ⇓ i
(S;W++(Y := i0))[X] ⇓ i

(S;nil)[X] ⇓ S(X)

Fig. 7. Rules to lookup the value of a shared variable.

(G,P) =⇒tso (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q)

(G,P) =⇒tso (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

(G,P) =⇒sc (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn
(G, ti) −→commit (G′, Q)

(G,P) =⇒sc (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→eval (G′, Q)
there is no tj such that (G, tj) −→commit (Gj , Qj)

(G,P) =⇒sc (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

Fig. 8. Program evaluation under both TSO and SC memory models.

Definition 1 (Low equivalence). Given a security context Γ,
we say that global store S is low-equivalent to global store
S′, denoted S ∼Γ S′, if for all shared variables X , it is the
case that Γ(X) = low implies S(X) = S′(X).

Let =⇒mm∗ be the reflexive, transitive closure of the
=⇒mm relation, where mm is either tso or sc.

Definition 2 (Possibilistic noninterference). We say
that command c is possibilistically noninterfering (or
possibilistically secure) under memory model mm and
policy Γ if for all S1, S2 such that S1 ∼Γ S2, if
((S1,Lock), 〈L�, c〉) =⇒mm∗ (G′1, 0) then there exists
G′2 such that ((S2,Lock), 〈L�, c〉) =⇒mm∗ (G′2, 0) and
G′1.mem ∼Γ G

′
2.mem .

III. TSO AND POSSIBILISTIC NONINTERFERENCE

In this section we show that possibilistic security under SC
is incomparable to possibilistic security under TSO. That is,
there exists a command that is possibilistically secure under
SC but not under TSO, and there also exists a command that
is possibilistically secure under TSO but not under SC.

Figure 9 shows a program that is possibilistically secure
under SC but not under TSO. The portion of this program
before the conditional is identical to the program in Figure 1,
except that a shared variable Y′ is used to transfer the value
of y from the forked thread to the main thread. Suppose that

X := 0;
Y := 0;
Y′ := 1;
fork (X := 1;

y := Y; Y′ := y)
Y := 1;
x := X;
y′ := Y′;
if (isZero x ∧ isZero y′)

do (h := H; L := h);
else skip

Fig. 9. A program that is possibilistically secure under SC but not under
TSO.

X := 0;
Y := 0;
Y′ := 1;
fork (X := 1;

y := Y; Y′ := y)
Y := 1;
x := X;
y′ := Y′;
(if (isZero x ∧ isZero y′)

do
if isZero H do L := 1 else L := 0

else
if isZero H do L := 0 else L := 1);

Fig. 10. A program that is possibilistically secure under TSO but not under
SC.

Γ maps all shared variables to security level high except for
L, which is mapped to low .

Under SC, at least one of x and y′ will be nonzero. Therefore
the conditional guard will always fail, so L is never updated
by the program. Since L is the only low variable, it is easy to
see that the program is possibilistically secure.

On the other hand, as we’ve seen, under TSO it is possible
for both x and y′ to have the value 0. Therefore, on some
executions the conditional block will execute, copying the
value of H to L. Consider the following global stores:

S1 = {(X, 0), (Y, 0), (Y ′, 0), (L, 0), (H, 1)}

S2 = {(X, 0), (Y, 0), (Y ′, 0), (L, 0), (H, 0)}

Clearly S1 and S2 are low-equivalent under Γ. However, there
is an execution starting from S1 that ends with L = 1, while
all executions starting from S2 end with L = 0.

Figure 10 shows a program that is possibilistically secure
under TSO but not under SC.2 The portion before the con-
ditional is identical to the portion before the conditional in
Figure 9. Again suppose that Γ maps all shared variables to
security level high except for L, which is mapped to low .

Under SC, at least one of x and y′ will be nonzero. Therefore
the conditional guard will always fail, and the result is that L

2For clarity our examples sometimes directly reference a shared variable
in a loop or conditional guard, rather than first loading the variable into a
temporary.

always ends with value 0 if H is 0 and ends with value 1 if H is
nonzero. Hence the program is not possibilistically secure, and
the same stores S1 and S2 above serve as a counterexample.

