
Evidence-based Audit

Jeff Vaughan
Limin Jia, Karl Mazurak, and Steve Zdancewic

Department of Computer and Information Science
University of Pennsylvania

CSF/LICS Joint Session
June 24, 2008

Our Setting: Distributed Access Control

Application
Resource
Principal

Data
Proof

1/23

Our Setting: Distributed Access Control

Application
Resource
Principal

Data
Proof

1/23

Our Setting: Distributed Access Control

Application
Resource
Principal

Data
Proof

1/23

Our Setting: Distributed Access Control

Application
Resource
Principal

Data
Proof

1/23

Key Idea: Proofs attest to data integrity.

Application
Resource
Principal

Data
Proof

{ , }{ , }

{ , }

{ , }{ , }

[Necula+ 98] 2/23

The Aura Project

A programming language called Aura

A propositional fragment, modeled here by Aura0

An ML-like computation language [Jia+ 08]

A security aware programming model

active, potentially malicious principals
mutual distrust between applications and principals
emphasis on access control and audit

An implementation including complier and .Net-based runtime

Today’s Talk

Analyzing the local security of Aura applications.

3/23

The Aura Project

A programming language called Aura

A propositional fragment, modeled here by Aura0

An ML-like computation language [Jia+ 08]

A security aware programming model

active, potentially malicious principals
mutual distrust between applications and principals
emphasis on access control and audit

An implementation including complier and .Net-based runtime

Today’s Talk

Analyzing the local security of Aura applications.

3/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Access control, locally.

Application
(Untrusted)

Resource

raw-op1 raw-op2

4/23

Jargon needed for this talk

Institutional Policy Human-level rules about principals, data
values, and resources.

Bad Access A system state change violating institutional policy.

Formal Rules Machine-level encoding of policy.

Foreshadowing

Users care about institutional policy, but technology tries to
enforces formal rules.

5/23

Jargon needed for this talk

Institutional Policy Human-level rules about principals, data
values, and resources.

Bad Access A system state change violating institutional policy.

Formal Rules Machine-level encoding of policy.

Foreshadowing

Users care about institutional policy, but technology tries to
enforces formal rules.

5/23

Why do reference monitors allow bad accesses to occur?

Problem 1

The trusted computing base’s implementation may be buggy.

Problem 2

The formal rules language may be too impoverished to express
institutional policy.

Problem 3

The system may be configured with incorrect formal rules.

And many other reasons not addressed here. . .

6/23

Common application design exacerbates these problems.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

Log

7/23

Common application design exacerbates these problems.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

Log

.htaccess files

/etc/httpd.conf

--disable-cgi
(compile time)

-C <directive>
(initialization time)

7/23

Common application design exacerbates these problems.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

Log

.htaccess files

/etc/httpd.conf

--disable-cgi
(compile time)

-C <directive>
(initialization time)

TCB

7/23

Problem 1

The trusted computing base’s implementation may be buggy.

Aura Solution

Trust only a small, generic kernel that has no application-specific
functionality.

[Saltzer+ 75], [Bauer+ 99], [Jia+ 08]

8/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

if (op2) is well-typed
 then (forward to
 resource;
 log { , }; ...)
 else skip

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

{ , }

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

TCB

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

Custom

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

TCB

Custom

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

External
Rules

Resource

raw-op1 raw-op2

op2op1

Resource

raw-op1 raw-op2

Kernel, K

Log

Custom
TCB

9/23

Example: Types for a remote procedure call server.

The RPC server resource has a single raw operation

raw-rpc : string ⇒ string

The kernel exposes an extended signature of propositions.

OkToRPC : string → Prop

DidRPC : string → string → Prop

Applications are written against the kernel interface.

rpc : (x : string) ⇒ (Kernel says OkToRPC x)

⇒ {y : string; Kernel says DidRPC x y}

The kernel interface and extended signature
may be mechanically generated.

10/23

Example: Types for a remote procedure call server.

The RPC server resource has a single raw operation

raw-rpc : string ⇒ string

The kernel exposes an extended signature of propositions.

OkToRPC : string → Prop

DidRPC : string → string → Prop

Applications are written against the kernel interface.

rpc : (x : string) ⇒ (Kernel says OkToRPC x)

⇒ {y : string; Kernel says DidRPC x y}

The kernel interface and extended signature
may be mechanically generated.

