Evidence-based Audit

Jeff Vaughan
Limin Jia, Karl Mazurak, and Steve Zdancewic

Department of Computer and Information Science
University of Pennsylvania

CSF/LICS Joint Session
June 24, 2008

PENN

Our Setting: Distributed Access Control

{ Application
I =2IResource
Principal

1/23

Our Setting: Distributed Access Control

{) Application aData

IE2SResource
Principal

1/23

Our Setting: Distributed Access Control

{) Application aData

IE2SResource
Principal

1/23

Our Setting: Distributed Access Control

{) Application aData

IE2SResource
Principal

1/23

Key ldea: Proofs attest to data integrity.

{ Application AData
IE2SResource @Proof
Principal

| [Necula+ 98] 2/23

The Aura Project

m A programming language called Aura
m A propositional fragment, modeled here by Aurag
m An ML-like computation language [Jia+ 08]

m A security aware programming model

m active, potentially malicious principals
m mutual distrust between applications and principals
m emphasis on access control and audit

m An implementation including complier and .Net-based runtime

PENN

3/23 (pL)

The Aura Project

m A programming language called Aura

m A propositional fragment, modeled here by Aurag
m An ML-like computation language [Jia+ 08]

m A security aware programming model

m active, potentially malicious principals
m mutual distrust between applications and principals
m emphasis on access control and audit

m An implementation including complier and .Net-based runtime

Today's Talk

Analyzing the local security of Aura applications.

PENN

3/23 (pL)

Access control, locally.

PENN

4/23 PL)

Access control, locally.

%

4/23

Access control, locally.

#

4/23

Access control, locally.

PENN

4/23 PL)

Access control, locally.

PENN

4/23 PL)

Access control, locally.

PENN

4/23 PL)

Access control, locally.

PENN

4/23 PL)

Access control, locally.

$
hi

#

4/23

Access control, locally.

$
b

#

4/23

Access control, locally.

$
hi

#

4/23

Access control, locally.

$
hi

#

4/23

Access control, locally.

$
hi

#

4/23

Access control, locally.

$
hi

#

4/23

Access control, locally.

$
hi

#

4/23

Jargon needed for this talk

Institutional Policy Human-level rules about principals, data
values, and resources.

Bad Access A system state change violating institutional policy.

Formal Rules Machine-level encoding of policy.

PENN

5/23 PL)

Jargon needed for this talk

Institutional Policy Human-level rules about principals, data
values, and resources.

Bad Access A system state change violating institutional policy.

Formal Rules Machine-level encoding of policy.

Foreshadowing
Users care about institutional policy, but technology tries to

enforces formal rules.

PENN

5/23 PL)

Why do reference monitors allow bad accesses to occur?

Problem 1
The trusted computing base's implementation may be buggy.

Problem 2

The formal rules language may be too impoverished to express
institutional policy.

Problem 3

The system may be configured with incorrect formal rules.

And many other reasons not addressed here. . .

PENN

6/23 (pL)

Common application design exacerbates these problems.

PENN

7/23 PL)

Common application design exacerbates these problems.

i
-C <directive>
(initialization time

/etc/httpd.conf

--disable-cqi
(compile time)

.htaccess files

7/23

Common application design exacerbates these problems.

-C <directive>
(initialization time

/etc/httpd.conf

--disable-cqi
(compile time)

TCB

O e e e e e e e e e e e e e e
AR R R R e

.htaccess files

Problem 1

The trusted computing base's implementation may be buggy.

Aura Solution

Trust only a small, generic kernel that has no application-specific
functionality.

| [Saltzer+ 75], [Bauer+ 99], [Jia+ 08]

PENN

8/23 (pL)

In Aura, a lightweight kernel protects resources.

PENN

9/23 (p1)

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

opl

(Kernel, K

PENN

9/23 (pL)

In Aura, a lightweight kernel protects resources.

if (op2 A @) is well-typed
then (forward A to
resource;

log {A.@}; ...)
else skip

-

opl

fKerneI, K

9/23

In Aura, a lightweight kernel protects resources.

opl

(Kernel, K

PENN

9/23 (pL)

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.
.8

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

opl

PENN

9/23 (pL)

In Aura, a lightweight kernel protects resources.
.8

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

(Kernel, K

9/23

In Aura, a lightweight kernel protects resources.