On the other hand, under TSO it is possible for the
conditional guard to evaluate to true or false regardless of the
initial global store, depending on how threads are scheduled.
Therefore it is always possible for L to end with either the
value 0 or 1, so no information is leaked from H to L and the
program is possibilistically secure.

The example programs in Figures 9 and 10 use simple
mechanisms to leak high information and would be rejected
by standard information-flow type systems. The following
sections describe more subtle information flows due to con-
currency in general as well as TSO specifically.

IV. POSSIBILISTIC NONINTERFERENCE FOR SC

In this section we adapt an existing type system for
possibilistic noninterference of SC programs [19] to our formal
language. This involves extending that type system to handle
dynamic thread creation via fork as well as lock-based
synchronization. The type system is shown in Figure 11.

The rules for the sequential fragment of the language are
standard except for the extra restrictions on loops in rule SC-
WHILE. First, the loop guard cannot depend on high data [19].
This restriction prevents high data from affecting a program’s
termination, which can violate possibilistic noninterference as
illustrated in the following program, where Γ maps L to low
and H to high:

L := 1;
while (isZero H) do skip

More subtly, the type system also must prevent loops from
occurring in high contexts [19]. This is illustrated in the
program in Figure 12, where Γ maps X and L to low and H to
high . In this program, the final value of L records whether or
not H has the value 0. It is possible to allow more permissive
typing for high loops [18] by tracking additional information,
but such extensions are orthogonal to our goal of investigating
relaxed memory models.

Our language’s concurrency constructs have no analogue
in the language of Smith and Volpano [19], which supports
neither dynamic thread creation nor any form of synchroniza-
tion. The main novelty is the treatment of synchronization.
The security policy Γ provides a security level for each lock.
Similar to the treatment of conditionals and loops, if a high
lock is acquired then the body of the critical section must
type as high . Furthermore, the rules prevent a low lock from
being acquired in a high context. These restrictions on locks
rule out programs where synchronization allows high data
to influence whether or not a program terminates. Figure 13
shows a program which terminates when H is 1 but runs
forever when H is 0. This program does not satisfy possibilistic
noninterference assuming Γ maps H to high , and it properly
fails to typecheck in `sc in that case: Γ(`) must be low in
order to type the nested while loop, but Γ(`) must be high in
order to acquire the lock from a high context in the forked

thread. These rules for structured locks are less restrictive than
those proposed by Sabelfeld [15] for semaphores, a lower-level
concurrency construct that he requires be low -typed.

We have proven that well-typed programs are secure under
SC:

Theorem 3. If pc; Γ `sc c, then c is possibilistically nonin-
terfering under SC and Γ.

V. POSSIBILISTIC NONINTERFERENCE FOR TSO

Unfortunately, the `sc type system does not ensure possi-
bilistic noninterference under TSO. The key problem is that the
concurrency constructs all have the effect of flushing a thread’s
write buffer. Therefore, employing concurrency within a high
context can leak information to low variables by forcing low
writes to be committed.

Figure 14 illustrates a simple example of the problem. The
program is identical to the one in Figure 1 except that it copies
the values of x and y to shared variables X′ and Y′ and it
conditionally includes two fence instructions. The program
typechecks under `sc assuming all variables have security level
low except for H. However, the program is not possibilistically
secure under TSO. As we’ve seen, under TSO it is possible
for both X′ and Y′ to end with value 0. However, this is not
possible when H has the value 0, since in that case the program
executes sufficient fence instructions to ensure that the result
is sequentially consistent. As a result, if an execution does end
with both X′ and Y′ having the value 0, we have leaked the
fact that H is nonzero.

Figure 15 shows a type system that resolves this problem.
The rules for the sequential fragment are identical to those
in Figure 11. The rules for the concurrency constructs (fence,
sync, and fork) specialize those in Figure 11 by forbidding
such constructs from appearing in high contexts. This addi-
tional restriction makes the program in Figure 14 ill-typed.
This restriction also makes it unnecessary to track security
levels for locks. Indeed, we could soundly replace the sync
rule with the following revised version that ignores the lock’s
security level:

pc; Γ `tso c

low ; Γ `tso sync ` do c

We use the slightly more complex rule in order to maintain
uniformity with the paper’s other type systems; there is no
loss of expressiveness.

We have proven that well-typed programs in `tso are secure
under TSO:

Theorem 4. If pc; Γ `tso c then c is possibilistically nonin-
terfering under TSO and Γ.

