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It’s blatantly clear
You stupid machine, that what
I tell you is true

— Michael Norrish1

Abstract

This paper compares three models for formal reasoning about programming languages with
binding. Higher order abstract syntax (hoas) uses meta-level binding to represent object-level
binding [PE88]. Nominal Logic couples a concrete representation of bound variables with a
formal apparatus for safely manipulating bound variables [Pit03]. The locally named binding
representation places bound and free variables in different syntactic sorts [MP99]. This paper
surveys each binding model, and compares it to the others and to Gordon and Melham’s
axiomatization of the untyped lambda calculus [GM97]. Comparisons are made based on
expressive power, transparency to human readers, and suitability for mechanized reasoning of
each binding model. Each system excels in one area; hoas is most expressive, Nominal Logic
most transparent, and locally named most mechanizable.

1 Introduction

Many theoretical results in programming languages are published with very long, highly technical
proofs. This material must be included for results to be believed. Unfortunately, the bookkeeping
involved in developing such proofs can, in and of itself, burden researchers. Worse, a large volume
of tedious detail can obscure the novel kernel of a paper.

Writing machine checked proofs using tools, such as Isabelle, Coq, or Twelf appears to be a
solution to this problem. Curious whether automated theorem proving was ready for adoption in
the programming languages community, Aydemir and colleagues [ABF+05] posed the poplmark
challenge. In this ongoing friendly contest, researchers mechanize proofs of a set of theorems using

1From the website, Theorem Proving Haiku, at http://www.cl.cam.ac.uk/Research/HVG/haiku.html.
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a variety of theorem provers. Some of these researchers gathered at the 2006 Progress on poplmark
meeting to share their experiences with the challenge. They found that representing variable binding
is the hardest part of mechanizing programming languages metatheory2.

This paper compares three techniques for representing variable binding in formal metatheory
I compare locally named, Nominal Logic, and higher order abstract syntax (hoas) approaches to
each other and to the well known binding models by de Bruijn and Barendregt.

This paper examines two techniques for representing variable binding in formal metatheory—
higher order abstract syntax (hoas) and the locally named representation.

Throughout, I use the term binding model broadly to denote a style of encoding and reasoning
about variable binding. As such, binding models are distinct from any particular theorem prover
or logic, and are realizable in a variety of forms. Hoas and locally named are two specific binding
models.

The binding models we discuss were developed at different times by different groups and pub-
lished with divergent presentation styles. Some technical details are unified, so that we may see
interesting distinctions clearly. For example, I renamed syntactic sorts, changed lists into sets, and
slightly altered definitions. These changes do not affect the content of this discussion.

Unfortunately, the format of this paper constrains the material I can include, thus many inter-
esting topics are out of scope. While my interest in binding models is driven by mechanization,
this paper does not discuss individual proof assistants, except to illustrate general points about the
mechanizability of binding models or to explain particular technical quirks. Additionally, while I
will compare—and even grade—the binding models, different binding models may be appropriate in
different circumstances; it does not make sense to declare one model best, and this paper will not at-
tempt to do so. Lastly, there is a complex and varied ecosystem of binding models. Unfortunately,
this paper ignores the weak higher order abstract syntax [DFH95] and locally nameless [MM04]
models, as well as work relevant to implementers, such as Fresh Objective Caml [SP05, Shi05]
and Cαml [Pot06]. Denotational semantics style investigations of binding [MO95] and Altenkirch’s
model, which quotients alpha-equivalence judgments with bijections on variable names, [Alt02], are
also neglected.

The rest of this paper is outlined below. Section 2 presents a technical prelude to the criti-
cal review. informal treatment of substitution (and associated issues) in lambda calculus. This
illustrates problems encountered with binding. The section ends with discussions of the Baren-
dregt variable convention and de Bruijn’s nameless variable representation. Section 3 presents the
Gordon-Melham axioms, and Sections 4 through 6 discuss the hoas, locally named, and Nominal
Logic binding models. Section 8 includes a side-by-side comparison of the binding models and out-
lines a future research direction, which uses the Gordon-Melham axioms to make precise technical
comparisons between models.

2 Preliminaries

2.1 Metalogics and Object Languages

We will use formal logic to reason about programming languages. I will refer to programming
languages under discussion as object languages and the surrounding logics as metalogics. To reduce
confusion, logical statements are typeset with standard mathematical notation, and object language

2An informal transcript and slides are available from http://fling-l.seas.upenn.edu/∼plclub/cgi-bin/
poplmark/.
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syntax is in a fixed width font. Using the notation of Section 3, for example, λx. x is a meta-level
abstraction, fn x. x is concrete object syntax, and Lam “x” (Var “x”) is abstract syntax.

Everywhere, except for Section 6, we will use higher order logic [Lei94] as our metalogic. Recall
that in higher order logic, one may quantify over predicates (∀P x . P (x) =⇒ P (x), for example)
and that functions may have higher order sorts like (a → b) → c. While logic provides a framework
for reasoning, we want to go farther and actually represent object languages. To do so, we write a
signature which specifies the names and sorts of objects we will reason about. Sorts are analogous
to types. For example, the signature for a theory of real numbers might contain the sort real and
the symbols

0 : real
1 : real
+ : real → real → real .

2.2 Lambda Calculus and Substitution

Binding appears in many mathematical contexts. In this paper, we only discuss lambda calculus and
closely related systems. This restriction is reasonable in light of Curry and Feys’s observation that
“any binding operation can in principle be defined in terms of functional abstraction”3 [CFC58].
Of course, lambda calculus is also interesting in its own right. In this section we will define the
syntax of the untyped lambda calculus, substitution, alpha equivalence and beta reduction. The
discussion of substitution illustrates the difficulty of working with binding.

We define lambda calculus using the following grammar:

Variables x, y ::= x | y | . . .
Terms s, t, u ::= x | s t | fn x. s

Except for the abstraction notation, this definition is standard. We use fn x. x for object-level terms
to distinguish them from meta-level terms like λx. x. This distinction is important in Section 4
where we encounter lambda terms in both the metalogic and object language.

Three essential concepts in lambda calculus are substitution, alpha equivalence, and beta re-
duction. Substitution replaces all instances of some free variable with a term. We write [x := s]t
to mean t with s substituted for each free occurrence of x. Alpha equivalence relates terms which
are identical up to the renaming of bound variables. For example,

fn x. z x =α fn y. z y 6=α fn x. w x.

Intuitively, we would like alpha equivalent terms to be extensionally equal, that is, doing the same
thing to two alpha equivalent terms should yield equivalent results. Beta reduction computes the
application of an abstraction to an argument. The formal definitions of both alpha equivalence and
beta reduction depend on substitution.

