AuraConf: A Unified Approach to

Authorization and Confidentiality

Jeff Vaughan

Department of Computer Science
University of California, Los Angeles

TLDI
January 25, 2011

Some attackers don'’t play fair.

¥

playFor: (s: Song) — (p: prin) —
pf (RecCo says (MayPlay p s)) —+ Mp30f s

Some attackers don'’t play fair.

¥

playFor: (s: Song) — (p: prin) —
pf (RecCo says (MayPlay p s)) —+ Mp30f s

1/25 (1

Some attackers don'’t play fair.

playFor: (s: Song) — (p: prin) —
pf (RecCo says (MayPlay p s)) —+ Mp30f s

AURA,; protects confidential data.

m Types provide a formal description of confidentiality policy.

AURA,; protects confidential data.

m Types provide a formal description of confidentiality policy.

m Encryption provides an enforcement mechanism.

AURA,; protects confidential data.

m Types provide a formal description of confidentiality policy.
m Encryption provides an enforcement mechanism.

m Blame mechanism allows audit of (some) failures.

First thought: borrow someone else’s ideal

m Direct use of cryptography
u Applied Crytpo. [Schneier 96]

m Language operations supporting cryptography
. Spi Calculus [Abadi+ '98], Ases [Sumii+ 04]

m Type-based information flow
. Aura [Jia & Zdancewic '09]

m Information flow + explicit cryptography
U Key-Based DLM [Chothia+ ‘03], [Askarov+ '06]

m Declarative policy enforcement by automatic encryption
. Slmp [Vaughan & Zdancewic '06]

First thought: borrow someone else’s ideal

m Direct use of cryptography
u Applied Crytpo. [Schneier 96]

m Language operations supporting cryptography
. Spi Calculus [Abadi+ '98], Ases [Sumii+ 04]

m Type-based information flow
. Aura [Jia & Zdancewic '09]

m Information flow + explicit cryptography
u Key-Based DLM [Chothia+ ‘03], [Askarov+ '06]

m Declarative policy enforcement by automatic encryption
. Slmp [Vaughan & Zdancewic '06]

None of these are good fits with AURA.

New mechanism, for types describe encrypted data.

playForEnc: (s: Song) — (p: prin) —
pf (RecCo says MayPlay p s) —
(Mp30Of s) for p

New mechanism, for types describe encrypted data.

playForEnc: (s: Song) — (p: prin) —
pf (RecCo says MayPlay p s) —
(Mp30Of s) for p

New mechanism, for types describe encrypted data.

playForEnc: (s: Song) — (p: prin) —
pf (RecCo says MayPlay p s) —
(Mp30Of s) for p

New mechanism, for types describe encrypted data.

playForEnc: (s: Song) — (p: prin) —
pf (RecCo says MayPlay p s) —
(Mp30Of s) for p

Introduction
Overview of for types
Feature design
Language theory

Conclusion

5/25

Overview of for types

AURA,, represents confidentiality monadically: return.

return Alice 42: int for Alice

Monads are a common Haskell design pattern:
m return: creates an object
B run: consumes an object
m bind: composes objects

AURA,, represents confidentiality monadically: return.

return Alice 42: int for Alice

$

&(Alice, 42, 0x32A3)
and some metadata

Monads are a common Haskell design pattern:
m return: creates an object
B run: consumes an object
m bind: composes objects

AURA,; represents confidentiality monadically: run.

run (return Alice 42): int

8/25 (

AURA,; represents confidentiality monadically: run.

run (return Alice 42): int

$
42

8/25 (

AURA,; represents confidentiality monadically: run.

run (return Alice 42): int

$
42

m run can fail on “bad” ciphertext.

m wrong decryption key
m ill-formed/ill-typed payload plaintext
m corrupt ciphertext

mrune~ € where € blames p.

AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))
: int for Alice

9/25 ¢

AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))

: int for Alice
$
& (Alice,
(A{_} x: int. return 2«x) (run &(Alice, 21, 0x32A4))
0x32A3)

and some metadata

9/25 (

AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))

: int for Alice
$
& (Alice,
(A{_} x: int. return 2«x) (run &(Alice, 21, 0x32A4))
0x32A3)

and some metadata

~ &(Alice, 42, 0x32A5)
and some metadata

AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))

: int for Alice
$
& (Alice,
(A{_} x: int. return 2«x) (run &(Alice, 21, 0x32A4))
0x32A3)

and some metadata
~ &(Alice, 42, 0x32A5)
and some metadata

This is mobile code
9/25

Static and dynamic static coupled by for types

m Programs may dynamically load data or code with run
m Dynamic type-checking needed to catch errors
m Ciphertexts may be paired with digitally signed proofs
describing their contents
m In case of emergency, evaluation “blames” such proofs

m Well-typed clients create values that don’t cause blame

m Typing of bind makes sure mobile expressions can be
correctly decrypted by the receiver

m Receiver’s dynamic resources are modeled by sender’s
typechecker

10/25

Feature design

The tension in AURA..'S design.