Furthermore, Theorems 7 and 8 described in Section VI below
imply the following property relating `tso to `sc:

Corollary 5. If pc; Γ `tso c then pc; Γ `sc c.

Together with Theorem 3 this means that the `tso type system
also ensures possibilistic noninterference under SC.

Γ ` a : τ

Γ(x) v τ
Γ ` x : τ Γ ` i : τ

Γ ` a1 : τ Γ ` a2 : τ

Γ ` a1 ⊕ a2 : τ

Γ ` b : τ

Γ ` true : τ Γ ` false : τ

Γ ` a : τ

Γ ` isZero a : τ

Γ ` b1 : τ Γ ` b2 : τ

Γ ` b1 > b2 : τ

pc; Γ `sc c

pc t Γ(Y) v Γ(x)

pc; Γ `sc x := Y
SC-LOAD

pc t Γ(y) v Γ(X)

pc; Γ `sc X := y
SC-STORE

Γ ` a : τ pc t τ v Γ(x)

pc; Γ `sc x := a
SC-EVAL

pc; Γ `sc c1 pc; Γ `sc c2

pc; Γ `sc c1; c2
SC-SEQ

Γ ` b : τ pc t τ ; Γ `sc c1 pc t τ ; Γ `sc c2

pc; Γ `sc if b do c1 else c2
SC-IF

Γ ` b : low pc; Γ `sc c

low ; Γ `sc while b do c
SC-WHILE

pc; Γ `sc skip
SC-SKIP

pc v Γ(`) Γ(`); Γ `sc c

pc; Γ `sc sync ` do c
SC-SYNC

pc; Γ `sc fence
SC-FENCE

pc; Γ `sc c

pc; Γ `sc fork c
SC-FORK

Fig. 11. A type system for possibilistic noninterference of SC programs.

X := 0;
fork (

if (isZero H) do
while(isZero X) do skip

else skip;
L := 0; X := 1

);
if !(isZero H) do

while (isZero X) do skip;
else skip;
L := 1; X := 1

Fig. 12. Leaking information through high while loops.

sync ` do (
S := 0;
fork ((if (isZero H) do

sync ` do skip
else

skip);
S := 1);

while (isZero S) do skip
)

Fig. 13. A program which is not possibilistically secure (under TSO or SC)
due to unrestricted use of synchronization.

X := 0;
Y := 0;
fork (X := 1;

if (isZero H) do fence else skip;
y := Y; Y′ := y);

Y := 1;
if (isZero H) do fence else skip;
x := X; X′ := x

Fig. 14. An example illustrating why fences and other concurrency
constructs cannot occur in high contexts.

While our new type system is sound under TSO, it does
not allow locks to be acquired nor threads forked from
within a high context. In the next section we show how to
safely relax these restrictions while preserving possibilistic
noninterference.

VI. TYPING THE WRITE BUFFER FOR MORE
EXPRESSIVENESS

As we saw in the previous section, employing concurrency
in a high context can leak information via the write buffer.
However, we observe that if the write buffer only contains
pending writes to high variables at the point where such
concurrency occurs, then no leakage is possible. We have
designed a new type system based on this observation. In

pc; Γ `tso c

pc t Γ(Y) v Γ(x)

pc; Γ `tso x := Y
TSO-LOAD

pc t Γ(y) v Γ(X)

pc; Γ `tso X := y
TSO-STORE

Γ ` a : τ pc t τ v Γ(x)

pc; Γ `tso x := a
TSO-EVAL

pc; Γ `tso c1 pc; Γ `tso c2

pc; Γ `tso c1; c2
TSO-SEQ

Γ ` b : τ pc t τ ; Γ `tso c1 pc t τ ; Γ `tso c2

pc; Γ `tso if b do c1 else c2
TSO-IF

Γ ` b : low pc; Γ `tso c

low ; Γ `tso while b do c
TSO-WHILE

pc; Γ `tso skip
TSO-SKIP

Γ(`); Γ `tso c

low ; Γ `tso sync ` do c
TSO-SYNC

low ; Γ `tso fence
TSO-FENCE

pc; Γ `tso c

low ; Γ `tso fork c
TSO-FORK

Fig. 15. A type system for possibilistic noninterference of TSO programs.

addition to tracking the security level of the program counter
as usual, the type system also tracks the security level of each
thread’s write buffer: high indicates that all entries in the write
buffer are writes to high variables, and low indicates that the
write buffer may contain writes to low variables. Tracking the
write buffer’s contents in this way requires our type system to
incorporate a form of flow sensitivity.