Variable confusion makes substitution hard to define [Bar84]. To illustrate, let us compare

3In some contexts the encoding of binding as functional abstraction is strained. ML type schemes, where sets of
variables are bound simultaneously [PR05], provide one example of this. Cheney [Che05] examines several others
and proposes a solution based on Nominal Logic. Such complications fall outside the scope of this paper.
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several potential definitions of substitutions [Pie02]. The first and simplest is

[x := s]x ,⊗ s

[x := s]y ,⊗ y where x 6= y

[x := s](t t′) ,⊗ ([x := s]t) ([x := s]t′)
[x := s](fn y. t) ,⊗ fn y. [x := s]t.

(The symbol ,⊗ indicates that the definition is incorrect and intended to illustrate a problem.)
The definition is defective because, while fn x. x =α fn z. z and

[x := y]fn x. x = fn x. y,

we can also derive
[x := y]fn z. z = fn z. z.

Performing identical operations on alpha equivalent terms should yield alpha equivalent terms, but
the results are clearly different! In this case, and in general, substituting for a bound variable is
wrong [Bar84]. McKinna and Pollack call this shadowing [MP99].

A better substitution ignores abstractions when the abstraction and substitution variables are
the same. That is:

[x := s](fn y. t) ,⊗

{
fn y. t if x = y

fn y. [x := s]t if x 6= y

Unfortunately, this definition suffers from capture, where a free y in s may be accidentally bound
[MP99, Win93]. Consider alpha equivalent terms fn y. x and fn z. x. Applying substitution [x := y]
to each yields fn y. y and fn z. y—different terms again.

Before moving to capture-avoiding substitution, we must precisely define the free variables of a
term. In the following definition, we define a free variable function by structural recursion over the
syntax of terms:

fv(x) , {x}
fv(t s) , fv(t) ∪ fv(s)

fv(fn x. t) , fv(t) \ {x}

Only the abstraction case is interesting; observe that it ensures bound variables do not count as
free. Using this definition of free variables, we again modify substitution.

[x := s](fn y. t) ,⊗

{
fn y. t if x = y

fn y. [x := s]t if x 6= y ∧ y /∈ fv(s) .

This version of substitution, which we call Barendregt’s partial substitution, does not violate our
central expectation about alpha equality: When defined, the results of applying identical substitu-
tions to alpha equivalent terms are alpha equivalent. The problem with this definition rests with
definedness. Barendregt’s partial substitution is undefined for [x := y](fn y. x). This is better, of
course, than the previous definition of substitution, which handled the example incorrectly. Since
Barendregt’s substitution is a partial function, it requires that we work with alpha equivalence
classes and implicit renamings—not syntactic terms. Thus, we must reject this definition, as we
will define alpha equivalence in terms of substitution and must avoid such definitional cycles [Bar84].
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Curry and Feys [CFC58, Bar84] define substitution by explicitly renaming variables when nec-
essary to avoid confusion. Let v0, v1, v2 . . . be the sequence of variables fresh from (not free in) s
and t in the following definition4:

[x := s]x , s

[x := s]y , y if x 6= y

[x := s](t t′) , ([x := s]t) ([x := s]t′)
[x := s](fn x. t) , fn x. t

[x := s](fn y. t) , fn z. [x := s]([y := z]t) if x 6= y

where

z =
{

y if y /∈ fv(s) ∪ fv(t)
v0 otherwise

While intuitive, this definition of substitution also has metatheoretical warts. In particular, the
renaming operation is only well defined because we can pick a unique z. This requires that variables
be ordered [CFC58] or that we have the axiom of choice5.

With this satisfactory definition of substitution, we can now define alpha equivalence and beta
reduction. Alpha equivalence is defined by the axiom scheme

fn x. t =α fn y. [x := y]t where y /∈ fv(t).

The side condition prevents us from deriving erroneous statements such as

fn x. z x y =α fn y. z y y.

The definition of beta reduction is even easier,

(fn x. t) s �β [x := s]t.

Because substitution is capture avoiding, this does not require a side condition. As a check, note
that we can derive

(fn x. fn y. x) y �β fn z. y

as expected.

2.3 Evaluation Criteria

For a binding model to be useful, it must be both expressive and convenient. Here, expressiveness
means the formal power of a system. Merely being able to write down binding is not sufficient—a
model must be powerful enough to prove interesting theorems. I address this by examining binding
models through the critical lens of the Gordon-Melham axioms.

The Gordon-Melham axioms are five propositions sufficient to formalize many interesting prop-
erties of the untyped lambda calculus [GM97]. For each binding model, we define a theory of the

4Only abstraction has changed, but I list the complete system of equations because this is the final, correct,
definition.

5Set theory can be formalized either with or without the axiom of choice. One important consequence of this
axiom is that, given an infinite set of unordered elements, you can select an element from the set [Sup72]. The
sequence of vis allows us to obtain a fresh z, regardless of how sets are axiomatized.
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untyped lambda calculus (or in the case of hoas a slightly larger system) and check if this theory
admits the Gordon-Melham axioms. Thus, the Gordon-Melham axioms will be the yardstick by
which we measure expressiveness. We will discuss Gordon and Melham’s work in Section 3.

Formal expressiveness is not the complete story. Indeed, we wish to avoid “the Turing tar-pit
in which everything is possible but nothing of interest is easy” [Per82, 54]. That is, we must ensure
that it is not merely possible, but also practical, to write proofs using our binding models. An ideal
model is not only expressive, but also transparent and mechanizable.

I will say a binding model is transparent when statements in the model: are easy for humans
to read and write [dB72], follow standard mathematical convention, and are accessible to non-
specialists [ABF+05]. The first and second conditions help readers establish the adequacy of formal
theories[HC05, Mit96] . The benefits of the third condition are self evident.

Mechanizable models are those models whose statements can be easily encoded and manipulated
by computer. This is useful both for theorists working with theorem provers and for language
implementers translating formal notions into compiler and type checker code.

2.4 Conventional Binding Models

Two canonical binding models are the Barendregt variable convention and de Bruijn’s nameless
representation. Unfortunately, these are both deficient for formalizing languages.

There are two interpretations of the Barendregt variable convention. According to Barendregt,
within a particular mathematical context (such as a proof or definition), all bound variables should
be distinct from the free variables [Bar84]. Others, such as Pitts, mention a related convention
where bound variables must also be mutually distinct. In either case, we reason about alpha-
equivalence classes of terms by looking only at certain well-selected members of those classes. We
can trust proofs in this style for two reasons. First, the variable convention guides us in our
choice of representative class members. Second, human researchers avoid introducing functions and
predicates that distinguish alpha equivalent terms; this discipline enables us to treat terms in an
alpha equivalence class as interchangeable entities. However, there is no direct way to formalize
reasoning based on such tacit assumptions [Pit03]. The Nominal Logic and locally named binding
models can be read as methods of formalizing the spirit, if not the letter, of Barendregt.