Suppose expression e contains secrets. A client analyzing e is:

The tension in AURA..'S design.

Suppose expression e contains secrets. A client analyzing e is:

Type Theorist

The tension in AURA..'S design.

Suppose expression e contains secrets. A client analyzing e is:

Type Theorist Cryptographer
12/25 (

Challenge 1: Typing is relative.

return Alice "toaster"

)i

Bob

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

)i

Bob

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

| can typecheck this
because | know its
provenance.

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

)i

Bob

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

A

Alice Bob

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

| can typecheck this
with my private key.

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

A

Alice Bob

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

¥ ¥ F

Alice Bob Charlie

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

The ciphertext looks

like noise to me.

) D SR

Alice Bob Charlie

Challenge 1: Typing is relative.

&(Alice, "toaster", 0x0312)

¥ ¥ F

Alice Bob Charlie

Metadata casts guide typing of ciphertexts.

True cast

cast &(a, e, n) to (int for Alice): int for Alice

m Possible if typechecker can statically decrypt &'(a,e,n).

m Also possible if the typechecker has a prerecorded fact,
attesting to the form of &(a,e,n).

14/25 (i 0

Metadata casts guide typing of ciphertexts.

cast &(a, e, n) to (int for Alice): int for Alice

m Possible if typechecker can statically decrypt &'(a,e,n).

m Also possible if the typechecker has a prerecorded fact,
attesting to the form of &(a,e,n).

Justified cast

cast &(a, e, n) to (int for Alice) blaming p: int for Alice

m Valid when p: c says (£(a,e,n) isa (int for Alice)).
m Proof p can be blamed for decryption or typing failures.

14/25 (i

Decryption failures may be audited with justified casts.

Decryption failures may be audited with justified casts.

Decryption failures may be audited with justified casts.

@ Evidence: ill-formed
; Action: ignore message

15/25 (

Decryption failures may be audited with justified casts.

@ Evidence: ill-formed
; Action: ignore message

=

%ﬁﬁﬁr

Decryption failures may be audited with justified casts.

@ Evidence: ill-formed
) Action: ignore message

Evidence: mentions Mal
Action: blame Mal

Decryption failures may be audited with justified casts.

@ Evidence: ill-formed

Action: ignore message

Evidence: mentions Mal
Action: blame Mal

%fi

Decryption failures may be audited with justified casts.

@ Evidence: ill-formed

Action: ignore message

Evidence: mentions Mal
Action: blame Mal

Evidence: mentions Alice
Action: blame Alice ‘% W 2l \ﬁ’

Challenge 2: Keys affect static & dynamic semantics.

m Dynamic semantics

m Keys are required at runtime to implement run (and say).
m Type-and-effect analysis tracks these keys.

m || FX[Lucassen+ '88], foundations [Talpin+ '92]

m Static semantics

m True casts need keys at compile time for typechecking.
m Tracked using ideas from modal type systems.

[d Modal Proofs as Distributed Programs [Jia+ 04],
ML5 [Murphy ’'08]

m Combining these analyses is interesting!

16/25

Challenge 3: Typing exhibits history-dependence.

-G >

m Consider Bob preparing a confidential message for Alice

return Alice 3 ~~ cast&(—)to int for Alice

m Naively: Bob lacks Alice’s private key—he can’t typecheck
this.

Evaluation semantics creates new facts to guide the
typechecker.

m This ensures types are preserved at runtime and programs
don’t “go wrong.”

17/25

Language theory

Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #

19/25 (

Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #

m e stepsto €.

19/25 (

Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #

m e stepsto €.
m Randomization seed n is updated to n'.

19/25 (

Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #

m e stepsto €.
m Randomization seed nis updated to n'.

m Key W is available for signing and decrypting.
“The program is running with W’s authority.”

19/25 (

Evaluation tracks fact generation and authority.

Y Zo, WH{le,nl} —{€,n|} learning #

m e stepsto €.
m Randomization seed nis updated to n'.

m Key W is available for signing and decrypting.
“The program is running with W’s authority.”

m Signature ¥, facts context .7, and key W are available for
dynamic type-checking.