10/23

Problem 2

The formal rules language may be too impoverished to express
institutional policy.

Aura Solution

Use dependent DCC with signature objects to specify rules.

[Abadi+ 06], [Fournet+ 07], [Bengtson+ 08] . . .

11/23

Aura’s says modality represents affirmation. (1/2)

Γ ` P : Prop

Γ ` A says P : Prop

The proposition “Principal A
affirms proposition P.”

Γ ` P : Prop

Γ ` sign(A,P) : A says P

A’s signature on P. P might be
unprovable.

12/23

Aura’s says modality represents affirmation. (1/2)

Γ ` P : Prop

Γ ` A says P : Prop

The proposition “Principal A
affirms proposition P.”

Γ ` P : Prop

Γ ` sign(A,P) : A says P

A’s signature on P. P might be
unprovable.

12/23

Aura’s says modality represents affirmation. (2/2)

Γ ` p : P

Γ ` return@[A]p : A says P
A affirms proven propositions.

Γ ` p : A says P
Γ, x : P ` q : A says Q

Γ ` bind x = p in q : A says Q

A affirms the result of hypothet-
ical reasoning. We can “reason
from A’s point of view.”

(These are standard monad rules.)

13/23

Aura0’s syntax supports restricted dependent types.

Partial syntax

t ::= string | prin Base types
| x | a Variables and constants
| t says t Says modality
| (x : t) → t Logical implication/quantification
| (x : t) ⇒ t Computational arrows
| {x : t; t} Dependent pair type
| t t Application

...

Syntactic separation of computation and logical arrows stop
arbitrary resource-effects from polluting the logic.

14/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) → Bob says P → P)

Example (Bob acts for Alice only regarding validity)

Alice says ((x : string) → Bob says valid x → valid x)

Example (Kernel allows RPC calls on strings endorsed by Alice)

Kernel says ((x : string) → Alice says valid x → OkToRPC x)

15/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) → Bob says P → P)

Example (Bob acts for Alice only regarding validity)

Alice says ((x : string) → Bob says valid x → valid x)

Example (Kernel allows RPC calls on strings endorsed by Alice)

Kernel says ((x : string) → Alice says valid x → OkToRPC x)

15/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) → Bob says P → P)

Example (Bob acts for Alice only regarding validity)

Alice says ((x : string) → Bob says valid x → valid x)

Example (Kernel allows RPC calls on strings endorsed by Alice)

Kernel says ((x : string) → Alice says valid x → OkToRPC x)

15/23

Problem 3

The system may be configured with incorrect formal rules.

Aura Solution

Consistently log runtime proof objects for later analysis.

[Wee 95], [Cederquist+ 05]

16/23

When something unexpected happens: look at the log.

System design guarantees a one-to-one correspondence
between log entries and resource state changes.

If a Alice’s signature does not appear in a log entry, she could
not have caused the associated action.

Proofs get convoluted, but proof reduction can restore clarity.

Example (A convoluted proof)

(λx .λy .y) (sign(Alice,P)) (sign(Bob,Q))

Here Alice’s signature is “irrelevant.”

17/23

Reduction relation includes special cases for bind.

R-Bind-Specious

x /∈ fv(t2)

bind x = t1 in t2 −→ t2

Drops unused hypotheses. Most interesting when t1 is a signature.

R-Bind-Commute

y /∈ fv(t3)

bind x = (bind y = t1 in t2) in t3 −→
bind y = t1 in bind x = t2 in t3

Commutation rule that can enable further reductions.

. . . plus standard β and structural rules.

19/23

Proof reduction

Example (The same convoluted proof)

(λx .λy .y) (sign(Alice,P)) (sign(Bob,Q)) −→∗ sign(Bob,Q)

Example (Reducing by special bind rules)

bind x =
(
bind y = (f sign(Bob,Q))

in sign(Alice,P)
)

in x

−→∗ sign(Alice,P)

20/23

Logical properties of Aura0

Theorem (Subject Reduction)

If p −→ p′ and Γ ` p : s then Γ ` p′ : s.

Theorem (Confluence)

If p −→∗ p1, and p −→∗ p2, then there exists p3 such that
p1 −→∗ p3 and p2 −→∗ p3.

Theorem (Strong Normalization)

If Γ ` p : s, then p is strongly normalizing (SN). That is, all
reduction sequences starting with p halt.

