Application-centric security policies on unmodified
Android

Nikhilesh Reddy* Jinseong Jeon' Jeffrey A. Vaughan*
Todd Millstein* Jeffrey S. Foster!

*University of California, Los Angeles
tUniversity of Maryland, College Park

Technical Report #110017

UCLA Computer Science Department
July 5, 2011

Abstract

Google’s Android platform uses a fairly standard resource-centric permission model to
protect resources such as the camera, GPS, and Internet connection. We claim that a much bet-
ter permission model for developers and users would be application-centric, with a vocabulary
that directly relates to application-level functionality, e.g., one permission could allow camera
use, but only for barcode scanning; another could allow Internet access, but only to certain do-
mains. Despite the large apparent gap between resource- and application-centric permissions,
we argue that Android already provides the necessary mechanisms to support an expressive
and practical form of application-centric policies. Specifically, each application-centric per-
mission can be represented by a new Android permission and can be enforced by coupling the
permission with a trusted service running in its own process. We present a survey of the top 24
free Android apps and show that a small vocabulary of application-centric permissions covers
much of the functionality of those apps. We also describe a prototype implementation of our
approach.

1 Overview

Google’s Android is one of the most popular smartphone platforms, with more than 100 million
activated devices, more than 200,000 applications in the Android Market, and an estimated 4.5 bil-
lion apps installed from the Market [8]. Security of Android applications (henceforth “apps”) is a
pressing concern, as apps can collect sensitive data from the user (e.g., usernames and passwords),
access personal data stored on the device (e.g., calendar and contact information), and use sensitive
device capabilities (e.g., telephony, GPS, and camera).

Android takes an “open-publish” approach to app distribution, in which any app can be installed
on any phone. To help address security concerns, the Android platform protects access to sensitive
resources—including the camera, network sockets, and GPS receiver—with permissions. Each
app includes an XML manifest file that lists the permissions requested by the app. When an app
is installed, those permissions are shown to the user, who then decides whether or not to proceed
with the installation. No additional permissions may be acquired when an app runs, and a security
exception is raised if an app tries to access a resource without permission.

Android permissions today. While permissions on Android provide an important level of security,
we have observed that, in practice, the design of Android’s permission system routinely forces apps
to acquire more powerful permissions than should be necessary. For example, an app that scans
a product’s barcode and then searches for it in a public database must have (at least) the Take
Pictures and Full Internet Access permissions. As a result, apps with this feature (of which there
are several in the Android Market) could potentially do much more than just barcode scanning.
For example, they could access the geotag on a barcode image to find the user’s location. More
maliciously, they may be able to covertly capture images of a user’s surroundings and transmit
them anywhere on the Internet.

In our view, the basic problem with Android’s permission system is that it is resource-centric:
each permission typically controls access to a particular hardware or software resource. Thus,
enforceable security policies only say what resources are accessed, with little or no indication of

how or why they are used. This leaves developers on their own to ensure they use the resources
safely and only to the extent necessary. Worse, when users are presented with a list of permissions
an app requests, they are left to guess at whether the app uses those permissions safely.

Application-centric permissions on unmodified Android. There are two major challenges that
any solution to this issue must address: First, Android is evolving rapidly, with new hardware
and software capabilities emerging regularly, and thus any solution must be agile and adaptable.
Second, the permissions required by apps must capture application-centric security properties that
are intuitively understandable to both developers and users.

It is tempting to try to address this problem by enriching Android’s permission system in vari-
ous ways. For example, each existing permission could be sliced into smaller permissions granting
rights to correspondingly finer units of resource access. As another example, an application’s
manifest could use an authorization language (e.g., DCC or KeyNote) to establish constraints on
resource access. A program analysis or type system (e.g., JIF) could also be used to track how in-
formation flows through an app. However, we believe such approaches require making important
architectural commitments up-front, and they may be difficult to evolve on such a rapidly changing
platform. Furthermore, it is imperative that the policy language be kept simple for developers and
users alike.