The rules for our new type system are shown in Figure 16.
The judgment pc;wt ; Γ `wb c ⇒ wt ′ includes a write buffer
typing wt as an extra assumption and “produces” a new write
buffer typing wt ′ that takes into account the possible effects
of the command c on the write buffer. The write buffer typing
is threaded through the typing of a command, as illustrated by
the rule WB-SEQ.

The most important rule in the sequential fragment is WB-
STORE, which ensures that the produced write buffer typing
wt ′ reflects the security level of the variable X . In particular,
if Γ(X) = low then wt′ = low . The rule for conditionals
conservatively takes the meet of the write buffer typings
resulting from the two branches. The rule for loops is similar,
except that—as is common in flow sensitive analyses—the
loop body’s output wt ′ must also be incorporated into its input
write buffer typing.

Typing for each of the concurrency constructs requires
pc v wt , which captures our earlier informal observation.
Namely, the type system allows concurrency in a high context
as long as the write buffer is guaranteed to only contain writes
to high variables. The concurrency constructs all produce a
write buffer typing of high to reflect the fact that they empty
the thread’s write buffer. For a similar reason it is safe to
typecheck the body of a sync and a fork under a high write
buffer typing.

The `wb type system properly rejects the program in
Figure 14 shown earlier. The two occurrences of fence fail
to typecheck because the write buffer typing at each of those
points is low , due to the preceding writes to X and Y.

At the same time, the type system safely supports several

useful idioms that involve concurrency in high contexts. For
example, in the following well-typed code sketch a group of
cooperating threads are forked to perform some high com-
putation whenever a password check succeeds. Additionally,
the number of password checks is recorded in a low global
variable.

Checks := 0;
password := Password;
fence;
while(true) do (

guess := ... ; //Read a password guess
if(guess = password) do (

fork c1;
fork c2;
fork c3

) else
skip;

Checks := Checks + 1;
fence

)

“Worker threads” c1, c2, and c3 may safely acquire high locks,
fork new high threads, and use the fence instruction to run a
concurrent protocol. These threads may not write low variables
or acquire low locks because they are spawned in a high
context, that is, within a conditional that branches on the high
password variable. The fork instructions occur in positions
where the type system can verify that the write buffer does
not contain low writes; the two fence instructions are used to
establish and maintain this invariant.

We have proven that well-typed programs in this type
system are secure under TSO:

Theorem 6. If pc;wt ; Γ `wb c ⇒ wt ′ then c is possibilisti-
cally noninterfering under TSO and Γ.

Our three type systems have a natural ordering in terms of
expressiveness:

pc;wt ; Γ `wb c⇒ wt

pc t Γ(Y) v Γ(x)

pc;wt ; Γ `wb x := Y ⇒ wt
WB-LOAD

pc t Γ(y) v Γ(X)

pc;wt ; Γ `wb X := y ⇒ wt u Γ(X)
WB-STORE

Γ ` a : τ pc t τ v Γ(x)

pc;wt ; Γ `wb x := a⇒ wt
WB-EVAL

pc;wt ; Γ `wb c1 ⇒ wt1 pc;wt1; Γ `wb c2 ⇒ wt2

pc;wt ; Γ `wb c1; c2 ⇒ wt2

WB-SEQ

Γ ` b : τ pc t τ ;wt ; Γ `wb c1 ⇒ wt1 pc t τ ;wt ; Γ `wb c2 ⇒ wt2

pc;wt ; Γ `wb if b do c1 else c2 ⇒ wt1 u wt2

WB-IF

Γ ` b : low low ;wt u wt ′; Γ `wb c⇒ wt ′

low ;wt ; Γ `wb while b do c⇒ wt u wt ′
WB-WHILE

pc;wt ; Γ `wb skip⇒ wt
WB-SKIP

pc v Γ(`) pc v wt Γ(`); high; Γ `wb c⇒ wt ′

pc;wt ; Γ `wb sync ` do c⇒ high
WB-SYNC

pc v wt

pc;wt ; Γ `wb fence⇒ high
WB-FENCE

pc; high; Γ `wb c⇒ wt ′ pc v wt

pc;wt ; Γ `wb fork c⇒ high
WB-FORK

Fig. 16. More precise security typing for TSO programs.