While following Barendregt’s variable convention is a classic technique for writing pencil-and-
paper proofs, representing terms using de Bruijn’s nameless notation is the traditional approach
to mechanized metatheory. In the de Bruijn model, bound variables are replaced by integer in-
dices indicating where they are bound. For example, the term (fn f. fn x. f x) is represented by
(Lam (Lam (App 1 0))). De Bruijn notation is complicated for human readers, and it does not
correspond to our informal notations about languages; it is not transparent. However, proofs have
been successfully carried out in this style [dB72, Alt93]. Is it really so obtuse that we shouldn’t
just use it? While this is a matter of taste, many researchers are dissatisfied with pure de Bruijn
notation:

. . . nameless terms are good for machine manipulation and metamathematical reasoning;
for the human user they are not very convenient . . .

— Barendregt [Bar84, 581]

. . . the notational clutter [of de Bruijn indices] becomes quite a heavy burden even for
fairly small languages . . .

— Aydemir and colleagues [ABF+05, 55]
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. . . terms in de Bruijn syntax are unfit for human consumption . . .
— McBride and McKinna [MM04, 2]

3 The Gordon-Melham Axioms

Gordon and Melham use only five axioms to prove several critical theorems about lambda terms,
including induction and recursion principles [GM97]. We are primarily concerned with this work
because it provides a technical framework for the critical evaluation of binding models. Consider
some binding model. If a natural theory of lambda calculus in this model entails the Gordon-
Melham axioms, then this theory will entail at least as many theorems as the Gordon-Melham
theory. Thus, we would be confident that our binding model is expressive. Conversely, if a model
is too weak to admit the Gordon-Melham axioms (or close variants thereof), it will be too weak to
express some subset of induction, recursion, and alpha equivalence. Such a model can only produce
stillborn theories.

Gordon and Melham give their axioms in a multi-sorted higher order logic. They define three
sorts: const is the sort of constants, string the sort of variables, and term the sort of terms. Terms
are built from the constructors

Con : const → term
Var : string → term
App : term → term → term
Lam : string → term → term

and the signature includes the following additional operators:

fv : term → string set
[ := ] : term → term → string → term

Abs : (string → term) → term

Applications of the term constructors encode object-level terms in the obvious manner. For example,

Lam “x” (Lam “y” (App (Var “x”) (Var “y”)))

represents fn x. fn y. (x y). The functions fv and [ := ] will calculate free variables and
substitutions. We will discuss Abs with axiom GM5.

This treatment diverges from Gordon and Melham’s original paper in three respects. First,
they parameterized term by const . While doing so provides practical benefits from a mechanization
standpoint, such benefits are orthogonal to our discussion, and I elide this complication. Second,
I curried [ := ] . Third, Gordon and Melham worked in the Cambridge HOL system, which
includes theories of natural numbers, sets , and strings[GM93, HOL05] . Given a finite set of strings,
they can construct a string not in the set. To make this explicit we add the symbol

fresh : string set → string

to Gordon and Melham’s signature and assume the freshness axiom,

` ∀S : string set . finite(S) =⇒ fresh(S) /∈ S. (GM0)
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3.1 Axioms for Substitution

This section presents Gordon and Melham’s first three axioms, which address free variables, substi-
tution, and alpha equivalence. The first axiom asserts that function fv calculates the free variables
of a term.

` ∀k . fv(Con k) = { } ∧ (GM1)
∀x . fv(Var x) = {x} ∧
∀t u . fv(App t u) = fv(t) ∪ fv(u) ∧
∀x t . fv(Lam x t) = fv(t) \ {x}

Except for constant terms, which do not occur in the standard treatment of lambda calculus, this
definition matches our informal definition from Section 2.2.

Following Barendregt, Gordon and Melham exploit the free variable function to formally state
the substitution axiom:

` ∀k u x . [x := u](Con k) = Con k ∧ (GM2)
∀u x . [x := u]Var x = u ∧
∀u x y . (x 6= y) =⇒ [x := u]Var y = Var y ∧
∀t u v x . ([x := v](App t u)) = App ([x := v]t) ([x := v]u) ∧
∀x t u . [x := u](Lam x t) = Lam x t ∧
∀x y t u . (x 6= y) ∧ (y /∈ fv(u)) =⇒ [x := u](Lam y t) = Lam y ([x := u]t)

As expected, the clauses pertaining to applications and variables match our informal definition.
Even better, these clauses fully specify the operational behavior of substitution over their respective
constructors.

Substitution over lambdas is more subtle. The first lambda case says substitution does not
shadow bound variables; the second says it does not capture them. However, this axiom gives only
a partial specification of substitution. That is, while GM2 tells us

[“x” := Con k](Lam “y” (Var “x”)) = Lam “y” ([x := Con k]Var “x”)
= Lam “y” (Con k),

it provides no information about

[“x” := Var “y”](Lam “y” (Var “x”)).

Reading the abstraction clauses carefully, we find that the substitution axiom is the specification
of Barendregt’s partial substitution function from Section 2.2. There, I argued that the partial
function was not sufficient to define substitution; this is still true. However, we are doing something
different here. Axiom GM2 does not define [ := ] . Rather, the axiom imposes a constraint
on the function, but leaves some behavior unspecified. Note that models of the Gordon-Melham
axioms must provide a total substitution function like Curry and Feys’s.

Gordon and Melham fully constrain substitution by introducing the alpha equivalence axiom.
The axiom states

` ∀x y t . y /∈ fv(Lam x t) =⇒ Lam x t = Lam y ([x := y]t) (GM3)
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This corresponds to Barendregt’s definition of alpha equivalenceUsing axioms GM2 and GM3 to-
gether, we can simplify the preceding stuck substitution as follows:

[“x” := Var “y”](Lam “y” (Var “x”)) = [“x” := Var “y”](Lam “z” ([“y” := Var “z”]Var “x”))
= [“x” := Var “y”](Lam “z” (Var “x”))
= Lam “z” ([x := Var “y”]Var “x”)
= Lam “z” (Var “y”),

Note that picking fresh variable name “z” is an application of axiom GM0. This example illustrates
a fact we will not prove—axioms GM0 through GM3 fully specify the behavior of substitution.

3.2 Axioms for Iteration

Using the completed specification of substitution, we define the unique iteration axiom, which
provides a basis for deriving induction and recursion principles over lambda terms. The axiom
follows:

` ∀con : const → β . (GM4)
∀var : string → β .