21/23

Aura0 is strongly normalizing.

Fact

The Calculus of Constructions with dependent pairs (CoC) is SN.

[Geuvers 95]

Proof Idea

Show Aura reductions can be simulated in terminating system
based on CoC.

p0 //

[[·]]
��

p1 //

[[·]]
��

p2 //

[[·]]
��

· · ·

t0 cc
// t1 cc

// t ′
1 cc

// t2 cc
// · · ·

22/23

Take home message

Aura is a framework for proof carrying authorization and audit.

Aura includes

a small and generic trusted computing base,

an expressive authorization logic, and

a principled audit methodology.

Code and technical reports available from
http://www.cis.upenn.edu/~stevez/sol/aura.html

Or ask us for a demo!

23/23

http://www.cis.upenn.edu/~stevez/sol/aura.html

Take home message

Aura is a framework for proof carrying authorization and audit.

Aura includes

a small and generic trusted computing base,

an expressive authorization logic, and

a principled audit methodology.

Code and technical reports available from
http://www.cis.upenn.edu/~stevez/sol/aura.html

Or ask us for a demo!

23/23

http://www.cis.upenn.edu/~stevez/sol/aura.html

Bonus Slides

Typing Rules for Pair and Arrow

Strong Normalization Proof

Typing rules for arrow and pair.

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2

k1 ∈ {KindP,Prop,Type} k2 ∈ {Prop,Type}
Σ; Γ ` (x : t1) → t2 : k2

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2 k1, k2 ∈ {Prop,Type}
Σ; Γ ` {x : t1; t2} : k1

Translation from Aura to CoC erases says

Definition

[[A says P]]

∆

≈ [[P]]

∆

[[return@[A]p]]

∆

≈ [[p]]

∆

[[bind x = p: P in q]]

∆

≈ (λx :[[P]]

∆

. [[q]]

∆

) [[p]]

∆

[[sign(A,P)]]

∆

≈ x fresh

Where ∆ maps signatures to unique fresh variables.
(We’ll treat the ∆’s implicitly from now on.)

Lemma

If p is a well typed term in Aura0, then—for an appropriate
context—[[p]] is well typed in CoC.

Translation from Aura to CoC erases says

Definition

[[A says P]]∆ ≈ [[P]]∆

[[return@[A]p]]∆ ≈ [[p]]∆

[[bind x = p: P in q]]∆ ≈ (λx :[[P]]∆. [[q]]∆) [[p]]∆

[[sign(A,P)]]∆ ≈ ∆(sign(A,P))

Where ∆ maps signatures to unique fresh variables.
(We’ll treat the ∆’s implicitly from now on.)

Lemma

If p is a well typed term in Aura0, then—for an appropriate
context—[[p]] is well typed in CoC.

Translation from Aura to CoC erases says

Definition

[[A says P]]∆ ≈ [[P]]∆

[[return@[A]p]]∆ ≈ [[p]]∆

[[bind x = p: P in q]]∆ ≈ (λx :[[P]]∆. [[q]]∆) [[p]]∆

[[sign(A,P)]]∆ ≈ ∆(sign(A,P))

Where ∆ maps signatures to unique fresh variables.
(We’ll treat the ∆’s implicitly from now on.)

Lemma

If p is a well typed term in Aura0, then—for an appropriate
context—[[p]] is well typed in CoC.

Constructions needs a new reduction to simulate bind.

Definition (CC′ reduction)

The CC′ reduction relation augments the standard Calculus of
Construction reduction relation with

(λx :t. t1)((λy :s. t2)u) −→ (λy :s. ((λx :t. t1)t2))u
β′

β′ reductions simulate R-Bind-Commute reductions:

y /∈ fv(t3)

bind x = (bind y = t1 in t2) in t3 −→
bind y = t1 in bind x = t2 in t3

Aura0 is strongly normalizing.

Lemma

Well typed CoC terms are SN under CC ′ reduction.

[Lindley 05]

Lemma

If p is a well typed Aura0 term and p −→ p′. Then
[[p]] −→+

CC′ [[p′]] using one or more steps.

Proof of strong normalization.

Imagine p is an looping Aura0 term. Then by the second lemma
we can build a term which loops according to CC′. This
contradicts the first lemma.

	Introduction