9/23

In Aura, a lightweight kernel protects resources.

PENN

9/23 (p1)

In Aura, a lightweight kernel protects resources.
|
.8

External

Application Rules

(Untrusted)

9/23

In Aura, a lightweight kernel protects resources.

Application
(Untrusted)

o
w

In Aura, a lightweight kernel protects resources.

(Kernel, K

o e

9/23

Example: Types for a remote procedure call server.

The RPC server resource has a single raw operation
raw-rpc : string = string
The kernel exposes an extended signature of propositions.

OkToRPC : string — Prop
DidRPC : string — string — Prop

Applications are written against the kernel interface.

rpc : (x:string) = (Kernel says OkToRPC x)
= {y:string; Kernel says DidRPC x y}

10/23

Example: Types for a remote procedure call server.

The RPC server resource has a single raw operation
raw-rpc : string = string
The kernel exposes an extended signature of propositions.

OkToRPC : string — Prop
DidRPC : string — string — Prop

Applications are written against the kernel interface.

rpc : (x:string) = (Kernel says OkToRPC x)
= {y:string; Kernel says DidRPC x y}

The kernel interface and extended signature
may be mechanically generated.

10/23

Problem 2

The formal rules language may be too impoverished to express
institutional policy.

Aura Solution
Use dependent DCC with signature objects to specify rules.

| [Abadi+ 06], [Fournet+ 07], [Bengtson—+ 08] ...

11/23

Aura’s says modality represents affirmation. (1/2)

[+ P:Prop The proposition “Principal A
I~ A says P : Prop affirms proposition P."
=P :Prop A’s signature on P. P might be
I sign(A, P) : A says P unprovable.

12/23

Aura’s says modality represents affirmation. (1/2)

[+ P:Prop The proposition “Principal A
I~ A says P : Prop affirms proposition P."
=P :Prop A’s signature on P. P might be
I sign(A, P) : A says P unprovable.
CAUTION

Typing Rules
Are Simplified

12/23

Aura’s says modality represents affirmation. (2/2)

=p:P
I return@[A]p : A says P

A affirms proven propositions.

-p:A says P .
Mx:Pkq:A says Q A affirms the result of hypothet-

ical reasoning. We can “reason
from A's point of view.”

=bindx=ping: A says Q

(These are standard monad rules.)

13/23

Aurag's syntax supports restricted dependent types.

Partial syntax

t == string | prin Base types
x|a Variables and constants
t says t Says modality

|

|

| (x:t) — t Logical implication/quantification
| (x:t) =t Computational arrows

| {x:t;t} Dependent pair type

| tt Application

Syntactic separation of computation and logical arrows stop
arbitrary resource-effects from polluting the logic.

14/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) — Bob says P — P)

15/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) — Bob says P — P)

Example (Bob acts for Alice only regarding validity)

Alice says ((x:string) — Bob says valid x — valid x)

15/23

Dependent types allow for expressive rules.

Example (Bob acts for Alice)

Alice says ((P:Prop) — Bob says P — P)

Example (Bob acts for Alice only regarding validity)

Alice says ((x:string) — Bob says valid x — valid x)
Example (Kernel allows RPC calls on strings endorsed by Alice)

Kernel says ((x:string) — Alice says valid x — OkToRPC x)

15/23

Problem 3

The system may be configured with incorrect formal rules.

Aura Solution

Consistently log runtime proof objects for later analysis.

| [Wee 95], [Cederquist+ 05]

16/23

When something unexpected happens: look at the log.

m System design guarantees a one-to-one correspondence
between log entries and resource state changes.

m If a Alice’s signature does not appear in a log entry, she could
not have caused the associated action.

m Proofs get convoluted, but proof reduction can restore clarity.

Example (A convoluted proof)

(Ax.\y.y) (sign(Alice, P)) (sign(Bob, Q))

Here Alice's signature is “irrelevant.”

17/23

Reduction relation includes special cases for bind.

R-Bind-Specious

x ¢ fv(ty)

bindx=tjintp, — b

Drops unused hypotheses. Most interesting when t; is a signature.