∀app : β → β → β

∀abs : (string → β) → β

∃!f : term → β .

∀k . f(Con k) = con(Con k) ∧
∀x . f(Var x) = var(Var x) ∧
∀t u . f(App t u) = app(ft)(fu) ∧
∀xu . f(Lam x u) = abs(λy. f([x := Var y]u))

This states that we can uniquely define an iterative function, f , over lambda terms, using functions
to specify f ’s behavior at each constructor. Each function has output sort β, which is a metavariable
we can replace with, for example, nat or string . Functions con and var determine the result of
applying f to abstract syntax tree leaves, and app calculates a β given the results of applying f
to each branch of an application6. The abstraction case breaks the pattern, defines f in terms of
abs : (string → β) → β, and ensures

f(Lam x u) = abs(λy. f([x := Var y]u)).

Thus, to calculate over the structure of an abstraction, abs supplies its argument with a (fresh)
variable name. (No catastrophe ensues if abs supplies a variable that is not fresh; but such an abs
is unlikely to define an interesting f .)

We could not have given abs sort string → β → β. This is so because the resulting iteration
principle could define functions which expose the bound variable of an abstraction. For example,
consider function bound : term → string set , which enumerates the bound variables in a term. The

6That app only examines returned βs and not the original terms distinguishes iteration from recursion.
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following derivation shows that admitting bound leads to inconsistency:

Lam “x” (Var “x”) = Lam “y” (Var “y”)
bound(Lam “x” (Var “x”)) = bound(Lam “y” (Var “y”))

{“x”} = {“y”}

The form of abs illustrates that there is a connection between certain functions of type string →
term and lambdas. The abstraction axiom makes this explicit.

` ∀xu . Abs (λy. [x := Var y]u) = Lam x u (GM5)

Thus an object-level abstraction is isomorphic to the meta-level function which produces the ab-
straction body when supplied with a bound variable. This axiom is necessary to iteratively define
some functions, including the identity on terms. (To define the term → term identity we use Abs
as abs in axiom GM4.)

3.3 Derived Theorems

Using the Gordon-Melham axioms, it is possible to prove interesting results about lambda terms.
Importantly, we can derive the following induction theorem:

` ∀P : term → bool .

∀k . P (Con k) ∧
∀x . P (Var x) ∧
∀t u . P (t) ∧ P (u) =⇒ P (App t u) ∧
∀xu . (∀y . P ([x := Var y]u)) =⇒ P (Lam x u)

=⇒ ∀u . P (u)

This is a strong induction principle, because the induction hypothesis for the Lam case is strong. To
see this, consider that under normal structural induction we would need to prove P (Lam x u) given
P (u). Instead, this induction principal gives us ∀y . P ([x := Var y]u)—that is, P holds regardless
of our choice of bound variable.

Additionally, Gordon and Melham defined simultaneous renamings, iterated substitution, and
a measure of term length. They proved a primitive recursion principle and that terms contain only
finitely many free variables. Other researchers have continued this work, including Norrish who
proved the substitution lemma, the Church-Rosser property for β, η, and βη reductions, and the
standardization lemma [Nor03].

3.4 Evaluation

The Gordon-Melham axioms provide a formal basis for automated reasoning about the untyped
lambda calculus. Both Norrish and Gordon and Melham, found these axioms sufficient to prove
interesting metatheoretical results.

Gordon and Melham selected their axioms for usability. For example, their alpha equivalence
axiom (GM3) is derivable from the weaker statement

` ∀xu . y /∈ fv(u) =⇒ ∀x . Lam x u = Lam y ([x := Var y]u).

10



However, Gordon and Melham rejected this potential axiom because it is inconvenient. Similarly,
the abstraction axiom (GM5) is definable using axioms GM0–GM4; Gordon and Melham state it
as an axiom due to its utility. If Gordon and Melham had given the minimal axiomatization of
their system, most theories would include a boilerplate prelude deriving axioms GM3 and GM5.

Unfortunately, this work is dependent on the Cambridge HOL framework. We saw that Gordon
and Melham rely on properties of HOL’s string theory. Additionally, HOL includes the axioms of
choice and excluded middle—it is not clear to what extent developments using the Gordon-Melham
axioms are dependent on these. This is important because not all formalisms or proof assistants
include these axioms. Despite this metatheoretical blemish, their theory is well defined, and they
prove their axioms are consistent using a locally nameless variant of de Bruijn as a binding model
[MM04].

4 Higher Order Abstract Syntax

In the higher order abstract syntax (hoas) binding model, object language binding constructs are
encoded as meta-level lambda abstractions. For example the abstract syntax Lam (λx. Lam (λy. App x y) )
will represent the object term fn x. fn y. (x y). In the abstract syntax, the xs and ys are bound
metavariables; in the object term the xs and ys are concrete variable names. As we will see, a key
benefit of hoas is that it allows us to write rules without requiring syntactic side conditions to
forestall variable capture.

4.1 Case Study

For the rest of this section, we will work with a simple functional language which augments lambda
calculus with conditionals and let binding.

s, t, u ::= x | t u | fn x. t

| if t then t′ else t′′

| let x1 = t1and x2 = t2 and . . . and xn = tn in u

I intend for the let construct to bind variables x1 . . . xn in u, but not in any ti. In contrast, if—the
standard ternary operator—binds nothing.

Encoding the above in hoas will illustrate a general principle of the model. Object programs (or
program fragments) are encoded as meta-level lambda calculus terms and syntactic sorts correspond
to meta-level types. Particular pieces of object-level syntax map to meta-level constants. Lexical
terminals (e.g. variables) are first order constants. Operators (e.g. if) are second order constants.
And, binding operators (e.g. let) are third order constants7.

It is this encoding of binders that gives hoas its name. Pfenning and Elliot define these constants
in polymorphic lambda calculus with pairs and pattern matching. While logics, including Church’s,
do not always include these features [Chu40], Pfenning and Elliot found them essential for practical
encodings.

7Here we follow the convention that first order constants are base values, second order constants correspond to
functions over base types, and third order constants have types like (term → term)→ term [HL78].

11



Our encoding is over the signature

Con : const → term
Lam : (term → term) → term
App : term → term → term
Let : (α → term) → α → term
If : term → term → term.

