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AURA,; protects confidential data.

m Types provide a formal description of confidentiality policy.
m Encryption provides an enforcement mechanism.

m Blame mechanism allows audit of (some) failures.




First thought: borrow someone else’s ideal

m Direct use of cryptography
u Applied Crytpo. [Schneier 96]

m Language operations supporting cryptography
. Spi Calculus [Abadi+ '98], Ases [Sumii+ 04]

m Type-based information flow
. Aura [Jia & Zdancewic '09]

m Information flow + explicit cryptography
U Key-Based DLM [Chothia+ ‘03], [Askarov+ '06]

m Declarative policy enforcement by automatic encryption
. Slmp [Vaughan & Zdancewic '06]
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u Applied Crytpo. [Schneier 96]

m Language operations supporting cryptography
. Spi Calculus [Abadi+ '98], Ases [Sumii+ 04]

m Type-based information flow
. Aura [Jia & Zdancewic '09]

m Information flow + explicit cryptography
u Key-Based DLM [Chothia+ ‘03], [Askarov+ '06]

m Declarative policy enforcement by automatic encryption
. Slmp [Vaughan & Zdancewic '06]

None of these are good fits with AURA.
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AURA,; represents confidentiality monadically: run.

run (return Alice 42): int

$
42

m run can fail on “bad” ciphertext.

m wrong decryption key
m ill-formed/ill-typed payload plaintext
m corrupt ciphertext

mrune~ € where € blames p.




AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))
: int for Alice
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AURA,,; represents confidentiality monadically: bind.

bind (int for Alice)
(return Alice 21)
(A{-} x: int. return Alice (2xx))

: int for Alice
$
& (Alice,
(A{_} x: int. return 2«x) (run &(Alice, 21, 0x32A4))
0x32A3)

and some metadata
~ &(Alice, 42, 0x32A5)
and some metadata

This is mobile code
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Static and dynamic static coupled by for types

m Programs may dynamically load data or code with run
m Dynamic type-checking needed to catch errors
m Ciphertexts may be paired with digitally signed proofs
describing their contents
m In case of emergency, evaluation “blames” such proofs

m Well-typed clients create values that don’t cause blame

m Typing of bind makes sure mobile expressions can be
correctly decrypted by the receiver

m Receiver’s dynamic resources are modeled by sender’s
typechecker
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Metadata casts guide typing of ciphertexts.

True cast

cast &(a, e, n) to (int for Alice): int for Alice

m Possible if typechecker can statically decrypt &'(a,e,n).

m Also possible if the typechecker has a prerecorded fact,
attesting to the form of &(a,e,n).
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Metadata casts guide typing of ciphertexts.

cast &(a, e, n) to (int for Alice): int for Alice

m Possible if typechecker can statically decrypt &'(a,e,n).

m Also possible if the typechecker has a prerecorded fact,
attesting to the form of &(a,e,n).

Justified cast

cast &(a, e, n) to (int for Alice) blaming p: int for Alice

m Valid when p: c says (£(a,e,n) isa (int for Alice)).
m Proof p can be blamed for decryption or typing failures.
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Decryption failures may be audited with justified casts.

@ Evidence: ill-formed

Action: ignore message

Evidence: mentions Mal
Action: blame Mal

Evidence: mentions Alice
Action: blame Alice ‘% W 2l \ﬁ’




Challenge 2: Keys affect static & dynamic semantics.

m Dynamic semantics

m Keys are required at runtime to implement run (and say).
m Type-and-effect analysis tracks these keys.

m || FX[Lucassen+ '88], foundations [Talpin+ '92]

m Static semantics

m True casts need keys at compile time for typechecking.
m Tracked using ideas from modal type systems.

[ d Modal Proofs as Distributed Programs [Jia+ 04],
ML5 [Murphy ’'08]

m Combining these analyses is interesting!
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Challenge 3: Typing exhibits history-dependence.

-G >

m Consider Bob preparing a confidential message for Alice

return Alice 3 ~~ cast&(—)to int for Alice

m Naively: Bob lacks Alice’s private key—he can’t typecheck
this.

Evaluation semantics creates new facts to guide the
typechecker.

m This ensures types are preserved at runtime and programs
don’t “go wrong.”

17/25




Language theory




Evaluation tracks fact generation and authority.

Y Zo, WH{le,n} —{€,n|} learning #
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Anatomy of the typing relation.

Y F W Ir:U;Vke:t

m e hastype t w.r.t. ['s free variables and ¥’s type definitions.
m Facts in .# summarize knowledge about ciphertexts.

m Statically available key W indicates keys available for
typechecking.

m Soft decryption limit U specifies a subset of W safe to use
currently.

m Effects label V summarizes the keys needed to run e.
soft decryption limit ~ modal-logic world

effects label ~ standard type-and-effects label




Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when

Y is well formed: X |- ¢.

Facts are true: &(a,e,n) : t for b € . implies
a=band%;:b;::b;bl-e:t.




Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when

Y is well formed: X |- ¢.

Facts are true: &(a,e,n) : t for b € . implies
a=band%;:b;::b;bl-e:t.

Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
Y, Zo;WH{le,nl} —{€,n|} learning.# implies validy .%.




Soundness requires handling fact contexts explicitly.

Definition (validy .%)
valids .# holds when
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Facts are true: &(a,e,n) : t for b € . implies
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Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
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Slogan

Preservation + Progress + New Fact Validity = Soundness
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Soundness requires handling fact contexts explicitly.

Definition (validy .%)

valids .# holds when
Y is well formed: X I~ o.

a=band%;:b;::b;bl-e:t.

Lemma (New Fact Validity)

Assume valids %y and X; %o, W:T:U;VIe:t. Then
Y, Zo;WH{le,nl} —{€,n|} learning.# implies validy .%.
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Noninterference: Secrets don'’t affect public outputs.

| &(Alice, "lambda", 0x0312) |
: string for Alice

b~ |Aura Program

Y

15

]J Noninterference [Denning+ ’77],
Termination Insensitive Noninterference [Askarov+ '08]
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Conclusion
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m Type specification + cryptographic enforcement
~ confidentiality

m Type-and-effects analysis + modal-type theory
~» precise resource tracking

B AURAn Unifies mechanisms for confidentiality, audit and
access control.
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