R-Bind-Commute
y & ffts)

bind x = (bind y = t; in &) in t3 —
bind y = t; inbind x =ty in t3

Commutation rule that can enable further reductions.

... plus standard (8 and structural rules.

19/23

Proof reduction

Example (The same convoluted proof)

(Ax.Ay.y) (sign(Alice, P)) (sign(Bob, Q)) —* sign(Bob, Q)

Example (Reducing by special bind rules)

bind x = (bind y = (f sign(Bob, Q))
in sign(Alice, P))
in x

—" sign(Alice, P)

20/23

Logical properties of Aurag

Theorem (Subject Reduction)

Ifp—p andT -p:sthenTp :s.

Theorem (Confluence)

If p —"* p1, and p —* p, then there exists ps such that
p1 —" p3 and pp —" p3.

Theorem (Strong Normalization)

IfT = p:s, then p is strongly normalizing (SN). That is, all
reduction sequences starting with p halt.

21/23

Aurag is strongly normalizing.

The Calculus of Constructions with dependent pairs (CoC) is SN.

| [Geuvers 95]

Proof Idea

Show Aura reductions can be simulated in terminating system
based on CoC.

Po P1 P2
J{[] l[[] J{H
t[) cc tl cc t],- cc t2 cc Y

22/23

Take home message

Aura is a framework for proof carrying authorization and audit.

Aura includes
m a small and generic trusted computing base,
B an expressive authorization logic, and

m a principled audit methodology.

23/23

http://www.cis.upenn.edu/~stevez/sol/aura.html

Take home message

Aura is a framework for proof carrying authorization and audit.

Aura includes
m a small and generic trusted computing base,
B an expressive authorization logic, and

m a principled audit methodology.

Code and technical reports available from
http://www.cis.upenn.edu/ stevez/sol/aura.html

Or ask us for a demo!

23/23

http://www.cis.upenn.edu/~stevez/sol/aura.html

Bonus Slides

m Typing Rules for Pair and Arrow

m Strong Normalization Proof

PENN

Typing rules for arrow and pair.

Y;Et ok Yhox:t1 -t ko
ki € {Kind®, Prop, Type} ko € {Prop, Type}
YLTE(xt) — ko

LMtk Ylhox:tiH bk ki, ko € {Prop, Type}
L TEA{xt; 00}t ke

PENN

Translation from Aura to CoC erases says

[A says P] = [P]
[return@[Alp] =~ [p]
[bind x =p: Ping] =~ (Ax:[P] -[q])Pl
[sign(A,P)] =~ x fresh

Translation from Aura to CoC erases says

[A says Pln =~ [P]a

%

[return@[A]p] A [Pl A
[bind x = p: Ping]an =~ (Ax:[P]a-[q]a) [P]a
[sign(A, P)]a A(sign(A, P))

1%

Where A maps signatures to unique fresh variables.
(We'll treat the A’s implicitly from now on.)

PENN

Translation from Aura to CoC erases says

[A says Pla =~ [P]a

[return@[Alp]la =~ [prla
[bind x = p: Ping]la ~ (Ax:[Pla-[dla) [Pla
[sign(A,P)]a ~ A(sign(A,P))

Where A maps signatures to unique fresh variables.
(We'll treat the A’s implicitly from now on.)

Lemma

If p is a well typed term in Aurag, then—for an appropriate
context—]p] is well typed in CoC.

PENN

Constructions needs a new reduction to simulate bind.

Definition (CC’ reduction)

The CC’ reduction relation augments the standard Calculus of
Construction reduction relation with

/

(Ax:t. t1)((A\y:s. t)u) — (Ay:s. (Ax:t. t1)t2))u g

3’ reductions simulate R-Bind-Commute reductions:

y ¢ f(ts)

bind x = (bind y = t; in t;) in t3 —
bind y =t; inbind x =t in t3

PENN

Aurag is strongly normalizing.

Lemma
Well typed CoC terms are SN under CC’ reduction.

| [Lindley 05]

Lemma

If p is a well typed Aurag term and p — p’. Then
[rl —>JEC, [¢'] using one or more steps.

Proof of strong normalization.

Imagine p is an looping Aurag term. Then by the second lemma
we can build a term which loops according to CC’. This
contradicts the first lemma. Ol

PENN

	Introduction