Perhaps surprisingly, we believe that Android already contains the key ingredients needed for a
powerful and practical solution to the above challenges: interprocess communication, process iso-
lation, and user-defined permissions. Interprocess communication enables an application to access
rich functionality provided by trusted third parties. Process isolation ensures that applications only
access that functionality through a well-defined interface, thereby allowing third parties to enforce
arbitrarily expressive application-centric security policies. Finally, user-defined permissions allow
these policies to be associated with simple Android permissions that applications must acquire to
access the desired functionality.

Consider again the problem of supporting safe barcode scanning. An ideal security policy
would specify that the camera may only be used to scan a barcode, and the resulting images are
thrown away after processing. We propose to represent this policy as a new Android permission,
ScanBarcodes, that grants access to a trusted library that obeys the policy. To do so, the library
could have a single function that displays the current camera image, waits for a user click, and then
scans the resulting image for a barcode, and returns the barcode’s numerical value to the calling
app. Furthermore, we can implement the library as an Android service that runs in a separate
process. Therefore, while the library must be granted full camera access, an app that calls into the
library need only be granted ScanBarcodes access, thereby providing a strong and understandable
guarantee to both the app developer and users.

Although at first glance it seems we may need many such application-centric permissions, our
hypothesis is that in practice a reasonably small set can dramatically improve the security of a wide
variety of applications. Moreover, we envision an ecosystem in which many different vendors pro-
vide services associated with commonly desired application-centric permissions. These services
will be far simpler than full apps and hence should be easy to audit for security, and they are at-
tractive components for open-sourcing since they likely will not contain proprietary features of an
app. Finally, by modularizing each application-centric permission in its own abstraction boundary,

we decrease the potential for harm due to policy violations in these libraries. For example, our
price-checking application would naturally use one service to provide the barcode scanning and a
separate service to provide access to a barcode database on the Internet, thereby greatly reducing
the potential for vulnerabilities caused by the interaction of camera and Internet permissions.

To explore these ideas, we have undertaken several preliminary tasks. We performed a survey
of popular Android apps to identify their application-centric policies (Section 2). We implemented
our proposed approach as an Android library ACPIib, which comprises three application-centric
permissions and the associated services. Finally, we developed Redexer, a Dalvik bytecode rewrit-
ing framework that retrofits downloaded apps to use application-centric policies. We describe our
preliminary experience using ACPlib and Redexer to enhance the security of existing and new apps
(Section 3).

2 Feasibility study

We performed a preliminary study to evaluate the extent to which application-centric permissions
can be shared across a variety of apps to enforce stronger security policies.

Methodology Our feasibility study considered the top 24 free apps on Google’s Android Mar-
ket! as of April 13, 2011. These apps were selected because the Market website displays them
prominently to users; they are widely installed (as reported on their Market home pages); and they
represent a spectrum of application domains.

The evaluation consisted of installing and running each app to understand its functionality,
reading English-language privacy policies or other documentation when available, and, sometimes,
crude analysis of binaries (using the Unix strings command). In the case of WhatsApp, only
limited functionality was tested due to restrictions on app registration. For each app, we evaluated
how it uses its current permission set and identified application-centric permissions that could
replace some of these permissions.

Results The results of our study are summarized in Figure 1. The top left-hand column of the table
shows a selection of Android permissions requested by apps, and the bottom left-hand column
shows application-centric permissions we identified as potential replacements. These permissions
are described beneath the table and range from capturing specific Internet uses to restricting use of
location data. We discuss several of our application-centric permissions in detail.

Internet permissions. Four of the 11 permissions pertain to the Internet. The permission Inter-
netURL(domain) allows network connections only to domain and its subdomains. This is useful
for the common case in which an app communicates with only a handful of known web services,
e.g., Google’s Sky Map can use InternetURL(google.com) in lieu of arbitrary Internet access.