Note that both Lam and Let are higher order functions; we use them to represent object-level
binders as meta-level functions. The Let constructor is polymorphic and the α in its type is
implicitly quantified (we drop the ∀ to avoid confusion with the logical operator). We only consider
closed object terms and do not include a constructor for variables; all object variables translate
into bound variables in the metalogic. The following function encodes objects in hoas:

object syntax hoas term
[[k]] = Con k (constants)
[[x]] = x (variables)

[[t u]] = App [[t]] [[u]]
[[fn x. t]] = Lam (λx. [[t]])

[[if t then u else u′]] = If [[t]] [[u]] [[u′]]
[[let x1 = t1 and . . . and

xn = tn
in u]]

= Let (λ〈x1, . . . , xn〉. [[u]]) 〈[[t1]], . . . , [[tn]]〉)

We need not define substitution; hoas provides it for free. For example, we can build a reduction
relation, which subsumes �β , out of metalogic substitution and application. Some (but not all) of
the necessary rules are:

App (Lam t) u � t(u)
Let t u � t(u)

If true t u � t

If false t u � u

For example, let’s try reducing let x = 4 and y = 2 in plus(x, y). Encoding this in hoas and
considering the reduction relation shows

Let (λ〈x, y〉. plus x y) 〈4, 2〉 � ((λ〈x, y〉. plus x y))〈4, 2〉
=βη plus 4 5

Here we gave let two arguments, but, because it is polymorphic, we could have given in any number.
The βη equality in the last step is equality over meta-level lambda terms which we exploit to get
the correct object-level reduction. Definitions like these are the raison d’être of hoas. They can
be written without syntactic side conditions, a free variable function, or a definition of object-level
substitution.
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4.2 Evaluation

The hoas binding model is quite different from the normal pencil-and-paper conventions. While it
introduces significant simplifications over traditional proofs—substitution becomes implicit, appli-
cation trivial, and variable freshness irrelevant—hoas also adds complications. Defining induction is
challenging [ACM02], and Pfenning and Elliot do not mention inductive proofs at all in [PE88]. Ad-
ditionally, proofs must be written over αβη equivalence classes of meta-level lambda terms [HC05];
this too adds complexity. While some practitioners find hoas convenient, its significant departure
from standard mathematical practice and consequent steep learning curve yield a non-transparent
binding model.

Hoas has been successfully used in a variety of mechanized settings. Pfenning used hoas and
the Twelf, the canonical theorem prover for hoas metatheory, to formalize a variety of theorems
about Mini-ML including compiler correctness, value soundness, and type preservation [PS99, Pfe].
Harper and Stone formalized a complete semantics of Standard ML using hoas in Twelf [HS97].

Despite these great successes, mechanizing hoas is not easy. Because meta-level abstractions
(identified only up to β- or βη-equivalence) are a component of abstract syntax terms, structural
induction on these terms is subtle. Twelf requires a special purpose layer above the normal metalogic
for inductive reasoning. Limitations in the meta-meta-logic makes it impossible to write logical
relations proofs in a natural fashion [HC05, ACM02]. Recently Ambler and colleagues implemented
a hoas system, called Hybrid, in Isabelle/HOL. In Hybrid, and in earlier work, they derived
structural hoas induction principles and even took steps toward automatically generating them
[MAC01, ACM02]. While Ambler and colleagues appear to have solved some of the problems
surrounding induction, they have not yet published a definitive account of their work. Additionally,
mechanized hoas approaches rely on higher order unification, which is undecidable. Fortunately,
there are good incomplete algorithms for this [Hue75]. While hoas can be successfully mechanized,
such mechanization is complicated and the published results are not completely satisfactory.

Hoas is highly expressive. Pfenning and Elliot’s presentation includes alpha equivalence, sub-
stitution, and an infinite supply of variables, for free. Hence hoas can easily model axioms GM0,
GM2 and GM3. Additionally, it’s quite easy to define inductive relations in their system. Both
Hybrid and Twelf provide hoas users with structural induction. Iterative functions are defined in
Twelf using logic programming [PS02] and in Hybrid using Hilbert choice. This illustrates that
hoas is compatible with axiom GM4, but does not intrinsically entail it. While Pfenning and
Elliot only represent closed terms, Ambler and colleagues use a distinguished sort of names as free
variables [ACM02]; either appears compatible with with GM1. Lastly, the key idea of hoas is that
object abstractions are represented as meta-abstractions. Axiom GM5 follows by the definition of
Lam. Thus, a formal hoas theory of lambda calculus should be able to model the Gordon Melham
axioms. In summary, while hoas is very expressive, it is difficult to mechanize and difficult for
non-experts to understand.

hoas
Expressiveness A-
Mechanizability B
Transparency C
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5 Locally Named

Next we consider the locally named binding model described by McKinna and Pollack in [MP99].
In this binding model, free and bound variables live in distinct syntactic sorts. This makes sub-
stitution easy to formalize because well formed terms will automatically avoid variable shadowing
and capture.

5.1 Case Study

McKinna and Pollack formalize pure type systems, but, for consistency, we restrict this discussion to
the untyped lambda calculus. We will define our theory using four sorts. Sorts term and const are as
usual, but sorts var and param are novel. Members of var represent bound variables and members
of param represent free variables, or parameters. We write variables as v or w and parameters as
p or q. All variable and parameter sorts contain an infinite number of elements.

We define terms over the following signature:

Con : const → term
Var : var → term

Param : param → term
Lam : var → term → term
App : term → term → term

For example, we represent fn v. p v as Lam v (App (Param p) (Var v)). Because this is a concrete
representation, we can easily define induction and over the structure of terms. However, we will
find a pair of stronger induction principles shortly. Additionally, we augment the signature with
symbols for calculating a term’s free parameters and constants.

params : term → param set
consts : term → param set

The params function is defined recursively by

params(Param p) , {p}
params(Var v) , {}
params(Con k) , {}

params(Lam v t) , params(t)
params(App t t′) , params(t) ∪ params(t′).

This is simpler than the informal definition of free variables in Section 2.2 because in the Lam
case we can simply ignore bound variable v. The definition of consts is, mutatis mutandis, the
same. We need not add a function symbol vars : term → var as we plan to work only with closed
terms—those terms for which vars would behave as the constant function yielding {}.

Next we define two flavors of substitution: one for parameters and one for variables. To do so
we add symbols

[ := ]p : param → term → term
[ := ]v : var → term → term
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to the signature. Defining the first is simple.

[p := t]pParam q ,

{
t p = q

Param q otherwise

[p := t]pVar v , Var v

[p := t]pCon k , Con k

[p := t]pApp s u , App ([p := t]ps) ([p := t]pu)

[p := t]pLam v u , Lam v [p := t]pu

This is just textual substitution and equivalent to our first rejected definition from Section 2.2;
we did not attempt to avoid variable capture or shadowing. Shadowing is not an issue, because
parameters cannot be bound. However, as illustrated by the following example, variable capture
still appears problematic:

[p := Var v]p(Lam v (Param p)) = Lam v (Var v)

Except for the following abstraction case, the definition of [ := ]v is similar.