Theorem 7. If pc; Γ `tso c then there exists wt ′ such that
pc; low ; Γ `wb c⇒ wt ′.

Theorem 8. If pc;wt ; Γ `wb c⇒ wt ′ then pc; Γ `sc c.

The `sc type system in Figure 11 is the most expressive of the
three (i.e., it accepts the most programs) but is also the only
one that does not guarantee possibilistic security under TSO.
The last theorem above combined with Theorem 3 implies
that the `wb type system ensures possibilistic noninterference
under SC, just as the other two type systems do.

VII. DATA RACE FREEDOM AND POSSIBILISTIC
NONINTERFERENCE

It is considered good programming practice to properly syn-
chronize concurrent accesses to shared data, thereby avoiding
data races. In this section we consider the impact of data-race
freedom on secure information flow for concurrent programs.

Intuitively, a data race occurs when two threads are about
to access the same shared variable, where at least one access
is a write. The following definitions formalize this intuition
for our formal language.

Definition 9 (Reads Next). Thread 〈L, c〉 reads X next if one
of the following conditions holds:
• c has the form x := X
• c has the form c1; c2 and 〈L, c1〉 reads X next
• c has the form holding ` do c′ and ` ∈ L and 〈L, c′〉

reads X next

Definition 10 (Writes Next). Thread 〈L, c〉 writes X next if
one of the following conditions holds:

• c has the form X := x
• c has the form c1; c2 and 〈L, c1〉 writes X next
• c has the form holding ` do c′ and ` ∈ L and 〈L, c′〉

writes X next

Definition 11 (Accesses Next). Thread t accesses X next if
either t reads X next or t writes X next.

Definition 12 (Conflicting Threads). Threads s and t conflict
if there exists a variable X such that each thread accesses X
next and at least one thread writes X next.

Definition 13 (Race-Exhibiting Thread Pool). Thread pool P
exhibits a race if it contains two distinct threads that conflict.

A program is considered race-free if it cannot reach a race-
exhibiting thread pool on any SC execution [12]:

Definition 14 (Race-Free Command). Command c is de-
fined to be race-free if for all S, G′, and P ′ such that
((S,Lock), 〈L�, c〉) =⇒sc∗ (G′, P ′), it is not the case that
P ′ exhibits a race.

As a (non-)example, the program in Figure 1 is not race-
free, because there exists an SC execution in which the write
to X in the forked thread conflicts with the read of X in the
main thread.

It is well known that race-free programs do not exhibit any
more behaviors under TSO than they do under SC [12], and
this property holds in our formal language:

Theorem 15. If ((S,Lock), 〈L�, c〉) =⇒tso∗ (G′, 0) and c
is race-free, then ((S,Lock), 〈L�, c〉) =⇒sc∗ (G′, 0).

This result, combined with the fact that SC executions are a
subset of TSO executions, implies that our original type system
for possibilistic noninterference under SC is sound under TSO
as well, as long as such programs are data-race-free:

Corollary 16. If c is race-free and c is possibilistically
noninterfering under SC and Γ then c is possibilistically
noninterfering under TSO and Γ.

Corollary 17. If c is race-free and pc; Γ `sc c, then c is
possibilistically noninterfering under TSO and Γ.

The above corollary provides an alternate way to ensure
secure information flow for programs running on weak mem-
ory models like TSO. Rather than designing dedicated type
systems for such memory models, we can typecheck the
program in a type system for secure information flow under
SC, such as our `sc system, and separately check the program
for data races. This approach is appealing because it reduces
the problem to two problems that have existing solutions, and
it avoids the need to reason about weak memory models.
On the other hand, dedicated type systems for weak memory
models can be more expressive. For example, our `tso and
`wb type systems safely allow some programs that contain
data races.

VIII. RELATED WORK

To the best of our knowledge this is the first paper to address
information-flow security for concurrency in the presence of
weak memory models.