"https://market.android.com/. The apps surveyed are Alchemy 1.10.2, Google Maps 5.4.0, Dropbox
1.1.1, GasBuddy - Find Cheap Gas 1.14, Street View on Google Maps 1.6.0.6, Angry Birds 1.5.3, Bubble Blast !
1.0.16, Shazam 2.5.3-BB70302, ASTRO File Manager 2.5.2, Pandora Radio 1.5.5, Advanced Task Killer 1.9.6B76,
Barcode Scanner 3.53, Vaulty Free Hides Pictures 2.4.1, Facebook for Android 1.5.4, FreeMusicDownloader 1.8.3
Live Holdem Poker Pro 3.01, Angry Birds Rio 1.0.0, Horoscope 1.5.2, KakaoTalk 2.0.1, Flash Player 10.2.156.12,
Bubble Blast 2 ver. 1.0.18, Google Sky Map 1.6.1, and WhatsApp Messenger 2.6.2642.

https://market.android.com/

Flashplaver

X | Bubble Blast
X| Bub. Blast 2

X| Angry Birds
X[A. Birds Rio
® x| Dropbox

® X(ASTRO

® X| Barcode

X | Alchemy

Full Internet Access
Storage contents
Location fine/coarse
Modify global settings
Read phone state/id
Take photos/videos

b 4

%X | Facebook
X[GasBuddy
X X X X X| Horoscope
X X[KakaoTalk
X X[Live Holdem
X | Pandora
X | Shazam
X| Sky Map
x| Street View
X | Task Killer
X X| Vaulty
e o o X| WhatsApp
x| YouTube

x

x
x

X X X X ® | FreeMusic
[
X X

® & X X X| Maps

°
x

AdsPrivate
AdsGeo
AnonUsage
InternetURL(developer) + + + + +
InternetURL (other) + +
LocationBlock

LocationVisible

MobileBilling

ScanBarcodes +
SDCardOwnFiles

SDCardShared

ToggleGPS

+ + + +
+ + +
+ + +

AdsPrivate: May displays ads, but without shar-
ing personal information with advertisers.
AdsGeo: May displays ads and may share your
location, but no other personal information, with
advertisers.

AnonUsage: May report anonymous usage in-
formation to its developers, including a random
number identifying your copy of the app, but not
you or your phone.

InternetURL(x): May access the internet services
located at domain x.

LocationBlock: May access approximate location,
accurate to 150m (about one city block).

LocationVisible: May acquire accurate location,
but only when the app’s interface is showing.
MobileBilling: May bill you via your carrier, after
requesting permission with a prompt.
ScanBarcodes: May use the camera to read bar-
codes and QR codes.

ToggleGPS: May enable or disable the GPS re-
ceiver.

SDCardOwnFiles: May manage files on its own
area of the SD card; cannot read, edit, or delete
other files.

SDCardShared: May manage files, such as music
or photos, that are shared by several apps; cannot
read, edit, or delete that belong to other apps.

Figure 1: App-centric permissions for top 24 apps. Notation X indicates a built-in Android permission that
can be replaced by one or more application-centri permissions. + indicates application-centric policies to be
added and e indicates policies that cannot obviously be removed. Some Android permissions, such as those
related to account managment are outside the scope of this paper, and not shown.

The InternetURL permission is too coarse-grained to use for in-app advertising, since both the
advertiser and the app developer have incentives to extensively share user data, violating reasonable
privacy expectations. Yet totally forbidding communication with advertisers is also undesirable, as
ad revenue encourages developers to release free apps. The permissions AdsPrivate and AdsGeo
manage this tension by allowing advertising while restricting flows of private data. A similar
AnonUsage permission is intended for the collection of general, anonymous analytics via services
such as Flurry.2. (An alternative design could parametrize the permission by ad network.)