[v := t]vLam w u ,

{
Lam w u v = w

Lam w [v := t]u otherwise

While this substitution avoids shadowing, it too allows variable capture.
We want to avoid capturing uses of substitution, and it is obvious we can do so by only substi-

tuting terms containing no free vars. This observation must remain informal, as variable capture
itself is an informal notion. From here on, we will only consider terms without free variables to be
good terms.

To formalize variable closed terms, McKinna and Pollack define the Vclosed inductive relation:

Vclosed(Param p)
Vcl-Param

Vclosed(Con k)
Vcl-Const

Vclosed([v := Param p]vt)
Vclosed(Lam v t)

Vcl-Bind
Vclosed(t) Vclosed(u)

Vclosed(App t u)
Vcl-App

Rule Vcl-Bind is key. This states that an abstraction with bound variable v is closed if its body
is closed when v is replaced by a parameter. Because this relation is inductively defined, we can
write proofs by induction over the derivation showing that a term is Vclosed . This is a weaker form
of induction than Gordon and Melham’s.

To recover the full strength of Gordon and Melham’s induction principle, McKinna and Pollack
introduce a new relation aVclosed . Except for the binding case, this relation is defined by the same
rules as Vclosed .

∀p . aVclosed([v := Param p]vt)
aVclosed(Lam v t)

aVcl-Bind

Induction over the structure of aVclosed is more powerful than over Vclosed . When inducting
over the structure of an aVclosed derivation, the induction hypothesis says abstraction bodies are
aVclosed closed regardless of how we replace the bound variable. This is equivalent to the derived
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Gordon-Melham induction principle. In contrast, the induction hypothesis in a Vclosed derivations
only says abstraction bodies are Vclosed when substituting with some particular parameter.

McKinna and Pollack prove that the two relations contain the same terms and correspond to
the set of terms with no free variables. While aVclosed is better for induction, Vclosed is useful
as an introduction form. Thus we can prove Vclosed(t) using that relation’s weak premises, and
conclude that P (t) holds, where P is a property proved inductively using aVclosed ’s strong induction
principle.

We are now ready to define beta reduction. It is simply

App (Lam v t) s � [v := s]vt where Vclosed(s).

The side condition ensures that the substitution will be capture avoiding. Section 2.2’s informal β
rule had no side conditions. But only Vclosed terms matter, and, for such terms, this rule matches
the informal one.

McKinna and Pollack treat alpha equivalence as a new relation distinct from logical equality.
The following inference rules identify alpha equivalent terms:

Var p =α Var p Con k =α Con k

s =α s′ t =α t′

App s t =α App s′ t′

[v := Param p]vt =α [v′ := Param p]vt′

Lam v t =α Lam v′ t′
p /∈ params(t), params(t′)

Except for abstraction, each rule is simple. Two lambda terms are alpha equivalent when their
bodies are alpha equivalent after substituting a fresh parameter for their bound variables. A nice
result is that, in this setting, we can alpha rename any abstraction such that any variable is the
outer most bound variable. That is,

Vclosed(Lam v t) =⇒ ∀w . ∃s . Lam w s = Lam v t

This provides more naming flexibility than our informal system where, for example, we can never
rename fn x. y to make y the bound variable. This additional flexibility is a direct consequence of
the locally named binding model.

Unfortunately there is a significant defect in the locally named treatment of alpha equivalence.
The indicator function

f(t) =

{
0 if t = Lam v (Var v)
1 otherwise

is perfectly legal in the locally named model. This means that it is possible to distinguish two
alpha equivalent terms. In turn, given P (t) and t =α t′ we cannot conclude P (t′). If wish to reason
about alpha equivalence classes, we must do so explicitly. While pencil-and-paper proofs using the
Barendregt variable convention also suffer from this defect, normal practice allows us to gloss over
it. Such are the benefits of informality. As discussed by McBride and McKinna, the closely related
locally nameless representation, where alpha-equivalent terms are logically equivalent, provides a
formal solution to this problem [MM04].
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5.2 Evaluation

McKinna and Pollack’s locally named representation is reasonably easy for humans. While using
two sorts of variables is unconventional, it has appeared in earlier literature [Coq91]. Additionally,
the scheme is similar to the Barendregt variable convention. In either case, free and bound names are
drawn from distinct sets; McKinna and Pollack are simply more explicit about this. Their notation
is easy to read and locally named lambda terms look similar to informal ones. Additionally, their
work does not depend on esoteric mathematics or logic and should be readily accessible to non-
specialists. One defect in the system is that alpha equivalent terms are not logically equal, and
users must sometimes explicitly reason about alpha equivalence where they would not do so on
paper. However, the locally named binding model is, overall, quite transparent.

The locally named representation is sufficient to prove most, but not all, the Gordon-Melham
axioms. Locally named terms are built from first order constructors. Consequently, we can easily
define iterative functions and model axiom GM4. Induction over aVclosed is isomorphic to the
Gordon-Melham induction principle. Substituting Vclosed terms fulfills Gordon and Melham’s
substitution axiom (GM2), and params satisfies the free variable axiom (GM1). Locally named is
also compatible with with GM0. Unfortunately, treating alpha equivalence as an auxiliary relation
does not satisfy axiom GM3. As we saw, this is a symptom of a larger problem whereby we must
pollute our theory with explicit treatment of alpha equivalent terms.

The locally named approach is readily mechanizable. Language definitions do not rely on com-
plicated logic features. Indeed, little more is required than a countably infinite set, the ability to
define recursive datatypes, and theory of inductively defined relations.

Both humans and computerized proof assistants can easily understand the locally named rep-
resentation. Unfortunately, alpha equivalence is “second class,” and this diminishes the expressive
power of the binding model.

Locally Named
Expressiveness B
Mechanizability A
Transparency A-

6 Nominal Logic

Our next binding model, Pitts’s Nominal Logic [Pit03], represents a significant departure from the
previous models. Before, we defined object language theories in standard logics; here we will define
a new logic to facilitate reasoning about object languages.

Nominal Logical is an extension of multi-sorted first order logic with equality. Recall that in
first order logic, quantifiers may not range over functions or predicates [Dav93, GLM97]. Nominal
Logic adds three essential features to first order logic: atoms, swapping and a freshness predicate.
In this model, variable names are called atoms and inhabit distinguished sorts. The logic contains
functions to swap atoms and to test if an atom is fresh with respect to an object. While such
operations can be defined in higher order logic [UT05] or the Calculus of Inductive Constructions
[AB06], such work is outside the scope of this paper.
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6.1 Distinguishing Features

The key idea of Nominal Logic is that substitution and renaming are the wrong primitives for
manipulating variables. This is because renaming can affect many useful propositions. For example,
given distinct atoms a and b, it is true that a 6= b but renaming a to b gives b 6= b, which is clearly
false. In contrast, swapping a and b yields b 6= a; this is still a true statement.