Smith and Volpano [19] introduced the use of type systems
to ensure possibilistic noninterference of concurrent programs
with SC semantics. Their setting includes a fixed set of threads
with sequentially-consistent access to shared memory. Our `sc

type system starts from this work and extends it to support
synchronization (sync), thread creation (fork), and memory
barriers (fence).

Possibilistically noninterfering programs are vulnerable to
attacks based on timing, statistical inference, scheduling, and
termination. For instance, an attacker who knows how threads
are likely be scheduled may have an advantage in guessing a
concurrent process’s secret inputs based on its public outputs.
Broadly these attacks are based on the ability of an attacker
to resolve nondeterminism essential to the specification of
a program, a language model, a schedule, or a security
statement.

Probabilistic noninterference addresses these issues by en-
suring that high inputs to a program do not change the proba-
bility distribution describing its low outputs. Probabilistic non-
interference is a very strong property and difficult to enforce
in a practical manner. While some enforcement techniques
are purely type-based [18], others also mix static typing with
new runtime features such as atomicity instructions [22] or
special compilation strategies that ensure high-data-dependent
program paths are not distinguished by scheduling [16].

Observationally deterministic concurrency [14, 20, 24] en-
sures that all runs of a concurrent program look identi-
cal to low observers. Zdancewic and Myers [24] present a

lambda calculus with both message-passing and sequentially-
consistent shared-memory concurrency and introduce a type
system that ensures observational determinism. Observational
determinism is substantially more restrictive than the notion
of data-race-freedom that we employ in Section VII, but it in
turn provides stronger security guarantees.

As mentioned above, possibilistically noninterfering pro-
grams are vulnerable to timing attacks—where an attacker
makes inference about confidential values based on the execu-
tion time of a run—and termination attacks—where an attacker
makes inferences based on a program’s termination behavior.
Effective enforcement of timing and termination sensitive
variants of noninterference is an open area of research. Some
techniques include statically padding the branches of high-
data-dependent conditionals with no-op instructions to mask
(internally or externally) observable differences in instruction
count [3, 15, 16], statically tracking timing information using
information flow labels as an approximation mechanism [18],
and partitioning programs so that high components may be
treated specially by a security-aware scheduler [8].

This paper analyzes an idealized version of the TSO mem-
ory model, with a simple small-step semantics that captures
the essence of TSO and that is comparable to language
models commonly used to investigate information-flow type
systems [15, 16, 18, 19, 22]. Earlier formalisms of TSO have
different goals, including comparing multiple relaxed memory
models [7], supporting program verification [5], and accurately
describing extant hardware platforms [13].

IX. CONCLUSIONS AND FUTURE WORK

This paper has investigated the impact of the Total Store
Order (TSO) memory model on secure information flow. We
have shown that relaxing SC has a nontrivial impact on the
notion of possibilistic noninterference and that it causes a
natural security type system to become unsound. We provided
two alternative type systems that are sound under TSO, with
different tradeoffs between expressiveness and complexity. We
also proved that the original type system is sound under TSO
for programs that are free of data races.

Given the ubiquity of weak memory models in mainstream
multicore hardware and concurrent programming languages,
there is much more to be done in future work. We would like
to consider common memory models other than TSO, for ex-
ample hardware memory models like ARM and POWER [17]
and language-level memory models like those of Java [10]
and C++ [4]. We would also like to address more detailed
architectural models such as those supporting full instruction
sets [13] or with realistic bounds on hardware resources.
Finally, we would like to consider stronger notions of security
in the concurrent setting, such as probabilistic noninterfer-
ence [16, 18, 22] and notions that take into account timing
channels [3, 8, 15, 16, 18].

REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. Computer, 29(12):66–
76, 1996.

[2] Sarita V. Adve and Hans-J. Boehm. Memory models:
A case for rethinking parallel languages and hardware.
Commun. ACM, 53:90–101, August 2010.

[3] Johan Agat. Transforming out timing leaks. In Proc. 27th
ACM Symp. on Principles of Programming Languages
(POPL), pages 40–53, Boston, MA, January 2000.

[4] H. J. Boehm and S. Adve. Foundations of the C++
concurrency memory model. In Proceedings of PLDI,
pages 68–78. ACM, 2008.