The application-centric Internet permissions above impose strong restrictions on Internet ac-
cess while still allowing most desired functionality. Of the 23 apps that originally required Full
internet access, 22 can be rewritten to use only application-centric Internet permissions. The re-
maining app, Freemusic, downloads media files from diverse domains and legitimately needs full
Internet access.

Storage permissions. Android’s default handling of external storage, such as SD cards, allows
any app to modify data stored by any other app. This policy is overly broad for many apps, such
as Freemusic, that should only access deliberately modify media libraries, and for others, such as
Horoscope, that do not appear to legitimately need modify to shared files at all. Indeed, we believe
the restrictive SDCardOwnFiles and SDCardShared policies can replace Android’s built-in storage
permission for six of the ten apps that require it.

GPS permissions. We found that four of the seven apps that request the Modify global set-
tings permission seem to use it solely to toggle the GPS unit on or off, to save power (as distinct
from the right to access GPS location data, protected by a different permission). These apps can
be granted the more restrictive ToggleGPS permission instead. Permissions LocationBlock and
LocationVisible restrict access to GPS location data in two different ways, and these permissions
appear sufficient to replace Android’s GPS permission in seven out of eight apps. As suggested by
LocationBlock, we believe the distinction of GPS vs. network location is less interesting than the
distinction between highest-precession-possible vs. intentionally-degraded location.

Overall, of the requested Android permissions we studied, 71% are replaceable with application-
specific permissions that are much more restrictive, and yet should not adversely affect function-
ality. The permissions InternetURL, AdsPrivate, and AnonUsage are applicable to at least 1/3 of
surveyed apps, and InternetURL itself is applicable to 2/3. Finally, 8 of the 11 permissions are
applicable to at least 10% of the surveyed apps. This study therefore provides preliminary evi-
dence that for many Android apps, a small number of application-centric permissions can provide
significantly stronger security guarantees without loss of functionality.

Implementing application-centric permissions The 11 application-centric permissions we iden-
tified are intended to be enforceable by interposing a strong API, implemented via a service, be-
tween underlying resources and clients apps. To give a flavor of how that might work, we sketch
how two of the permissions could be enforced by a trusted service. For purposes of exposition
we elide some details, notably Android’s event driven programming model and pervasive use of
objects. (The prototype described in Section 3 does follow Android’s programming model.)

First, consider the InternetURL(domain) permission, which allows an app to connect to (sub-

’http://www.flurry.com

http://www.flurry.com

domains of) domain. This functionality can be implemented by a service with the following inter-
face:

Connection open(string url);

byte[] read(Connection c);

void write(Connection c, byte[] data);
void close(Connection c);

In Android, global state is used to track a security context, and open(x) checks the current context
for a permission of the form InternetURL(y), where x is a subdomain of y. If such a permission
exists, open connects to a socket and returns a valid Connection object. Otherwise, open raises
a security exception. While this secure kernel provides few operations, wrappers can extend it to a
richer interface.

Although Android does not directly support parameterized permissions such as InternetURL,
these can be encoded using permission trees. A permission tree is a family of permissions whose
names share a common prefix. For instance InternetURL(google.com) can be given full name ac-
plib.perm.URL.google_com which is part of the acplib.perm.URL tree. Services must be instructed
to preregister tree elements before client installation, but this does not appear to be a fundamental
limitation of the platform.

Second, consider the AdsPrivate permission. A trusted library can mediate between apps and
well-known ad services using an interface such as:

enum AdService { ADMOB, JUMPTAP, ...}
Connection open(AdService a);

byte[] newAd(Connection c);

void close(Connection c);

This interface allows ads to be displayed (via newAd) , but prevents the app from passing any
information to an advertiser. The service could also mitigate covert timing channels using a com-
bination of prefetching and delaying ad requests. One wrinkle is that online advertising requires
that apps identify themselves using a unique id so that the right developer can be paid for clicks.
The service can use the global context to identify calling apps, along with a well-known map
from apps to ids that is consulted the first time an app requests an ad connection. Finally, while
it would be appear difficult to implement and maintain a single multi-advertiser abstraction layer,
companies such as AdWhirl® do this already, albeit without our security focus.