In Nominal Logic, we will only work with equivariant predicates: those whose validity is un-
affected by swapping. All standard logical operators, including equality, negation, conjunction,
disjunction, existential quantification, and universal quantification are equivariant. Additionally,
the greatest and least fixed points of monotone operators are equivariant. Equivariant operators are
compositional; a predicate built from equivariant operators is itself equivariant. This is useful be-
cause we will leverage equivariance to, as in informal proofs, reason about entire alpha equivalence
classes using individuals from those classes as concrete representatives.

6.2 Some Rules of Nominal Logic

Nominal Logic sorts are grouped into two flavors, atom sorts and data sorts. Atom Sorts contain
atoms (i.e. variable names), and data sorts contain everything else. Theories may have multiple
sorts of each variety. For example, a typed language might be represented using two atom sorts,
one for term variables and one for type variables. By convention, the symbol A ranges over the set
of atom sorts and S ranges over the set of all sorts. The variables a, b, and c range over atoms.

In addition to the standard logical symbols (like equality and disjunction), Nominal Logic has
symbols for swapping and freshness. These are written as follows8:

( ) • : A,A, S → S

] : relation over (A,S)

We pronounce (a b) • x as “swap a for b in x” and a ] x as “a is fresh for x.” We will introduce
additional symbols shortly, but they can be defined (with a some additional axioms) in terms of
the above.

Although Pitts’s logic is fully axiomatized, we will examine a mix of axioms and theorems; this
should be more illuminating than an exhaustive list of axioms.

We begin with swapping. The swap operator is characterized by the following equations:

(a b) • c =


a c = b

b c = a

c otherwise

(a b) • f(x1, . . . , xn) = f((a b) • x1, . . . , (a b) • xn)

The first equation corresponds to the our intuitive notion of swapping atoms. The second is more
interesting. While this certainly seem reasonable for constructors, we can imagine functions where
it does not hold. For example, consider the problematic function

bad(x) =

{
0 x = a

1 otherwise .

8Changing from curried functions, to functions of multiple arguments, is necessary to work within first order logic.

18



Evaluating bad before swapping gives

(a b) • bad(a) = (a b) • 0 = 0,

but swapping first yields

(a b) • bad(a) = bad((a b) • a) = bad(b) = 1.

The problem here is that the bad is not equivariant; we cannot define such functions completely
within Nominal Logic. While it is occasionally necessary to define functions by adding axioms, it’s
necessary to check any new axioms for consistency—bad fails that check and is inconsistent with
Nominal Logic.

Pitts derives the following equivariance property: for any predicate P ,

` ∀a b x1 . . . xn . P (x1, . . . , xn) ⇐⇒ P ((a b) • x1, . . . , (a b) • xn).

This definition allows us to swap variables throughout a proposition with out changing the propo-
sition’s validity.

We proceed to freshness. Distinct atoms are fresh with respect to each other.

` ∀a b . a ] b ⇐⇒ a 6= b

Additionally, the is-fresh-for relation can be lifted over functions, with the following property:

` ∀a x1 . . . xn . a ] x1 ∧ a ] x2 ∧ . . . ∧ a ] xn =⇒ a ] f(x1, . . . , xn)

This states that if an atom is fresh from a function’s arguments, that atom is fresh from the
function’s result. However the converse is not true. Our final property is the fresh variable axiom,
which declares that there a variable fresh from any list of terms. The axiom9 is

` ∀x1 . . . xn . ∃a . a ] x1 ∧ . . . ∧ a ] xn.

While the above definitions suffice to formalize lambda calculus, and likely most other languages
with binding, Pitts introduces a binding construct directly to the logic. The purpose of this is to,
hoas like, define binding once and for all, thus eliminating boilerplate definitions from object
theories. Following Pitts, we add a new meta-operation on sorts, and let [A]S represent the sort
of A abstractions over S. Objects of this sort are written a. s where a : A and s : S. (Pitts makes

. a new syntactic form, but a family of function symbols would work too.) For example, we will
represent (fn a. b a) by Lam (a.App (Var b) (Var a)).

Of course, we want to do more than just syntactically construct abstractions. The following
three axioms provide a basis for reasoning about abstractions. The first lifts swapping.

` ∀a b b′ . (b b′) • (a. x) = ((b b′) • a). ((b b′) • x) (NL1)

To swap through an abstraction, swap the bound atom and the abstraction body. While syntacticly
identical abstractions are already equal, the next axiom extends logical equality to alpha equivalent
terms,

` ∀a a′ xx′ . a. x = a′. x′ ⇐⇒ (a = a′ ∧ x = x′) ∨ (a′ ] x ∧ x′ = (a a′) • x). (NL2)
9Technically, this statement and the preceding are not axioms but axiom schemes which describe infinite families

of axioms. Because there is no convenient way to quantify over lists in first order logic, we need a separate axiom
for each list of sorts, S1 . . . Sn, describing a sequence x1 . . . xn.
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Note that this corresponds to our intuitive notion of alpha equality. If the bound atoms are equal,
then the bodies must be too; if the bound atoms are different, then we compare the bodies after
using swap to rename occurrences of one bound atom. Lastly, we add an axiom that says we can
always decompose an abstraction as follows:

` ∀y : [A]S . ∃a : A . ∃x : S . y = a. x. (NL3)

6.3 Case Study

Using the above framework, it is easy to define a lambda calculus theory in Nominal Logic. We
will work over data sort term and atom sort var . The following signature gives the constructors in
this development:

Var : var → term
App : term → term → term
Lam : [var ]term → term

Because lambda abstractions are based on metalogic abstraction, this definition gives us alpha-
equivalence for free. While the logic itself does not provide an induction principle for terms, Pitts
adds induction as an axiom. For any predicate, P , with arity term, S1, . . . , Sn,

` ∀a x1 . . . xn .

P (Var a, x1, . . . , xn) ∧
∀t u . P (t, x1, . . . , xn) ∧ P (u, x1, . . . , xn) =⇒ P (App t u, x1, . . . , xn) ∧
∃a . ∀t . a ] t ∧ a ] x1 ∧ . . . ∧ a ] xn ∧ P (t, x1, . . . , xn) =⇒ P (Lam (a. t), x1, . . . , xn)

=⇒ ∀t . P (t, x1, . . . , xn).