Evaluation tracks fact generation and authority.

Y Zo, WH{le,nl} —{€,n|} learning .7

m e stepsto €.
m Randomization seed nis updated to n'.

m Key W is available for signing and decrypting.
“The program is running with W’s authority.”

m Signature ¥, facts context .%,, and key W are available for
dynamic type-checking.
m New facts .# are produced during encryptions.

Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #

m e stepsto €.
m Randomization seed nis updated to n'.

m Key W is available for signing and decrypting.
“The program is running with W’s authority.”

m Signature ¥, facts context .%,, and key W are available for
dynamic type-checking.
m New facts .# are produced during encryptions.

Anatomy of the typing relation.

Y F W Ir:U;Vke:t

20/25

Anatomy of the typing relation.

> FW.I:U; Vet

m e hastype t w.r.t. ['s free variables and *’s type definitions.

20/25 (

Anatomy of the typing relation.

;.7 W:I:U;VFke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

Anatomy of the typing relation.

Y FW:I:U;VFke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

20/25 (

Anatomy of the typing relation.

Y FW:I:U;Vke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

m Soft decryption limit U specifies a subset of W safe to use
currently.

Anatomy of the typing relation.

Y FW:Ir:U;Vke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

m Soft decryption limit U specifies a subset of W safe to use
currently.

m Effects label V summarizes the keys needed to run e.

Anatomy of the typing relation.

Y F W Ir:U;Vke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

m Soft decryption limit U specifies a subset of W safe to use
currently.

m Effects label V summarizes the keys needed to run e.

Anatomy of the typing relation.

Y F W Ir:U;Vke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

m Soft decryption limit U specifies a subset of W safe to use
currently.

m Effects label V summarizes the keys needed to run e.
soft decryption limit ~ modal-logic world

effects label ~ standard type-and-effects label

Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when

Y is well formed: X |- ¢.

Facts are true: &(a,e,n) : t for b € . implies
a=band%;:b;::b;bl-e:t.

Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when

Y is well formed: X |- ¢.

Facts are true: &(a,e,n) : t for b € . implies
a=band%;:b;::b;bl-e:t.

Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
Y, Zo;WH{le,nl} —{€,n|} learning.# implies validy .%.

Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when

Y is well formed: X |- ¢.

Facts are true: &(a,e,n) : t for b € . implies
a=band%;:b;::b;bl-e:t.

Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
Y, Zo;WH{le,nl} —{€,n|} learning.# implies validy .%.

Slogan

Preservation + Progress + New Fact Validity = Soundness

21/25 (i3

Soundness requires handling fact contexts explicitly.

Definition (validy .%)

valids .# holds when
Y is well formed: X I~ o.

a=band%;:b;::b;bl-e:t.

Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
Y, Zo;WH{le,nl} —{€,n|} learning.# implies validy .%.

Preservation + Progress + New Fact Validity = Soundness

21/25 (i3

Noninterference: Secrets don'’t affect public outputs.

b~ |Aura Program

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "toaster”, 0x0399) |
: string for Alice

b |Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "toaster”, 0x0399) |
¢ : string for Alice

b |Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "toaster”, 0x0399) |

¢ : string for Alice

b

Y

15

Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "toaster”, 0x0399) |
: string for Alice

b |Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "lambda", 0x0312) |
: string for Alice

b |Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "lambda", 0x0312) |
: string for Alice

b |Aura Program

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "lambda", 0x0312) |
: string for Alice

b |Aura Program

Y

15

22/25 \E})

Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "lambda", 0x0312) |
: string for Alice

b~ |Aura Program

Y

15

]J Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ '08]

22/25 (I

Conclusion

23/25 (15

m Type specification + cryptographic enforcement
~ confidentiality

m Type-and-effects analysis + modal-type theory
~» precise resource tracking

B AURAn Unifies mechanisms for confidentiality, audit and
access control.

24/25

Acknowledgments

Thank you to all my collaborators on Aura project!
m Limin Jia
m Karl Mazurak
m Joseph Schorr
m Luke Zarko
m Steve Zdancewic
m Jianzhou Zhao

Acknowledgments

Thank you to all my collaborators on Aura project!
m Limin Jia
m Karl Mazurak
m Joseph Schorr
m Luke Zarko
m Steve Zdancewic
m Jianzhou Zhao

Questions?

	Introduction
	Overview of for types
	Feature design
	Language theory
	Conclusion