3 ACPIlib and Redexer

To gain preliminary experience with some of the permissions discussed in Section 2, we imple-
mented a prototype application-centric permission system for Android. Our system comprises two
main components: ACPIlib, which provides an implementation of application-centric permissions
and their associated services, and Redexer, a Dalvik-to-Dalvik rewriting system that can modify
apps, even without having their source code, to use ACPlib.

Shttps://www.adwhirl.com

https://www.adwhirl.com

ACPIib ACPIib is collection of Android services, each implementing one of the following permis-
sions: InternetUrl, LocationBlock, or ScanBarcodes. The services listen for request messages from
other clients apps and ensure client apps have appropriate privileges before servicing requests.

As described in Section 2, security dictates that ACPlib services run in separate processes from
their clients, with communication only via Android’s RPC mechanism. Using this directly is more
complex than simply calling privileged system routines. To ameliorate this, ACPIlib provides drop-
in API replacements for system libraries that handle necessary RPC calls, ACPIlib internally. For
example, instead of calling java.net .URLConnection.openConnection () to open an
Internet connection, users now call apclib.net.URLConnection.openConnection ().
Additionally apps must bind to ACPIlib, typically done in the app’s onCreate () method.

Redexer ACPIib can be used as-is by security-conscious developers to reduce the privilege level
of their apps. We also expect that app users will wish to retrofit existing apps to use ACPIib, e.g.,
to restrict the web sites apps can visit or coarsen the location information revealed to apps. To this
end, we have begun development of Redexer, a Dalvik binary rewriting framework that modifies
application bundles to replace Android API calls with ACPlib equivalents. Redexer also adds the
Dalvik code for ACPIlib’s replacement APIs to the application.

One surprising challenge in developing Redexer is the rules that Android’s verifier enforces
before it will execute a Dalvik bytecode file. In particular, Dalvik files contain several indexed
“identifier lists” of data that is shared across methods, e.g., strings, types, field and method defi-
nitions, etc. The Android verifier requires that such pools are both duplicate-free and sorted in a
particular order. This causes some complications when adding the ACPlib API to the app’s Dalvik
file. For example, there must be only one string “V” representing the type void in a Dalvik file, and
it is almost guaranteed this type will appear in both the app’s code and in the ACPlib API code;
thus upon merging, we must eliminate one copy and rewrite one or the other file accordingly.

Another challenge for Redexer is that some apps call ACPIlib services from onCreate (), but
(due to Android’s event-driven semantics) the connection to ACPlib cannot be established until
after onCreate () returns. Thus, Redexer splits onCreate () into two methods: It heuristi-
cally keeps all the code up to and including the setContentView () call (which sets up the
user interface) in onCreate (), and then appends a call to perform the binding. We move the
remainder of the code into a new droidLibOnCreate () method that is invoked by ACPlib
after the binding completes. We expect to make this mechanism more robust in the future.

Preliminary Experience While ACPIlib and Redexer are far from fully mature, we were able to
modify the source of two existing apps to use ACPIib and to rewrite two apps automatically using
Redexer. We also built a new app from scratch using ACPlib.

* Google Translate* is a very popular app that requests full Internet permissions, but only contacts
the googleapis.com domain. We manually edited the source code of the app to use Inter-
netURL(gooleapis.com) instead. We found the necessary changes easy to make, and after
making the changes, the app continues to work correctly.

* Maurauder’s Map is a route-planning app we wrote prior to ACPlib. We manually updated its
source to use LocationBlock, allowing users to find reasonable routes without revealing their exact

*http://code.google.com/p/apps-for-android/

googleapis.com
gooleapis.com
 http://code.google.com/p/apps-for-android/

location. As before the changes were easy to make and the app continues to work well.

e Slashdot RSS Reader is an app that contacts the slashdot . org domain to retrieve an RSS
feed, articles, and comments. We used Redexer to rewrite the app to use InternetURL(s1ashdot.
org). The domain was found automatically using Redexer to search for URLSs in the binary.