This is a strong induction principle. In the lambda case, we must only prove the predicate for one
particular fresh variable. Thus, this induction principle is as expressive as Gordon and Melham’s.
Additionally, Urban and Norrish have derived similar principles for rule induction [UN05].

Pitts treats substitution by defining the following relation:

[ := ] 7→ : relation over (term, var , term, term)

We will read [a := s]t 7→ t′ as substituting s for a in t yields t′. One axiom is sufficient to specify
the relation.

` [a := s]t 7→ t′ ⇐⇒
t = Var a ∧ t′ = s

∨ ∃a′ . t = Var a′ ∧ a′ 6= a ∧ t′ = Var a′

∨ ∃t1 t′1 t2 t′2 . t = App t1 t2 ∧ t′ = App t′1 t′2 ∧ [a := s]t1 7→ t′1 ∧ [a := s]t2 7→ t′2

∨ ∃a′ t1 t′1 . t = Lam b. t1 ∧ t′ = Lam b. t′1 ∧ b ] s ∧ [a := s]t1 7→ t′1

While it appears formidable, this axiom is just an encoding of Barendregt’s partial substitution
(section 2.2). The disjunction’s first clause, for example, specifies that [a := s]Var a 7→ s. Its
last clause defines substitution for cases when capture will not be an issue, but is silent (as b ] s
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is false) when capture could occur. Although its definition appears partial, Pitts proves that the
graph of [ := ] 7→ corresponds to a total function. This definition is similar to common
pencil-and-paper practice [Bar84, Pie02].

With a total definition of substitution, we can define beta reduction easily by

[a := s]t 7→ t′

App (Lam a. t) s �β t′ .

6.4 Evaluation

Nominal Logic provides a concrete first order environment for defining theories about binding.
Because bound variables are named, theorists can write proofs about particular abstractions nat-
urally. As predicates are equivariant, such proofs then tell us about all alpha equivalent objects.
This follows standard convention for pencil-and-paper proofs. While Nominal Logic introduces a
new formalization of freshness and swapping, these concepts are similar to our informal notions of
free variables and renaming and should not surprise non-specialists. Additionally, being concrete,
propositions in this setting are easy to read.

There have been two major attempts to mechanize Nominal Logic. In his thesis Gabbay defined
a system similar to Nominal Logic as a new logic in Isabelle called Isabelle/FM. Although he was
able to formalize lambda calculus in this logic, the Isabelle/FM project was never fully completed
[Gab01]. Urban, with Tasson and Berghofer, is currently developing a nominal datatype package
for Isabelle/HOL. However, because he is working in Isabelle/HOL (which includes Hilbert choice
[NPW02]), Urban’s treatment differs in several ways from pure Nominal Logical. For example,
predicates must be individually proved equivariant—this property is no longer free. A major benefit
of Urban’s package is that consistent induction principles can be automatically derived [UT05,
UB06].

Nominal Logic alone is only moderately expressive. Alpha equivalence over nominal abstrac-
tions (axiom NL2) closely tracks the Gordon-Melham alpha equivalence axiom (GM3). Otherwise
the correspondence is less clear. The is-fresh-for relation is an analog of Gordon and Melham’s free
variable function. Likewise, Pitts’s axiom NL3 is similar in spirit to Gordon and Melham’s abstrac-
tion axiom (GM5). However, in either case, the precise technical connection is elusive. While it is
possible to axiomatize substitution, iteration, reduction, and induction, the logic itself provides lit-
tle guidance. Typical care must be taken to ensure new axioms are consistent. More generally, first
order logic—on which Nominal Logic is based—is a weak logic compared with higher order logic
[GLM97]. Additionally, Pitts’s definition of Nominal Logic is not compatible with the set-theoretic
axiom of choice [Sup72]; this may be a serious impediment in some settings.

Nominal Logic
Expressiveness B-
Mechanizability B
Transparency A
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7 Comparison

7.1 Expressiveness

In this paper, we evaluated the expressiveness of Nominal Logic, hoas, and the locally named rep-
resentation, using the Gordon-Melham axioms as concrete basis for comparison. The locally named
representation suffers because alpha-equivalence is defined apart from real, metalogical equality.
Thus, all reasoning about alpha-equivalence must, in this model, be done explicitly. Nominal Logic
was hampered by its first order origins and inconsistency with choice. In contrast, hoas could
model the Gordon-Melham axioms and is compatible with higher order logic. . In short: hoas >
Nominal Logic ' locally named.

7.2 Mechanizability

This paper was motivated by a desire to mechanize proofs. Which model is most is the most
mechanizable? Nominal logic is the youngest of our models, and has only been mechanized on an
experimental basis. Gabbay’s Isabelle/FM was a qualified success and Urban’s looks promising.
This bodes well, and there are no anticipated problems. In contrast, both the locally named and
hoas models have been mechanized. McKinna and Pollack’s mechanization of local named was
straightforward and successful. Automating hoas is quite difficult, and, as we have seen, the
results are not always satisfactory.

In short: locally named > hoas ' Nominal Logic.

7.3 Transparency

Because Nominal Logic allows for reasoning about alpha equivalence classes with representative
class members, it is highly transparent. The locally named representation is concrete and easy to
use, but reasoning about alpha-equivalence classes must be done explicitly. In contrast, hoas bears
little resemblance to standard notation and is notoriously difficult for non-experts to understand.

In short: Nominal Logic > locally named > hoas.

8 Conclusion

Nominal Logic, higher order abstract syntax, and the locally named representation can be used
to reason formally about variable binding. This paper has described and evaluated each. While
higher order abstract syntax is most expressive, the locally named model is most mechanizable,
and Nominal Logic is most transparent to the human user. Thus, there is no one-size-fits-all formal
approach to variable binding. Rather, the needs of each formal project should be considered before
choosing a binding model.

A binding model’s capacity to model the Gordon Melham axioms correlates with the model’s
practical expressiveness in the domain of metatheory with binding. The foregoing comparison of
hoas and the locally named model provides empirical evidence of this. Unfortunately, this paper
is limited as it makes only an informal comparison between two systems.

This work can be extended in both depth and breadth. Additional binding models, such as lo-
cally nameless, weak higher order abstract syntax, and Nominal Logic need attention. Furthermore,
I am interested in making the comparisons in the this paper more precise by formally deriving—or

22



finding inconsistency with—the Gordon-Melham axioms in each binding model. The latter goal
is technically subtle. In particular, it is not clear how to embed the Gordon-Melham axioms in
an arbitrary logic. In a system with intensional equality, for example, should the = in GM3 be
interpreted intensionally? If not, does a alternative, reasonable interpretation exist? I hope future
research can answer these questions.
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