[5] Sebastian Burckhardt and Madanlal Musuvathi. Effective
program verification for relaxed memory models. In
Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer
Science, pages 107–120. Springer Berlin / Heidelberg,
2008.

[6] Dorothy E. Denning. A lattice model of secure
information flow. Communications of the ACM, 19(5):
236–243, May 1976.

[7] Lisa Higham, Jalal Kawash, and Nathaly Verwaal.
Defining and comparing memory consistency models.
In In Proc. of the 10th Int’l Conf. on Parallel and
Distributed Computing Systems, pages 349–356, 1997.

[8] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf.
Timing- and termination-sensitive secure information
flow: Exploring a new approach. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy, SP
’11, pages 413–428, Washington, DC, USA, 2011. IEEE
Computer Society.

[9] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, 100(28):690–691, 1979.

[10] J. Manson, W. Pugh, and S. Adve. The Java memory
model. In Proceedings of POPL, pages 378–391. ACM,
2005.

[11] Daniel Marino, Abhayendra Singh, Todd Millstein,
Madanlal Musuvathi, and Satish Narayanasamy. A case
for an sc-preserving compiler. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pages 199–210.
ACM, 2011.

[12] Scott Owens. Reasoning about the implementation of
concurrency abstractions on x86-tso. In ECOOP 2010 -
Object-Oriented Programming, pages 478–503. 2010.

[13] Scott Owens, Susmit Sarkar, and Peter Sewell. A
better x86 memory model: x86-TSO. In TPHOLs ’09:
Conference on Theorem Proving in Higher Order Logics,
volume 5674 of LNCS, pages 391–407. Springer, 2009.

[14] A. W. Roscoe. CSP and determinism in security
modelling. In In Proc. IEEE Symposium on Security and
Privacy, pages 114–127. Society Press, 1995.

[15] Andrei Sabelfeld. The impact of synchronisation on
secure information flow in concurrent programs. In
Proceedings of the Andrei Ershov 4th International
Conference on Perspectives of System Informatics,
volume 2244, pages 225–239. Springer-Verlag, July
2001.

[16] Andrei Sabelfeld and David Sands. Probabilistic
noninterference for multi-threaded programs. In Proc.
of 13th IEEE Computer Security Foundations Workshop,
pages 200–214. IEEE Computer Society, July 2000.

[17] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget,
and Derek Williams. Understanding power multipro-
cessors. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’11, pages 175–186. ACM, 2011.

[18] Geoffrey Smith. A new type system for secure
information flow. In Proc. of 14th IEEE Computer
Security Foundations Workshop, pages 115–125. IEEE,
June 2001.

[19] Geoffrey Smith and Dennis Volpano. Secure information
flow in a multi-threaded imperative language. In Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98,
pages 355–364. ACM, 1998.

[20] Tachio Terauchi. A type system for observational
determinism. In Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium, pages 287–
300, Washington, DC, USA, 2008. IEEE Computer
Society.

[21] Jeffrey A. Vaughan and Todd Millstein. Secure infor-
mation flow for concurrent programs under total store
order: Supplemental technical material. Technical Report
120007, Computer Science Department, University of
California, Los Angeles, April 2012. Available from
http://fmdb.cs.ucla.edu/Treports/120007.pdf.

[22] Dennis Volpano and Geoffrey Smith. Probabilistic
noninterference in a concurrent language. J. Comput.
Secur., 7:231–253, March 1999.

[23] Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco
Zappa Nardelli, Suresh Jagannathan, and Peter Sewell.
Relaxed-memory concurrency and verified compilation.
In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 43–54. ACM, 2011.

[24] Steve Zdancewic and Andrew C. Myers. Observational
determinism for concurrent program security. In Proc.
of 16th IEEE Computer Security Foundations Workshop,
July 2003.

http://fmdb.cs.ucla.edu/Treports/120007.pdf

	Introduction
	A Formal Model of TSO Programs
	Syntax
	Operational Semantics
	Possibilistic Noninterference

	TSO and Possibilistic Noninterference
	Possibilistic Noninterference for SC
	Possibilistic Noninterference for TSO
	Typing the Write Buffer for More Expressiveness
	Data Race Freedom and Possibilistic Noninterference
	Related Work
	Conclusions and Future Work