* We implemented a Price Checker app from scratch that uses ScanBarcodes to scan barcodes
and InternetURL(searchupc. com) to look up the price for the scanned item. This was easy to
write using ACPlib’s barcode scanning library.

4 Related Work

Others have also recognized the limitations of Android’s resource-centric permission model. Bar-
rera et al. [1] and Felt et al [7] analyze the way permissions are used in Android and Chrome OS
apps. Both groups observe that only a small number of Android permissions are widely used but
that some of these, in particular Internet permissions, are overly broad. Some researchers have
developed tools that have found a variety of security issues in Android apps [4, 5]. While our ap-
proach cannot guarantee the absence of the security vulnerabilities found by such tools, we believe
it can help make apps more secure in practice. We believe APCIib is complimentary to such tools
as they address different sorts of security properties. Furthermore, trusted libraries like ACPlib are
prime candidates for automated validation, as reuse allows verification costs to be amortized and
high security requirements can justify remaining per-app costs.

Others have also proposed enhanced permission mechanisms for Android. MockDroid changes
Android OS so that users can “mock” a subset of an application’s resource-centric permissions,
causing accesses to those resources to silently fail [2]. Apex is similar and also lets the user enforce
simple constraints such as the number of times per day a resource may be accessed [9]. Kirin
employs a set of user-defined security rules to flag potential malware at install time [6]. These tools
allow users to trade off app functionality for privacy, but they inherit the resource-centric nature of
Android permissions, which can limit their effectiveness. For example, denying Internet access to
Google Translate would render it useless, so a MockDroid user must allow such access, whereas
our application-centric policy provides a much stronger guarantee. Moreover, our approach can be
implemented purely as a library, with no modifications to the underlying Android OS.

Saint enriches permissions on Android to support a variety of installation constraints, e.g., a
permission can include a whitelist of apps that may request it [10]. In our limited experience, we
have not yet needed this capability. ComDroid [3] analyzes inter-application communication for
potential security risks. This tool could complement our proposed approach, which relies heavily
on inter-application communication with trusted third parties.

Shttp://code.google.com/p/slashdot/

slashdot.org
slashdot.org
slashdot.org
searchupc.com
http://code.google.com/p/slashdot/

5

Conclusion and Future Work

We introduced the idea of application-centric permissions and argued that they are an expressive
and practical approach to increase the security of Android apps today. We believe the same idea can
also be applied to other permission systems. In the future, we plan to develop a wider vocabulary
of application-centric permissions; implement more permissions in ACPlib; and improve Redexer
so that we can automatically rewrite more apps. We also hope to conduct a study to determine how
developers and users would understand and use application-centric permissions.

References

[1]

(2]

[10]

D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application to android. In CCS, pages 73-84, 2010.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: trading privacy for application
functionality on smartphones. In HotMobile, 2011.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-Application Communication in
Android. In MobiSys, 2011. To appear.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. In OSDI, 2010.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android application security. In
USENIX Security, 2011.

W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application certification. In
CCS, pages 235-245, 20009.

A. P. Felt, K. Greenwood, and D. Wagner. The Effectiveness of Application Permissions. In WebApps,
2011. To appear.

Google. Android: momentum, mobile and more at Google I/O, May 2011. http://googleblog.
blogspot.com/2011/05/android-momentum-mobile-and-more—at.html.

M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission model and enforcement
with user-defined runtime constraints. In ASIACCS, pages 328-332, 2010.

M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-centric security
in android. In ACSAC, pages 340-349, 2009.

http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html
http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html

	Overview
	Feasibility study
	ACPlib and Redexer
	Related Work
	Conclusion and Future Work

